Разное

У какого цвета самая короткая длина волны: Синий свет и оптические покрытия, уменьшающие его пропускание

У какого цвета самая короткая длина волны: Синий свет и оптические покрытия, уменьшающие его пропускание

Цвета света — красный, зеленый и синий, смешивание цветов

 

Великий ученый своего времени Ньютон доказал, что цвет — это качество света. Электромагнитное излучение, которое имеет общие свойства как с волнами, так и с частицами, излучаемыми на различных частотах в волновом движении. Любой заданный луч света имеет определенные значения частоты , длины волны и энергии, связанные с ним. 

Частота, которая представляет собой количество волн, проходящих фиксированную точку пространства в единицу времени, обычно выражается в единицах Герц (1 Гц = 1 цикл в секунду). Длина волны — это расстояние между соответствующими точками двух последовательных волн и часто выражается в метрах, например в нанометрах (1 нм = 10–9 метров). 

Энергию светового луча можно сравнить с энергией небольшой частицы, движущейся со скоростью света, за исключением того, что никакая частица, имеющая массу покоя, не может двигаться с такой скоростью. Понятие «фотон» , используемый для наименьшего количества света любой заданной длины волны, призван охватить эту двойственность, включая характеристики как волны, так и частицы,присущие волной и квантовой механике. Энергия фотона часто выражается в единицах электрон-вольт (1 эВ = 1,602 ×

 10-12 эрг ). Оно прямо пропорционально частоте и обратно пропорционально длине волны.

Свет — не единственный тип электромагнитного излучения. На самом деле это лишь небольшой сегмент всего электромагнитного спектра, но свет это единственная форма, которую может воспринимать глаз. Длины световых волн варьируются от 400 нм в фиолетовой части спектра до 700 нм в красной части части. Границы видимого спектра не имеют четкого определения, но различаются у разных людей; существует некоторая расширенная видимость для света высокой интенсивности. 

При более коротких длинах волн электромагнитный спектр простирается до области ультрафиолетового излучения и продолжается через ренгеновские лучи, гамма-лучи, и космические лучи.

 Сразу за красным концом спектра находятся длинноволновые инфракрасные лучи (которые можно ощущать как тепло), далее микроволны и радиоволны. Излучение одной частоты называется однотонным. Когда эта частота попадает в диапазон видимого спектра, создается цветовое восприятие насыщенного оттенка.

 

 

Законы смешения цветов.

Цвета спектра называются хроматическими цветами; есть также нехроматические цвета, такие как коричневые, пурпурные и розовые. Термин ахроматические цвета иногда применяется к последовательности черный-серый-белый. По некоторым оценкам, глаз может различать около 10 миллионов цветов, каждый из которых происходит от двух типов световой смеси: аддитивной и субтрактивной. Как следует из названий аддитивная смесь включает добавление спектральных компонентов, а вычитающая смесь касается вычитания или поглощение частей спектра.

Аддитивное смешение происходит при объединении лучей света.  Цветовой круг, впервые разработанный Ньютоном, до сих пор широко используется для целей цветового дизайна, а также полезен при рассмотрении качественного поведения смешивания лучей света. Цветовой круг Ньютона сочетает в себе спектральные цвета красный, оранжевый, желтый, зеленый, голубой, индиго и сине-фиолетовый с неспектральным пурпурным цветом (смесь сине-фиолетовых и красных световых лучей), как показано на рисунке. Белый находится в центре и получается путем смешивания световых лучей примерно одинаковой интенсивности дополнительного цвета (цвета, диаметрально противоположные в цветовом круге), такие как желтый и сине-фиолетовый, зеленый и пурпурный или голубой и красный. Промежуточные цвета можно получить путем смешивания световых лучей, например, смешивание красного и желтого дает оранжевый, красного и сине-фиолетового дает пурпурный и так далее.

Длина световой волны

 

цвет длина волны (нм) частота (1014 Гц) энергия (eV)
 
красный (предел)                700                                  4. 29                               1.77
красный 650 4.62 1.91
Оранжевый 600 5.00 2.06
Желтый
580
5.16 2.14
Зеленый 550 5.45 2.25
голубой 500 5.99 2.48
Синий 450 6.66 2.75
фиолетовый (предел) 400 7.50 3.10

Три основных цвета

Основные цвета — это красный, зеленый и синий. Это означает, что путем аддитивного смешивания различных цветов в определенных количествах можно получить почти все другие цвета.  Если три основных цвета смешиваются вместе в равных количествах, то получается белый цвет.

Аддитивное смешение можно продемонстрировать физически. Возьмем три слайд-проектора, оснащенных фильтрами. Один проектор излучает луч насыщенного красного света на белый экран, другой синего, а третий зеленого света. Аддитивное смешение происходит там, где лучи перекрываются (и, таким образом, складываются вместе). Там, где красный и зеленый лучи перекрываются, получается желтый. Если добавить больше красного света или уменьшить интенсивность зеленого света, световая смесь станет оранжевой. Точно так же, если зеленого света больше, чем красного, получается желто-зеленый и т.д.

 

 

Субтрактивное смешивание цветов включает в себя поглощение и избирательное пропускание или отражение света. Это происходит, когда красители (например, пигменты или красители) смешивают или когда в один пучок белого света вставляют несколько цветных фильтров.  Например, если проектор оснащен темно-красным фильтром, фильтр будет пропускать красный свет и поглощать другие цвета. Если проектор оснащен сильным зеленым фильтром, красный свет будет поглощаться, а передаваться будет только зеленый свет. 

Поэтому, если проектор оснащен как красным, так и зеленым фильтрами, все цвета будут поглощаться, а свет не пропускаться, что приведет к отображению черного цвета. Точно так же желтый пигмент поглощает синий и фиолетовый свет, отражая при этом желтый, зеленый и красный свет (зеленый и красный в совокупности дают больше желтого). Синий пигмент поглощает преимущественно желтый, оранжевый и красный свет. Если смешать желтый и синий пигменты, получится зеленый, поскольку это единственный спектральный компонент, который не сильно поглощается ни одним из пигментов.

Поскольку аддитивные процессы имеют наибольшую гамму, когда основными цветами являются красный, зеленый и синий, разумно ожидать, что наибольшая гамма в вычитательных процессах будет достигнута, когда основные цвета поглощают красный, зеленый и синий соответственно.

 

Цвет изображения, поглощающего красный свет и пропускающего все остальные излучения, — сине-зеленый, который часто называют голубой. Изображение, которое поглощает только зеленый свет, пропускает и синий, и красный свет, и его цветпурпурный. Изображение, поглощающее синий цвет, пропускает только зеленый и красный свет, а его цвет желтый. Следовательно, вычитающие основные цвета — голубой, пурпурный и желтый.

Нет точного понимания в области цвета традиционно были более запутанными, чем те, которые только что обсуждались. Эту путаницу можно проследить до двух распространенных неправильных названий:

1- субтрактивный первичный голубой, который на самом деле является сине-зеленым, обычно называют синим; 

2 — субтрактивный первичный пурпурный цвет обычно называют красным. 

В этих условиях вычитающие основные цвета становятся красным, желтым и синим. А также те, чей опыт ограничивается большей частью вычитающими смесями, имеют веские основания удивляться, почему физик настаивает на том, чтобы считать красный, зеленый и синий первичными цветами.  Путаница сразу разрешается, когда становится понятно, что красный, зеленый и синий выбраны в качестве аддитивных основных цветов, потому что они обеспечивают наибольшую цветовую гамму в смесях. По той же причине субтрактивные основные цвета соответственно поглощают красный цвет (голубой), поглощают зеленый (пурпурный) и синий поглощающий (желтый).

Белый свет

В физике видимый человеческим глазом, когда все длины волн видимого спектра объединяются, подобно черному. Но в отличие от цветов спектра и большинства их смесей, у белого отсутствует оттенок, поэтому он считается ахроматическим цветом. Белый и  черный — самые основные цветовые термины языков. Слово «белый» происходит от протогерманского «hwitaz» и древнеанглийского «hwit «. Одно из первых письменных упоминаний термина происходит из древнеанглийской легенды о фениксе, так называемой «Прозы Феникса» (11 век): «Его fet syndon blodreade begen twegen and se bile hwit» («Его ноги оба в крови — красный, а клюв белый»).

Красный свет

Самая длинная волна света. Находится в диапазоне 620–750 нанометров в видимом спектре. В искусстве красный — это цвет на условном круге, расположенный между фиолетовым и оранжевым,  а также противоположный зеленому, как его дополнение.

Красный был первым основным цветовым термином, добавленным в языки после черного и белого. Слово «красный» происходит от санскритского «rudhira» и протогерманского «rauthaz». Одно из первых письменных упоминаний этого термина содержится в староанглийском переводе (897 г. н. э .) «Пастырской заботы»

 папы св. Григория Великого: «On thæs sacerdes hrægle sceoldœn hangian bellan» — «на священнических ризах должны висеть колокольчики и среди колокольчиков красные гранаты»).

Зеленый свет

Свет в диапозоне длин волн 495–570 нанометров, который находится в середине видимого спектра. В искусстве зеленый — это цвет на обычном круге, расположенный между желтым и синим, напротив красного, как дополнение.

Зеленый — основной цветовой термин, добавленный в языки до или после желтого, после черного, белого и красного. Слово « зеленый » происходит от протогерманского «grōni» и древнеанглийского «grene». Одно из первых письменных упоминаний этого термина содержится в манускрипте Кэдмона ( около 1000 г. н. э.): «Адам останавливается / «On GRENE græs, gaste geweorthad» («Адам ступил / На зеленую траву, душа стала достойной»).

Синий свет

Свет 450–495 нанометров в видимом спектре. После фиолетового синий является областью спектра с самыми короткими длинами волн. В искусстве синий — это цвет на условном круге, расположенный между зеленым и фиолетовым и противоположным оранжевым, его дополнением.

Термин «синий» происходит от протогерманского «blæwaz» и старофранцузского «blo» или bleu». Одно из первых письменных упоминаний этого термина взято из южно-английского легендарного сборника жизнеописаний святых ( около 1300 г. н.э.): «Эта другая зелень».

 

 

Измерение цвета

Измерение цвета известно как колометрия. В этой области используются различные инструменты. Самые сложные спектрофотометры анализируют свет с точки зрения количества энергии, присутствующей на каждой спектральной длине волны. 

Трудно описать цвет конкретного спектрального распределения энергии. Поскольку глаз воспринимает только один цвет для любого данного распределения энергии, необходимо выразить измерения цвета способом, связанным с восприятием. Существует несколько систем, некоторые из которых описаны ниже.

Измерение тристимулюса и диаграммы цветности

Система тристимулюса основана на визуальном сопоставлении цвета в стандартизированных условиях с тремя основными цветами — красным, зеленым и синим. Три  результата выражаются в виде X, Y и Z соответственно и называются значениями тристимулюса.

Значения тристимуля изумрудно-зеленого пигмента составляют X = 22,7, Y = 39,1 и Z = 31,0. Эти значения определяют не только цвет, но и визуально воспринимаемую отражательную способность. Рассчитываются таким образом, что значение Y равно отражательной способности образца (39,1 процента в этом примере) при визуальном сравнении со стандартным белым цветом поверхность стандартным (средним) зрителем при среднем дневном свете.

Значения тристимулюса также могут быть использованы для определения визуально воспринимаемой доминирующей спектральной длины волны (которая связана с оттенком) данного образца; доминирующая длина волны изумрудно-зеленого пигмента составляет 511,9 нм.

Цветные атласы

Вычисление цветности и яркости является научным методом определения цвета, но для быстрого визуального определения цвета объектов часто используется цветовой атлас, такой как «Книга цвета Мансвелла». В этой системе цвета сопоставляются с напечатанными цветными чипами из трехмерного цветного твердого тела, параметрами которого являются оттенок, значение (соответствующее отражательной способности) и цветность (соответствующая чистоте или насыщенности).

 

  Каталог светильников ФОКУС

Свет и цвет: основы основ / Хабр

Мы часто говорим о таком понятии как свет, источниках освещения, цвете изображений и объектов, но не совсем хорошо себе представляем, что такое свет и что такое цвет. Пора разобраться с этими вопросами и перейти от представления к понимаю.

Мы окружены

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Рисунок 3 — Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.

Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.

Видимый свет | Управление научной миссии

 

Спектр видимого света — это сегмент электромагнитного спектра, видимый человеческому глазу. Проще говоря, этот диапазон длин волн называется видимым светом. Как правило, человеческий глаз может обнаруживать длины волн от 380 до 700 нанометров.

ДЛИНА ВОЛН ВИДИМОГО СВЕТА

Все электромагнитное излучение представляет собой свет, но мы можем видеть только небольшую часть этого излучения — часть, которую мы называем видимым светом. Конусообразные клетки в наших глазах действуют как приемники, настроенные на длины волн в этой узкой полосе спектра. Другие части спектра имеют слишком большую или слишком маленькую длину волны и энергию для биологических ограничений нашего восприятия.

Когда весь спектр видимого света проходит через призму, длины волн разделяются на цвета радуги, потому что каждый цвет соответствует разной длине волны. Фиолетовый цвет имеет самую короткую длину волны, около 380 нанометров, а красный цвет имеет самую большую длину волны, около 700 нанометров.

(слева) Эксперимент Исаака Ньютона в 1665 году показал, что призма преломляет видимый свет и что каждый цвет преломляется под немного другим углом в зависимости от длины волны цвета. Фото: Трой Бенеш. (справа) Каждый цвет радуги соответствует определенной длине волны электромагнитного спектра.

 
КОРОНА СОЛНЦА

Солнце является основным источником волн видимого света, воспринимаемых нашими глазами. Самый внешний слой атмосферы Солнца, корону, можно увидеть в видимом свете. Но оно настолько слабое, что его нельзя увидеть, кроме как во время полного солнечного затмения, потому что его подавляет яркая фотосфера. Фотография ниже была сделана во время полного солнечного затмения, когда фотосфера и хромосфера почти полностью заблокированы Луной. Конические узоры — корональные стримеры — вокруг Солнца образованы направленным наружу потоком плазмы, сформированным силовыми линиями магнитного поля, простирающимися на миллионы миль в космос.

Авторы и права: © 2008 Милослав Дракмюллер, Мартин Дитцель, Петер Аниол, Vojtech Rušin

 
ЦВЕТ И ТЕМПЕРАТУРА

По мере того как объекты нагреваются, они излучают энергию с преобладанием более коротких длин волн, меняя цвет на наших глазах. Пламя паяльной лампы меняет цвет с красноватого на голубоватый, поскольку оно настроено на более горячее. Точно так же цвет звезд говорит ученым об их температуре.

Наше Солнце излучает больше желтого света, чем любого другого цвета, потому что температура его поверхности составляет 5500°C. Если бы поверхность Солнца была холоднее — скажем, 3000 °C, — она выглядела бы красноватой, как звезда Бетельгейзе. Если бы Солнце было горячее — скажем, 12 000 °C, — оно выглядело бы голубым, как звезда Ригель.

Эксперимент Исаака Ньютона в 1665 году показал, что призма преломляет видимый свет и что каждый цвет преломляется под немного другим углом в зависимости от длины волны цвета.

Авторы и права: Дженни Моттар; Изображение предоставлено SOHO/консорциумом

 

Камера научного эксперимента по визуализации с высоким разрешением (HiRISE) на борту MarsReconnaissance Orbiter (MRO) сделала это впечатляющее изображение кратера Виктория в видимом свете. Предоставлено: НАСА/Лаборатория реактивного движения/Университет Аризоны

 
СПЕКТРЫ И СПЕКТРАЛЬНЫЕ ПРИНАДЛЕЖНОСТИ

Тщательное изучение спектра видимого света от нашего Солнца и других звезд обнаруживает узор из темных линий, называемых линиями поглощения. Эти паттерны могут дать важные научные подсказки, раскрывающие скрытые свойства объектов по всей Вселенной. Определенные элементы в атмосфере Солнца поглощают определенные цвета света. Эти узоры линий в спектрах действуют как отпечатки пальцев для атомов и молекул. Глядя, например, на спектр Солнца, отпечатки элементов очевидны для тех, кто знаком с этими моделями.

На графике отражательной способности объекта также видны закономерности. Элементы, молекулы и даже клеточные структуры обладают уникальными признаками отражения. График коэффициента отражения объекта в спектре называется спектральной характеристикой. Спектральные характеристики различных особенностей Земли в видимом спектре показаны ниже.

Авторы и права: Джинни Аллен

 
АКТИВНОЕ ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ — АЛЬТИМЕТРИЯ

Лазерная альтиметрия является примером активного дистанционного зондирования с использованием видимого света. Прибор NASA Geoscience Laser Altimeter System (GLAS) на борту спутника определения высоты льда, облаков и земли (ICESat) позволил ученым рассчитать высоту полярных ледяных щитов Земли с помощью лазеров и вспомогательных данных. Изменения высоты с течением времени помогают оценить изменения в количестве воды, хранящейся в виде льда на нашей планете. На изображении ниже показаны данные о высоте над ледяными потоками Западной Антарктики.

Лазерные высотомеры также могут выполнять уникальные измерения высоты и характеристик облаков, а также верха и структуры растительного покрова леса. Они также могут ощущать распространение аэрозолей из таких источников, как пыльные бури и лесные пожары.

Авторы и права: НАСА/Центр космических полетов имени Годдарда

 

К началу страницы  | Далее: Ультрафиолетовые волны


Цитата
APA

Национальное управление по аэронавтике и исследованию космического пространства, Управление научной миссии. (2010). Видимый свет. Получено [вставить дату — напр. 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/09_visiblelight

MLA

Управление научной миссии. «Видимый свет» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [вставить дату — напр. 10 августа 2016 г.] http://science.nasa.gov/ems/09_visiblelight

С точки зрения производителя освещения


Электромагнитный (ЭМ) спектр представляет собой диапазон всех типов электромагнитного излучения. Он охватывает весь спектр света. Большинство из которых невидимы невооруженным глазом. От Гамма-лучей слева от видимого спектра до длинных радиоволн справа.

Являясь ведущим производителем осветительных приборов, мы находим науку и технологию света интересными и важными. В этой статье я расскажу о видимом свете ; и где он падает на электромагнитный спектр, его характеристики и приложения.

Дополнительный контент:  Спектр видимого света: взгляд производителя в формате PDF.

Получите PDF-версию, чтобы сохранить ее на рабочем столе и прочитать, когда вам будет удобно.

(Электронная почта не требуется):

Спектр ЭМ света включает в себя диапазон световых волн . Одной из характеристик света является то, как он ведет себя как волна со своими пиками и впадинами, или гребнем (самая высокая точка) и впадиной (самая низкая точка). Из-за этого атрибута свет можно определить по его длине волны.

Что такое длины волн?

Длина волны — это горизонтальное расстояние между двумя пиками волны. Свет измеряется длиной волны (в нанометрах). Обычно обозначается греческим символом λ» role=»presentation» tabindex=»0″>λ.

Видимый свет обычно определяется как имеющий длину волны в диапазоне 400–700 нанометров (нм) или одну миллиардную долю метра.

ЭМ-волны классифицируются в зависимости от их длины волны и частоты (количество волн, проходящих точку за определенное время). Эта классификация определяет, находится ли электромагнитное излучение слева или справа от видимого спектра .

Свет — это энергия, которая принимает различные формы.

Вот что я имею в виду…

На изображении ниже показан электромагнитный спектр с выделенным светом. ( Обозначается как Видимый спектр )

Видимый свет представляет собой небольшую часть всего спектра ЭМ.

Изображение предоставлено : Электромагнитный спектр

Если вы посмотрите на  l eft видимого спектра… чрезвычайно высокие частоты. Здесь вы найдете гамма-лучи, рентгеновские лучи и ультрафиолетовые лучи.

Гамма-лучи — самые высокие по частоте и энергии, самые разрушительные.

X-Rays — тоже волны высокой энергии и короткой длины волны. Большинство рентгеновских лучей имеют длину волны от 0,01 до 10 нанометров.

УФ (ультрафиолетовые лучи) — это электромагнитное излучение с длиной волны от 10 нм до 400 нм, короче, чем у видимого света, но длиннее, чем рентгеновские лучи. Свет с длиной волны, которая короче любого света в видимом спектре, называется ультрафиолетовым светом.

Видимый спектр. Видимый спектр света — это часть электромагнитного спектра, видимая человеческому глазу. (подробнее об этом чуть позже).

Теперь к прямо видимого спектра…

ИК — Инфракрасные лучи — Тепловые волны, испускаемые тепловыми телами. Они выделяются теплом или тепловой энергией.

Микроволновая печь — В связи используется в радаре. Вы, скорее всего, знаете его для разогрева пищи.

Радиоволны — электромагнитная волна определенной частоты, используемая для связи на большие расстояния. У него самые низкие энергетические уровни.

Длинные радиоволны — от 30 кГц до 279 кГц со средней длиной волны 1500 метров. С другой стороны, диапазон коротких волн составляет от 1,5 МГц до 30 МГц (длина волны от 10 до 85 метров).  

Все радиоволны, короткие или длинные, относятся к электромагнитному излучению, как и свет. Больше различий между коротковолновым и длинноволновым радио.

Теперь, когда мы понимаем весь спектр, давайте разберем «центральную сцену»…

Видимый свет…

Что такое видимый свет  в электромагнитном спектре?

Видимый свет находится в области с ультрафиолетовым (УФ) спектром слева и инфракрасным (ИК) справа. Это форма электромагнитного излучения, которое можно разделить на семь цветов.

Это, вероятно, наиболее знакомо вам, потому что это единственная область спектра, видимая большинству человеческих глаз.

«Эта часть спектра включает в себя диапазон различных цветов, каждый из которых представляет определенную длину волны. Таким образом образуются радуги; свет проходит через вещество, в котором он поглощается или отражается в зависимости от длины волны. Таким образом, некоторые цвета отражаются больше, чем другие, что приводит к созданию радуги». [источник]

Одной из наиболее важных характеристик видимого света является цвет.

Цвета спектра видимого света

В видимом спектре есть семь диапазонов длин волн, которые соответствуют другому цвету. Каждый видимый цвет имеет длину волны. При переходе от красного к фиолетовому длина волны уменьшается, а энергия увеличивается.

Изображение предоставлено: Видимый спектр

Вот 7 длин волн от самой короткой до самой длинной.

  1. Фиолетовый — самая короткая длина волны, около 400-420 нанометров с самой высокой частотой. Они несут больше всего энергии.
  2. Индиго — 420 — 440 нм
  3. Синий — 440 — 490 нм
  4. Зеленый — 490 — 570 нм
  5. Желтый — 570 — 585 нм
  6. Оранжевый — 585 — 620 нм
  7. Красный — самая длинная длина волны, около 620–780 нанометров при самой низкой частоте

источник: Видимый цветовой спектр

УФ-свет, расположенный рядом с видимым светом в спектре, имеет более высокую частоту, что соответствует более высокому излучению. Если у вас когда-либо был солнечный ожог, это было связано с ультрафиолетовым излучением солнца. Использование УФ-излучения выходит далеко за рамки летнего загара.

Применение с использованием ультрафиолетового излучения

Ультрафиолетовое излучение широко и разнообразно. От соляриев до бактериальной дезинфекции и борьбы с инфекциями.

Больницы используют УФ-лампы для стерилизации своего хирургического оборудования, что помогает уменьшить инфекции.

По словам Джона Хагемана, MS, CHP, сотрудника по радиационной безопасности Юго-Западного исследовательского института, «стерилизация, уничтожение бактерий (или любых типов клеток) на медицинских инструментах в первую очередь достигается за счет излучения, вызывающего серьезное повреждение компонентов клетки. и к хромосомам клетки, особенно к ДНК

«Серьезное повреждение» ДНК — это множественные разрывы в длинной лестничной структуре ДНК Радиация (например, гамма-лучи, рентгеновские лучи или бета- и альфа-излучение) обладает достаточной энергией ионизировать атомы и молекулы, то есть создавать заряженные частицы и свободные радикалы».

С другой стороны, рядом со спектром видимого света находится (ИК) инфракрасное излучение…

Эти волны длиннее волн видимого света, но короче радиоволн. Более длинные инфракрасные волны можно воспринимать как тепло. Эта форма света невидима для человеческого глаза и также имеет множество применений.

Применения, использующие инфракрасную энергию

Среди наиболее известных — дистанционное управление, тепловидение и ночное видение.

Пульт дистанционного управления использует световые волны для переключения каналов. Он использует инфракрасный свет, передаваемый светоизлучающими диодами (LED), для отправки сигнала на ваше устройство или телевизор.

«Тепловизионное изображение — это метод улучшения видимости объектов в темноте путем обнаружения инфракрасного излучения объектов и создания изображения на основе этой информации. использовались технологии ночного видения».

ИК-связь можно использовать где угодно, так как она не вредна для человека.

Свет — это электромагнитное излучение. Он движется волнообразно и производится из источника .

Как поставщик решений для освещения, мне легче разбить его на различные источники света и на то, где они попадают в общую схему вещей в электромагнитном спектре.

Источники видимого света

Различные типы света влияют на то, как наши глаза воспринимают цвета. Например, при дневном свете мы больше всего видим синий и зеленый цвета. Дневной свет также дает более интенсивный, но более холодный свет. При люминесцентном освещении хорошо видны зеленый и красный цвета.

7 Источники видимого света 

1. Солнце —  является основным источником света на Земле. Солнце излучает излучение во всем электромагнитном спектре, от рентгеновских лучей с чрезвычайно высокой энергией до сверхдлинноволновых радиоволн и всего промежуточного. Пик этого излучения приходится на видимую часть спектра. [источник]

2. Лампа накаливания –  – это электрический свет с проволочной нитью накала, нагретой до такой высокой температуры, что она светится видимым светом (накалом). Выходной сигнал выше в красном конце спектра, что дает ему теплый выходной сигнал. Что также помещает его в основном за пределы видимого спектра. Галогенная лампа излучает непрерывный спектр света, от ближнего ультрафиолетового до глубокого инфракрасного.

3. Флуоресцентный — коротковолновый ультрафиолетовый свет, вызывающий свечение люминофорного покрытия внутри лампы . Спектр флуоресцентного света имеет высокую интенсивность от примерно 480 нм до примерно 570 нм. Люминесцентные лампы смешивают с другими типами ламп, чтобы получить свет, близкий к солнечному.

4. Галоген  — освещение производится, когда вольфрамовая нить нагревается достаточно, чтобы излучать свет или «накаливание». Он использует галогенный газ для увеличения светоотдачи. Спектр галогена показывает, что интенсивность больше от 650 до 9 нм. 50 нм. Это показывает, что здесь больше концентрация красного света, длина волны которого составляет около 656,28 нм. [источник]

5. LED — светоизлучающий диод (LED) — двухвыводной полупроводниковый источник света. Излучает свет при активации. Электрический ток проходит через микрочип, который освещает крошечные источники света, которые мы называем светодиодами, и в результате получается видимый свет. Светодиодные устройства охватывают спектр от ультрафиолетового (УФ) до видимого и инфракрасного (ИК).

6. Лазер — «Усиление света за счет вынужденного излучения». Слово «лазер» будет ограничено устройствами, излучающими электромагнитное излучение, использующими усиление света за счет стимулированного излучения на длинах волн от 180 нанометров до 1 миллиметра. Электромагнитный спектр включает энергию в диапазоне от гамма-лучей до электричества. [источник] 

7. HID (высокоинтенсивный разряд) –  – тип электрической газоразрядной лампы, излучающей свет с помощью электрической дуги между вольфрамовыми электродами, расположенными внутри полупрозрачной или прозрачной дуги из плавленого кварца или плавленого оксида алюминия.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *