Выбор мощности, тока и сечения проводов и кабелейЗначения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки ( открытой проводки) на сечение провода:
При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм из расчета достаточной механической прочности. Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами. В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования. Медные жилы, проводов и кабелейАлюминиевые жилы, проводов и кабелейДопустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами.Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами.Допустимый длительный ток для проводов с медными жиламиДопустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных. * Токи относятся к проводам и кабелям с нулевой жилой и без нее. Допустимый длительный ток для кабелей с алюминиевыми жиламиДопустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных. Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92. Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки.В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях. Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:
* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.
Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках.
| Продукция: Услуги: НОВИНКАECOLED-100-105W-13600-D120 CITY Светильник используют для освещения территорий предприятий, автостоянок, дворов, складских и производственных помещений. ПОДРОБНЕЕ |
Главная Услуги Загрузить | В таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования. Медные жилы, проводов и кабелей
Алюминиевые жилы, проводов и кабелей
В расчете применялись: данные таблиц ПУЭ; формулы активной мощности для однофазной и трехфазной симметричной нагрузки расчет кабеля по мощности, сечение кабеля по току, сечение провода по току, сечение кабеля по мощности, выбор сечения кабеля по мощности, расчет сечения кабеля по мощности, сечение провода по мощности, сечение провода и мощность, таблица сечения проводов, расчет сечения кабеля, сечение кабеля от мощности, сечение кабеля и мощность, выбор сечения кабеля по току, выбор кабеля по мощности, сечение провода мощность, расчет сечения провода по мощности, расчет кабеля по мощности, таблица сечения кабеля, сечение провода таблица, расчёт сечения кабеля по мощности, выбор кабеля по току, таблица соотношения ампер киловатт сечение, медь сколько киловатт, допустимый ток проводов сечения |
Номинальные значения рабочей мощности и тока электродвигателей
Классы компонентов: 1. 6.1.1.1. Модульные автоматические выключатели (ВАМ, МСВ), 1.6.5.1. Модульные контакторы, 1.6.1.2.1. Мотор-автоматы (автоматические выключатели защиты двигателей, MPCB), 1.6.1.3.1. Автоматические выключатели в литом корпусе (MCCB), 1.6.5.2. Контакторы, 1.6.5.3. Пускатели, 1.6.5.4. Реле перегрузки и аксессуары к ним, 1.12. Электродвигатели и приводная техника
Значения тока, приведенные ниже, относятся к стандартным трехфазным четырехполюсным асинхронным электродвигателям с КЗ ротором (1500 об/мин при 50 Гц, 1800 об/мин при 60 Гц). Данные значения представлены в качестве ориентира и могут варьироваться в зависимости от производителя электродвигателя и количества полюсов.
Мощность электродвигателя | Номинальный ток электродвигателя: стандартные значения обозначены синим цветом (в соответствии с МЭК 60947-4-1, приложение G) |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
220В | 230В | 240В | 380В | 400В | 415В | 440В | 500В | 660В | 690В | |
0,06 кВт | 0,37 | 0,35 | 0,34 | 0,21 | 0,2 | 0,19 | 0,18 | 0,16 | 0,13 | 0,12 |
0,09 кВт | 0,54 | 0,52 | 0,5 | 0,32 | 0,3 | 0,29 | 0,26 | 0,24 | 0,18 | 0,17 |
0,12 кВт | 0,73 | 0,7 | 0,67 | 0,46 | 0,44 | 0,42 | 0,39 | 0,32 | 0,24 | 0,23 |
0,18 кВт | 1 | 1 | 1 | 0,63 | 0,6 | 0,58 | 0,53 | 0,48 | 0,37 | 0,35 |
0,25 кВт | 1,6 | 1,5 | 1,4 | 0,9 | 0,85 | 0,82 | 0,74 | 0,68 | 0,51 | 0,49 |
0,37 кВт | 2 | 1,9 | 1,8 | 1,2 | 1,1 | 1,1 | 1 | 0,88 | 0,67 | 0,64 |
0,55 кВт | 2,7 | 2,6 | 2,5 | 1,6 | 1,5 | 1,4 | 1,3 | 1,2 | 0,91 | 0,87 |
0,75 кВт | 3,5 | 3,3 | 3,2 | 2 | 1,9 | 1,8 | 1,7 | 1,5 | 1,15 | 1,1 |
1,1 кВт | 4,9 | 4,7 | 4,5 | 2,8 | 2,7 | 2,6 | 2,4 | 2,2 | 1,7 | 1,6 |
1,5 кВт | 6,6 | 6,3 | 6 | 3,8 | 3,6 | 3,5 | 3,2 | 2,9 | 2,2 | 2,1 |
2,2 кВт | 8,9 | 8,5 | 8,1 | 5,2 | 4,9 | 4,7 | 4,3 | 3,9 | 2,9 | 2,8 |
3 кВт | 11,8 | 11,3 | 10,8 | 6,8 | 6,5 | 6,3 | 5,7 | 5,2 | 4 | 3,8 |
4 кВт | 15,7 | 15 | 14,4 | 8,9 | 8,5 | 8,2 | 7,4 | 6,8 | 5,1 | 4,9 |
5,5 кВт | 20,9 | 20 | 19,2 | 12,1 | 11,5 | 11,1 | 10,1 | 9,2 | 7 | 6,7 |
7,5 кВт | 28,2 | 27 | 25,9 | 16,3 | 15,5 | 14,9 | 13,6 | 12,4 | 9,3 | 8,9 |
11 кВт | 39,7 | 38 | 36,4 | 23,2 | 22 | 21,2 | 19,3 | 17,6 | 13,4 | 12,8 |
15 кВт | 53,3 | 51 | 48,9 | 30,5 | 29 | 28 | 25,4 | 23 | 17,8 | 17 |
18,5 кВт | 63,8 | 61 | 58,5 | 36,8 | 35 | 33,7 | 30,7 | 28 | 22 | 21 |
22 кВт | 75,3 | 72 | 69 | 43,2 | 41 | 39,5 | 35,9 | 33 | 25,1 | 24 |
30 кВт | 100 | 96 | 92 | 57,9 | 55 | 53 | 48,2 | 44 | 33,5 | 32 |
37 кВт | 120 | 115 | 110 | 69 | 66 | 64 | 58 | 53 | 40,8 | 39 |
45 кВт | 146 | 140 | 134 | 84 | 80 | 77 | 70 | 64 | 49,1 | 47 |
55 кВт | 177 | 169 | 162 | 102 | 97 | 93 | 85 | 78 | 59,6 | 57 |
75 кВт | 240 | 230 | 220 | 139 | 132 | 127 | 116 | 106 | 81 | 77 |
90 кВт | 291 | 278 | 266 | 168 | 160 | 154 | 140 | 128 | 97 | 93 |
110 кВт | 355 | 340 | 326 | 205 | 195 | 188 | 171 | 156 | 118 | 113 |
132 кВт | 418 | 400 | 383 | 242 | 230 | 222 | 202 | 184 | 140 | 134 |
160 кВт | 509 | 487 | 467 | 295 | 280 | 270 | 245 | 224 | 169 | 162 |
200 кВт | 637 | 609 | 584 | 368 | 350 | 337 | 307 | 280 | 212 | 203 |
250 кВт | 782 | 748 | 717 | 453 | 430 | 414 | 377 | 344 | 261 | 250 |
315 кВт | 983 | 940 | 901 | 568 | 540 | 520 | 473 | 432 | 327 | 313 |
355 кВт | 1109 | 1061 | 1017 | 642 | 610 | 588 | 535 | 488 | 370 | 354 |
400 кВт | 1255 | 1200 | 1150 | 726 | 690 | 665 | 605 | 552 | 418 | 400 |
500 кВт | 1545 | 1478 | 1416 | 895 | 850 | 819 | 745 | 680 | 515 | 493 |
560 кВт | 1727 | 1652 | 1583 | 1000 | 950 | 916 | 832 | 760 | 576 | 551 |
630 кВт | 1928 | 1844 | 1767 | 1116 | 1060 | 1022 | 929 | 848 | 643 | 615 |
710 кВт | 2164 | 2070 | 1984 | 1253 | 1190 | 1147 | 1043 | 952 | 721 | 690 |
800 кВт | 2446 | 2340 | 2243 | 1417 | 1346 | 1297 | 1179 | 1076 | 815 | 780 |
900 кВт | 2760 | 2640 | 2530 | 1598 | 1518 | 1463 | 1330 | 1214 | 920 | 880 |
1000 кВт | 3042 | 2910 | 2789 | 1761 | 1673 | 1613 | 1466 | 1339 | 1014 | 970 |
| Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Оборудование / / Электродвигатели. Электромоторы. / / Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности Поделиться:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Коды баннеров проекта DPVA.ru Начинка: KJR Publisiers Консультации и техническая | Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator |
Таблица автоматов по мощности и току. Выбор автомата по сечению кабеля таблица
Друзья приветствую всех на сайте «Электрик в доме». Мне на почту часто приходят письма с просьбой разъяснить правильно ли выбран автомат. Я понял, что для вас этот вопрос актуален, поэтому в данной статье будет таблица автоматов по мощности и току, по которой Вы с легкостью сможете выбрать автоматический выключатель под свою нагрузку и сечение кабеля.
Главной функцией автомата является защита электропроводки от перегрузки, которая приводит к разрушению изоляции электрического кабеля, короткому замыканию и пожару. Для того чтобы избежать проблем с электропроводкой в обязательном порядке устанавливают автоматические выключатели.
Конструктивно такой аппарат состоит из теплового и электромагнитного механизмов отключения (расцепителей).
Главной задачей электромонтажника является грамотный расчет характеристик автомата для его долговечной, стабильной работы и выполнения тех функций, которые на него возложены.
Ремонтные работы вследствие выхода из строя электропроводки – сложное и очень дорогое дело. Более того, от правильного выбора защитных устройств зависит жизнь и здоровье человека, поэтому важно подойти к этому вопросу очень ответственно.
В этой статье будет представлен правильный алгоритм выбора автоматических выключателей в зависимости от номинала и других характеристик.
Шкала номинальных токов автоматических выключателей
На корпусе автоматических выключателей производителем всегда указываются главные характеристики устройства, его модель, серийный номер и бренд.
Главной и самой важной характеристикой автомата является значение номинального тока. Она показывает максимально допустимый ток, который может долго проходить через автоматический выключатель без его нагрева и отключения. Значение тока измеряется и указывается в Амперах (А). Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь.
Модели автоматов имеют стандарт значений номинального тока и бывают 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А. Бывают и более мощные приборы, но в быту они не используются и предназначены только для специальных задач в промышленности.
Согласно нормативно-технической документации номинальный ток для любого автоматического выключателя указывается для работы прибора при температуре окружающей среды +30 градусов Цельсия.
Устанавливают автоматы в электрощитах на дин-рейку по несколько штук в зависимости от количества защищаемых линий. При одновременном расположении нескольких устройств вплотную друг к другу они «подогревают» друг друга, это приводит к уменьшению значения тока, который они могут пропустить без отключения. В связи с этим в каталогах и инструкциях к приборам защиты производители часто указывают поправочные коэффициенты для размещения групп выключателей.
Важность время-токовой характеристики
Некоторые электрические приборы имеют высокий пусковой ток при включении. Его значение бывает выше номинального тока автомата, но действует он краткое время. Для электрического кабеля такой ток не представляет опасности (если его величина в разумных пределах соотносится с типом кабеля), но автомат может срабатывать при пусковом токе, воспринимая это как перегрузку.
Для того чтобы не происходило постоянных отключений из-за запуска устройств с высокими пусковыми токами, автоматы имеют разделение на типы по время-токовой характеристике.
Конструктивно автоматический выключатель состоит из двух расцепителей: электромагнитного и теплового.
Электромагнитный расцепитель предназначен для отключения устройства при коротком замыкании. Для работы такого механизма отключения в автомате используется электромагнитная катушка и соленоид. При многократном превышении значения электрического тока появляется магнитное поле в катушке, та задействует соленоид и он отключает автомат.
Автоматические выключатели имеют характеристику по току короткого замыкания (предельный ток отключения), которая по номиналу бывает в 3, 4,5, 6 и 10кА. Для бытовых целей при устройстве защиты в квартире или доме чаще всего применяют автоматы с номиналом тока КЗ 6кА.
Тепловой расцепитель – это пластина, состоящая из двух различных металлов. При длительной нагрузке, превышающей номинальный ток, эта пластина нагревается, выгибается, воздействует на рычаг расцепителя и устройство отключается. Главная задача такого механизма – защищать линию от долговременных перегрузок выше номинального тока автомата.
Чтобы не думать о том, какую нагрузку включить в розетку, не рассчитывать постоянно суммарную мощность приборов и не думать о пусковых токах была придумана характеристика по времени-току.
Данная характеристика показывает время и ток, которые влияют на отключение аппарата. На автоматах она указывается буквой В, С или D.
Автоматические выключатели с одинаковыми номиналами и различной время–токовой характеристикой будут отключаться в разное время и с разным током превышения.
Такое разделение автоматов является очень удобным и позволяет уменьшить количество ложных отключений.
В соответствии с ГОСТ Р 50345-2010 существует три стандарта время-токовых характеристик:
- B – превышение в 3 — 5 раз от номинального тока, самые чувствительные автоматы имеют такую характеристику и применяются в сетях с приборами не имеющими больших пусковых токов.
- C – превышение в 5 — 10 раз от номинального тока, самая популярные автоматы с такой характеристикой, они используются в квартирах и частных домах.
- D – превышение в 10 — 20 раз от номинального тока, используется для защиты сетей с оборудованием имеющим высокие пусковые токи и кратковременные перегрузки.
Почему автомат С16 не отключится при токе 16 Ампер?
Теперь давайте попробуем понять, почему при сечении электрического кабеля 2,5 кв.мм, который выдерживает ток 25А (ПУЭ таблица 1.3.6) должен защищать автоматический выключатель на 16А, а не на 25А.
Все дело в тепловом расцепителе, который нагревается со временем при воздействии нагрузки и защищает от длительного превышения тока. Длительность этого времени может занимать и 10 минут и 1 час.
Автоматические выключатели имеют такую характеристику, как «ток неотключения», он рассчитан и составляет 1,13 от номинального тока (смотри ГОСТ Р 50345-2010 п.8.6.2). Эта характеристика означает, что автомат не отключится при этом значении тока в течение часа.
Например, автомат на 16А не отключится, при протекании через него тока в 18,08 А в течение часа, это заложено в работу теплового расцепителя устройства.
Еще одной характеристикой автоматов является «условный ток отключения» и он тоже стандартен для всех защитных автоматов и равен 1,45 от номинального тока. При токе, например, 36,25А автомат на 25А обязательно отключится в течение часа. Это правило действует только при условии, что изначально автоматы были холодными.
Поэтому нужно иметь в виду, что автоматические выключатели не отключаются при достижении значения тока их номинала. Они могут работать и дольше, поэтому всегда выбирают защитное устройство с номиналом ниже, чем пропускающая способность кабеля.
Номиналы автоматов по току таблица
Для того, чтобы защитить линию от перегрузки и короткого замыкания нужно тщательно и правильно выбрать номинал автомат по току. Вот, например, если вы защищаете линию с кабелем 2,5 кв.мм. автоматом на 25А и одновременно включили несколько мощных бытовых приборов, то ток может превысить номинал автомата, но при значении меньше 1,45 автомат может работать около часа.
Если тока будет 28 А, то изоляция кабеля начнет плавиться (так как допустимый ток только 25А), это приведет к выходу из строя, пожару и другим печальным последствиям.
Поэтому таблица автоматов по мощности и току выглядит следующим образом:
Сечение медных жил кабеля, кв.мм | Допустимый длительный ток, А | Номинальный ток автомата, А | Максимальная мощность (220 В) | Применение |
1,5 | 19 | 10 | 4,1 | Освещение |
2,5 | 25 | 16 | 5,5 | Розетки |
4 | 35 | 25 | 7,7 | Водонагреватели, духовки |
6 | 42 | 32 | 9,24 | Электроплиты |
10 | 55 | 40 | 12,1 | Вводы в квартиру |
ВАЖНО! Обязательно следуйте значениям таблицы и указаниям нормативной электротехнической документации!
Какой автомат выбрать для кабеля 2.5 мм2?
Для потребителей, суммарная мощность которых не будет превышать 3,5 кВт рекомендуем использовать медный кабель сечением 2,5кв.мм и защищать эти линии автоматом на 16А.
Для медного кабеля сечением 2,5 кв.мм согласно таблице 1.3.6 ПУЭ длительный допустимый ток 27А. Исходя из этого, можно подумать, что к такому кабелю подойдет автомат на 25А. Но это не так. Кстати кто не знает где искать публикую данную таблицу:
Согласно ПУЭ, п. 1.3.10 значение тока 25А разогреет кабель 2,5 кв.мм до 65 градусов Цельсия. Это достаточно высокая температура для постоянных режимов работы.
Еще важно понимать, что не все производители изготавливают кабель согласно ГОСТ и его сечение может быть ниже заявленного. Так что сечение может быть 2,0 кв.мм вместо 2,5 кв.мм. Качество меди у разных заводов тоже отличается и вы не сможете гарантировано точно сказать о том, какое качество кабеля имеете.
Поэтому очень важен запас в защите кабеля для избегания проблем в процессе эксплуатации электропроводки. Выбор автомата по сечению кабеля осуществляют следующим образом:
- кабель 1,5 кв.мм применяю при монтаже сигнализации и освещения, ему соответствует автомат 10А;
- кабель 2,5 кв.мм часто используется для отдельных розеток и розеточных групп, где суммарная мощность потребителей не будет превышать 3,5 кВт. Ему соответствует номиналы автоматов по току 16А;
- кабель 4 кв.мм используют в быту для подключения духовых шкафов, стиральных и посудомоечных машин, обогревателей и водонагревателей, к нему покупают автомат номиналом 25А;
- кабель 6 кв.мм нужен для подключения серьезных мощных потребителей: электрических плит, электрических котлов отопления. Номинал автомата 32А;
- кабель 10 кв.мм обычно максимальное сечение используемое в быту, предназначено для ввода питания в квартиры и частные дома к электрощитам. Автомат на 40А.
Для расчета электрической сети у себя дома смело и строго руководствуйтесь предоставленной выше таблицей и руководством. При правильном расчете силовых линий и защитных устройств всё будет работать долговечно и не принесет вам неудобств и проблем.
Выбор автомата по сечению кабеля таблица для 220 В и 380 Вольт
Многие путают и думают, что автоматические выключатели защищают электрические приборы. Это ошибка.
Автоматический выключатель всегда защищает только силовую линию — кабель! Автомат защищает не нагрузку, не розетку, а питающий кабель и только его. Это нужно запомнить! |
Задача автомата – уберечь кабель от повреждения, перегрева и последствий. Поэтому выбирать автомат нужно руководствуясь следующими советами:
1. Сначала вычисляем максимальную нагрузку на каждую линию (суммируем максимальную мощность потребителей), по закону Ома I=P/U вычисляем максимальный ток.
Например, имея на кухне чайник 1кВт, холодильник 0,5 кВт, мультиварку 0,8 кВт и микроволновую печь 1,2 кВт суммируем их максимальные мощности:
1+0,5+1,2+0,8 = 3,5 кВт;
вычисляем силу тока:
I=3500/220=15,9А
2. Исходя из мощности и тока, рассчитываем сечение кабеля или выбираем его из таблицы. Для дома обычно выбирают 1,5 – 10 кв.мм. в зависимости от нагрузки.
Для нашего примера выбираем кабель с жилами 2,5кв.мм.
3. Далее выбираем номинал автоматического выключателя, опять же по таблице в соответствии с выбранным сечение кабеля. Автомат должен отключаться раньше, чем перегреется кабель. В нашем случае это автомат номиналом 16А.
4. Подключаем все в правильной последовательности и пользуемся.
Если электрическую проводку вы будете использовать старую, то учитывайте состояние кабеля и его сечение и подбирайте автомат под него, но номиналом не более 16А! Лучшим решением при ремонте является полная замена всей проводки и защитных устройств.
Автоматические выключатели лучше всего выбирать известных производителей, тогда вы будете уверены в надежности и долговечности их работы.
Самыми распространенными и качественными импортными устройствами на данный момент считают: ABB, Legrand, Shneider Electric, hager.
Единственный их минус – высокая цена, но, конечно, она соответствует качеству продукции. Отечественные приборы фирм IEK и КЭАЗ уступают по качеству, но имеют доступную цену. Желательно покупать автоматические выключатели в электрический щиток одного производителя, чтобы система работала однородно и не было несоответствий в характеристиках защитных устройств.
Важно! Выбирайте электрические компоненты и защитные устройства в специализированных магазинах и проверяйте сертификаты на продукцию!
Монтаж и разводка электропроводки в доме – это сложный и ответственный процесс, в котором важны все тонкости и нюансы, и которые требуют правильного расчета всех составляющих. Именно поэтому если вы не уверены в том, что вам такая работу будет по плечу, то лучше наймите профессионального электрика.
На этом все друзья, надеюсь данная статья помогла вам с решением такой проблемы как выбрать автомат по сечению кабеля, если остались вопросы задавайте в их в комментариях.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Таблица мощности проводов: рассмотрим подробно
Упрощенная таблица для выбора сечения проводника по номинальной мощности
Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.
В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.
Как правильно выбирать сечение провода
Почему нельзя пользоваться таблицами мощности
Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.
Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.
Итак:
- Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.
Что такое cosα
- Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
- Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
- Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.
Выбор сечения провода по номинальному току
Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.
Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.
Итак:
- Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).
На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников
- Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.
Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.
- Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
- Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.
Таблица выбора сечения провода для медных проводников
Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.
- Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.
Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.
Дополнительные аспекты выбора сечения провода
Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.
Таблица поправочных температурных коэффициентов
- Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
- Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.
Вывод
Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.
Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.
Коэффициенты пусковых токов
В данной таблице приведены примерные значения номинальной и пусковой мощности популярных бытовых приборов и электроинструментов, а так же коэффициенты запаса мощности, которые следует учитывать при расчете мощности электростанции. Эта таблица поможет Вам в расчетах, но не забывайте, что лучше перед покупкой проконсультироваться со специалистом.
Коэффициенты пусковых токов, которые необходимо учитывать при подключении приборов:
Тип потребителя | Номинальная мощность, Вт | Мощность при пуске, Вт | Требуемый коэффициент запаса мощности |
Циркулярная пила | 1100 | 1450 | 1,32 |
Дрель электрическая | 800 | 950 | 1,19 |
Шлифовальная машинка или станок | 2200 | 2800 | 1,27 |
Перфоратор | 1300 | 1600 | 1,23 |
Станок или машинка для финишного шлифования | 300 | 350 | 1,17 |
Ленточно-шлифовальная машина | 1000 | 1200 | 1,2 |
Рубанок электрический | 800 | 1000 | 1,25 |
Пылесос | 1400 | 1700 | 1,21 |
Подвальный вакуумный насос | 800 | 1000 | 1,25 |
Бетономешалка | 1000 | 3500 | 3,5 |
Буровой пресс | 750 | 2600 | 3,47 |
Инвертор | 500 | 1000 | 2 |
Шпалерные ножницы | 600 | 720 | 1,2 |
Кромкообрезной станок | 500 | 600 | 1,2 |
Холодильник | 600 | 2000 | 3,33 |
Фризер | 1000 | 3500 | 3,5 |
Кипятильник, котел (Бойлер) | 500 | 1700 | 3,4 |
Кондиционер | 1000 | 3500 | 3,5 |
Стиральная машина | 1000 | 3500 | 3,5 |
Обогреватель радиаторного типа | 1000 | 1200 | 1,2 |
Лампа накаливания для освещения | 500 | 500 | 1 |
Неоновая подсветка | 500 | 1000 | 2 |
Электроплита | 6000 | 6000 | 1 |
Электропечь | 1500 | 1500 | 1 |
Микроволновая печь | 800 | 1600 | 2 |
Hi-Fi TV — бытовая техника | 500 | 500 | 1 |
Электромясорубка | 1000 | до 7000 (см. инструкцию) | 7 |
Погружной водяной насос | 1000 | 3500 | 3,5 |
Если здание оснащено сложным оборудованием, таким как системы охраны, вентиляции, отопления и т.д., то для точного определения необходимой мощности электростанции лучше обратиться к профессионалам.
Специалисты Первого Генераторного Салона обследуют Ваш объект, проанализируют предоставленные данные, дадут оценку требуемой мощности, количества фаз, типу двигателя, а так же проконсультируют относительно ценовых категорий различных марок электростанций.
Учебное пособие по физике: новый взгляд на электрическую энергию
В предыдущем разделе Урока 3 подробно описывалась зависимость тока от разности электрических потенциалов и сопротивления. Ток в электрическом устройстве прямо пропорционален разности электрических потенциалов, приложенной к устройству, и обратно пропорционален сопротивлению устройства. Если это так, то скорость, с которой это устройство преобразует электрическую энергию в другие формы, также зависит от тока, разности электрических потенциалов и сопротивления.В этом разделе Урока 3 мы вернемся к концепции мощности и разработаем новые уравнения, которые выражают мощность через ток, разность электрических потенциалов и сопротивление.
Новые уравнения мощностиВ Уроке 2 было введено понятие электроэнергии. Электрическая мощность была определена как скорость, с которой электрическая энергия подается в цепь или потребляется нагрузкой. Уравнение для расчета мощности, подаваемой в цепь или потребляемой нагрузкой, было получено равным
. P = ΔV • I(Уравнение 1)
Две величины, от которых зависит мощность, связаны с сопротивлением нагрузки по закону Ома.Разность электрических потенциалов ( ΔV ) и ток ( I ) могут быть выражены в терминах их зависимости от сопротивления, как показано в следующих уравнениях.
ΔV = (I • R) | I = ΔV / R |
Если выражения для разности электрических потенциалов и тока подставить в уравнение мощности, можно вывести два новых уравнения, которые связывают мощность с током и сопротивлением, а также с разностью электрических потенциалов и сопротивлением.Эти выводы показаны ниже.
Уравнение 2: P = ΔV • I P = (I • R) • I P = I 2 • R | Уравнение 3: P = ΔV • I P = ΔV • (ΔV / R) P = ΔV 2 / R |
Теперь у нас есть три уравнения для электрической мощности, два из которых получены из первого с использованием уравнения закона Ома.Эти уравнения часто используются в задачах, связанных с вычислением мощности на основе известных значений разности электрических потенциалов (ΔV), тока (I) и сопротивления (R). Уравнение 2 связывает скорость, с которой электрическое устройство потребляет энергию, с током в устройстве и сопротивлением устройства. Обратите внимание на двойную важность тока в уравнении, обозначенную квадратом тока. Уравнение 2 можно использовать для расчета мощности при условии, что известны сопротивление и ток.Если одно из них неизвестно, то необходимо будет либо использовать одно из двух других уравнений для расчета мощности, либо использовать уравнение закона Ома для расчета количества, необходимого для использования уравнения 2.
Уравнение 3 связывает скорость, с которой электрическое устройство потребляет энергию, с падением напряжения на устройстве и сопротивлением устройства. Обратите внимание на двойную важность падения напряжения, обозначенную квадратом ΔV. Уравнение 3 можно использовать для расчета мощности при условии, что известны сопротивление и падение напряжения.Если одно из них неизвестно, то важно либо использовать одно из двух других уравнений для расчета мощности, либо использовать уравнение закона Ома для расчета количества, необходимого для использования уравнения 3.
Концепции на первом местеХотя эти три уравнения предоставляют удобные формулы для вычисления неизвестных величин в физических задачах, нужно быть осторожным, чтобы не использовать их неправильно, игнорируя концептуальные принципы, касающиеся схем.Чтобы проиллюстрировать это, предположим, что вам задали такой вопрос: если 60-ваттную лампу в бытовой лампе заменить на 120-ваттную лампу, то во сколько раз ток в цепи этой лампы будет больше? Используя уравнение 2, можно предположить (ошибочно), что удвоение мощности означает, что количество I 2 должно быть удвоено. Таким образом, ток должен увеличиться в 1,41 раза (квадратный корень из 2). Это пример неправильного рассуждения, поскольку он удаляет математическую формулу из контекста электрических цепей.Принципиальная разница между лампочкой на 60 Вт и лампой на 120 Вт заключается не в токе в лампе, а в ее сопротивлении. У этих двух лампочек разные сопротивления; разница в токе — это просто следствие этой разницы в сопротивлении. Если лампы находятся в патроне лампы, который подключен к розетке в США, то можно быть уверенным, что разность электрических потенциалов составляет около 120 вольт. ΔV будет одинаковым для каждой лампы.Лампа мощностью 120 Вт имеет меньшее сопротивление; и, используя закон Ома, можно было бы ожидать, что он также имеет более высокий ток. Фактически, 120-ваттная лампа будет иметь ток 1 А и сопротивление 120 Ом; 60-ваттная лампа будет иметь ток 0,5 А и сопротивление 240 Ом.
Расчеты для 120-ваттной лампы P = ΔV • I I = P / ΔV I = (120 Вт) / (120 В) I = 1 А ΔV = I • R R = ΔV / I R = (120 В) / (1 А) R = 120 Ом | Расчеты для 60-ваттной лампы P = ΔV • I I = P / ΔV I = (60 Вт) / (120 В) I = 0.5 ампер ΔV = I • R R = ΔV / I R = (120 В) / (0,5 А) R = 240 Ом |
Теперь, правильно используя уравнение 2, можно понять, почему удвоенная мощность означает, что будет удвоенный ток, поскольку сопротивление также изменяется при замене лампочки. Расчет тока ниже дает тот же результат, что и выше.
Расчеты для 120-ваттной лампы P = I 2 • R I 2 = P / R I 2 = (120 Вт) / (120 Ом) I 2 = 1 Вт / Ом I = SQRT (1 Вт / Ом) I = 1 А | Расчеты для 60-ваттной лампы P = I 2 • R I 2 = P / R I 2 = (60 Вт) / (240 Ом) Я 2 = 0.25 Вт / Ом I = SQRT (0,25 Вт / Ом) I = 0,5 А |
Проверьте свое понимание
1. Что будет толще (шире) — нить накала 60-ваттной лампочки или 100-ваттная? Объяснять.
2.Вычислите сопротивление и силу тока ночной лампочки 7,5 Вт, подключенной к розетке в США (120 В).
3. Рассчитайте сопротивление и силу тока электрического фена мощностью 1500 Вт, подключенного к домашней розетке в США (120 В).
4. Коробка на настольной пиле показывает, что сила тока при запуске составляет 15 ампер. Определите сопротивление и мощность двигателя за это время.
5. На наклейке на проигрывателе компакт-дисков написано, что он потребляет ток 288 мА при питании от 9-вольтовой батареи. Какая мощность (в ваттах) у проигрывателя компакт-дисков?
6. Тостер на 541 Вт подключается к бытовой розетке на 120 В. Какое сопротивление (в Ом) тостера?
7.Цветной телевизор имеет ток 1,99 А при подключении к 120-вольтовой электросети. Какое сопротивление (в Ом) у телевизора? А какая мощность (в ваттах) у телевизора?
Степени и экспоненты
Степень — это произведение на число, умноженное на само.
Обычно степень представлена с помощью основного числа и показателя степени. Базовое число сообщает , какое число умножается. Показатель степени , — небольшое число, написанное выше и справа от основного числа, сообщает , сколько раз умножается основное число.
Например,? 6 в 5-й степени? можно записать как? 6 5 .? Здесь базовое число 6, а показатель степени 5. Это означает, что 6 умножается на себя 5 раз: 6 x 6 x 6 x 6 x 6
6 x 6 x 6 x 6 x 6 = 7,776 или 6 5 = 7,776
базовый номер | 2-я степень | 3-я степень | 4-я степень | 5-я степень | ||||
1 | 1 | 1 | 1 | 1 | ||||
2 | 4 | 8 | 16 | 32 | ||||
3 | 9 | 27 | 81 | 243 | ||||
4 | 16 | 64 | 256 | 1,024 | 525 | 125 | 625 | 3,125 |
6 | 36 | 216 | 1,296 | 7,776 | ||||
7 | 49 | 343 | 2,4 16,807 | |||||
8 | 64 | 512 | 4,096 | 32,768 | ||||
9 | 81 | 729 | 6,561 | 59,049 | ||||
10 | 100000 | 100000 | 100,000 | |||||
11 | 121 | 1,331 | 14,641 | 161,051 | ||||
12 | 144 | 1,728 | 20,736 | 248,832 |
Формула и коэффициент Формула Напряжение, ток и мощность
Трансформаторы тока (ТТ)
Трансформаторы тока (ТТ) — это датчики, используемые для линейного понижения тока, проходящего через датчик, до более низкого уровня, совместимого с измерительными приборами.Сердечник трансформатора тока имеет тороидальную или кольцевую форму с отверстием в центре. Проволока оборачивается вокруг сердечника, образуя вторичную обмотку, и покрывается кожухом или пластиковым кожухом. Количество витков провода вокруг сердечника определяет коэффициент понижения, или коэффициент ТТ, между током в измеряемой линии (первичной) и токовым выходом, подключенным к приборам (вторичным). Нагрузочный провод, который необходимо измерить, пропускают через отверстие в центре трансформатора тока.Пример: CT с соотношением 500: 5 означает, что нагрузка 500 ARMS на главной линии приведет к выходу 5 ARMS на вторичной цепи CT. Прибор будет измерять 5 ARMS на терминалах и может применять коэффициент масштабирования, введенный пользователем, для отображения полных 500 ARMS. Для трансформаторов тока указано номинальное значение, но часто указывается точность, превышающая 100% от номинала. ТТ могут быть с разделенным сердечником или сплошным сердечником. ТТ с разъемным сердечником открываются на петлях или имеют съемную секцию, чтобы установщик мог подключить ТТ вокруг провода нагрузки без физического отсоединения измеряемого провода нагрузки.
Предупреждение о безопасности: хотя ТТ может физически подключаться к установленной линии, перед установкой ТТ необходимо безопасно отключить питание. Открытые соединения вторичной обмотки при включенном питании первичной обмотки могут привести к возникновению чрезвычайно опасных потенциалов напряжения.
ОпцииCT при покупке включают номинальный диапазон, диаметр отверстия, разъемный / сплошной сердечник, тип выхода (напряжение / ток) и выходной диапазон (0,333 В RMS, ± 10 В, 1 ARMS, 5 ARMS и т. Д.). Поставщики ТТ часто могут настроить датчик для конкретных нужд, таких как диапазон входного или выходного сигнала.
Рис. 5. ТТ с разъемным сердечником обычно имеют шарнир или съемную секцию для установки вокруг линии без физической разборки, хотя питание все равно следует отключать. (Изображение любезно предоставлено Magnelab)
Рис. 6. ТТ с твердым сердечником дешевле, но могут потребовать больше труда для установки в уже работающих цепях.
(Изображение любезно предоставлено Magnelab)
Полоса пропускания измерения ТТ
Полоса пропускания от 1 кГц до 2 кГц достаточна для большинства приложений контроля качества электроэнергии в цепях переменного тока.Для высокочастотных приложений подключайтесь напрямую к NI 9246 или NI 9247 для полосы пропускания до 24 кГц или выбирайте более дорогие трансформаторы тока с более высокой частотой. Все модули, перечисленные в таблице выше, имеют полосу пропускания приблизительно 24 кГц для сигналов, подключенных напрямую. Высокочастотные трансформаторы тока более специализированы и имеют характеристики полосы пропускания в диапазоне сотен МГц. Измерительные модули NI 9215, NI 9222 и NI 9223 имеют частоту дискретизации от 100kS / s / ch до 1MS / s / ch при разрешении 16 бит для более высокочастотных измерений.
Для высокочастотных измерений, выходящих за рамки возможностей NI 9223, NI рекомендует осциллограф или дигитайзер для PXI, предназначенный для лабораторных, исследовательских и испытательных систем.
Измерение постоянного тока
ТТне измеряют ток постоянного тока или компонент смещения постоянного тока в сигнале переменного тока. Для большинства приложений питания переменного тока в этом нет необходимости. Когда необходимо измерение постоянного тока, NI 9227 имеет встроенные калиброванные шунты и может измерять постоянный ток до 5 ампер. Для измерения постоянного тока более 5 ампер используется шунт для измерения тока большой мощности (см. Ниже) или датчик Холла (см. Ниже), подключенный к соответствующему измерительному модулю.
Катушки Роговского
КатушкиРоговского, иногда называемые «тросовыми трансформаторами тока», представляют собой еще один вариант датчика для измерения тока в линии. Катушки Роговского похожи в том, что они наматываются на провод нагрузки, но они гибкие, имеют гораздо большее отверстие, чем стандартные трансформаторы тока, и принцип измерения отличается. Катушки Роговского индуцируют напряжение, которое пропорционально скорости изменения тока и, следовательно, требуется в схеме интегратора для преобразования в пропорциональный ток.Интегратор представляет собой отдельный блок / компонент, который обычно устанавливается на панели или на DIN-рейке, требует источника питания постоянного тока и выводит сигналы низкого напряжения или тока на приборы. Размер и гибкость катушек Роговского делают их хорошо подходящими для обхода более крупных шин, используемых в коммерческих зданиях или на заводах, особенно когда они уже построены и измерение мощности добавлено в качестве модернизации, но они дороже, чем ТТ с сопоставимым входом. диапазон.
Рисунок 7.Катушки Роговского требуют внешнего источника питания, интегральной схемы (расположенной в черной монтажной коробке на изображении выше) и являются более дорогими, чем типичные трансформаторы тока с твердым / разъемным сердечником, но обеспечивают быструю фазовую характеристику и хороши для модернизации установок и измерений больших шин из-за к их большому гибкому открытию. (Изображение любезно предоставлено Magnelab)
Датчики на эффекте Холла
Датчикина эффекте Холла основаны на «эффекте Холла», названном в честь Эдвина Холла, когда ток, протекающий через полупроводник, расположенный перпендикулярно магнитному полю, создает потенциал напряжения на полупроводниковом материале.Для измерения тока схема на эффекте Холла размещается перпендикулярно сердечнику магнитного поля и выдает напряжение, которое масштабируется с учетом токовой нагрузки в измеряемой линии. ТТ на эффекте Холла обычно имеют лучшую частотную характеристику и могут измерять смещение постоянного тока, но они более дороги, требуют питания и могут подвергаться температурному дрейфу.
Рис. 8. Датчики на эффекте Холла имеют чувствительную цепь, перпендикулярную магнитному полю, и требуют питания.Датчики на эффекте Холла не подчиняются ограничениям насыщения, как ТТ, и могут измерять постоянный ток, но они более дорогостоящие.
Резисторы токового шунта
Токоизмерительные шунты или токовые шунтирующие резисторы — это резисторы, включенные в цепь с целью измерения тока, протекающего по шунту. Это довольно распространенные электрические компоненты, которые могут использоваться в самых разных областях. Размер шунта будет зависеть от диапазона измерения тока, выходного диапазона и мощности, протекающей по цепи.Для большей точности доступны более дорогие прецизионные резисторы. Шунты не наматываются на провод цепи и размещаются на линии как компонент. Это устраняет изолирующий барьер между измеряемой схемой и измерительным оборудованием и может сделать установку более сложной, чем ТТ или катушка Роговского. Однако шунты могут измерять постоянный ток, иметь лучшую частотную характеристику и лучшую фазовую характеристику. Модуль NI 9238 для CompactRIO и CompactDAQ был разработан с аналоговым интерфейсом низкого диапазона (± 0.5 В) специально для токовых шунтирующих резисторов. Кроме того, NI 9238 имеет межканальную изоляцию 250 В.
Электрические и магнитные поля от линий электропередачи
Факты о радиации
- Научные исследования четко не показали, увеличивает ли воздействие ЭМП риск рака.
Электрические и магнитные поля, также известные как электромагнитные поля (ЭМП), состоят из волн электрической и магнитной энергии, движущихся вместе.Эти энергетические поля окружают нас все время. Научные исследования четко не показали, увеличивает ли воздействие ЭМП риск рака. Несколько исследований связали ЭМП и воздействие на здоровье, но повторить их не удалось. Это означает, что они неубедительны. Ученые продолжают исследования по этому поводу.
На этой странице:
Об электрических и магнитных полях от линий электропередач
Электромагнитное излучение (ЭМИ)
Это изображение травяного поля с окружающими деревьями; в центре изображения — линии электропередач и их опоры.
Электромагнитное излучение (ЭМИ) состоит из волн электрической и магнитной энергии, движущихся вместе в пространстве. Примером электромагнитного излучения является видимый свет. Электромагнитное излучение может находиться в диапазоне от низкой до высокой частоты, которая измеряется в герцах, и может варьироваться от низкой до высокой энергии, которая измеряется в электрон-вольтах. Длина волны, еще один термин, связанный с электромагнитным излучением, — это расстояние от пика одной волны до другой.
Существует два основных вида электромагнитного излучения: ионизирующее излучение и неионизирующее излучение.Ионизирующее излучение достаточно мощно, чтобы сбить электроны с орбиты вокруг атома. Этот процесс называется ионизацией и может повредить клетки организма. Неионизирующее излучение обладает достаточной энергией, чтобы перемещать атомы в молекуле и заставлять их вибрировать, что приводит к нагреванию атома, но недостаточно для удаления электронов из атомов.
Электромагнитные поля (ЭМП)
Электромагнитные поля, связанные с электричеством, представляют собой тип низкочастотного неионизирующего излучения, и они могут исходить как от естественных, так и искусственных источников.Например, молния во время грозы создает электромагнитное излучение, потому что она создает ток между небом и землей. Этот ток окружает электромагнитное поле. Одним из примеров является магнитное поле Земли. Мы всегда находимся в магнитном поле Земли, которое генерируется ядром Земли. Это магнитное поле заставляет работать компасы, а также используется голубями и рыбами для навигации. На изображении ниже показан диапазон частот для различных форм электромагнитного излучения, присутствующих в электромагнитном спектре.
Волны от линий электропередач и электрических устройств имеют гораздо более низкую частоту, чем другие типы ЭМИ, такие как микроволны, радиоволны или гамма-лучи. Однако низкочастотная волна не обязательно означает ее низкую энергию; зарядный кабель для телефона создает низкочастотное электромагнитное поле с низкой энергией, в то время как линия электропередачи высокого напряжения может создавать электромагнитное поле с гораздо большей энергией, но все же низкой частоты.
ЭМИ, связанное с линиями электропередач, представляет собой тип низкочастотного неионизирующего излучения.Электрические поля создаются электрическими зарядами, а магнитные поля создаются потоком электрического тока через провода или электрические устройства. Из-за этого низкочастотное ЭМИ обнаруживается в непосредственной близости от источников электричества, таких как линии электропередач. Когда ток проходит по линии электропередачи, он создает магнитное поле, называемое электромагнитным полем. Сила ЭДС пропорциональна количеству электрического тока, проходящего через линию электропередачи, и уменьшается по мере удаления от вас.Из-за этого свойства воздействие электромагнитного поля, которое вы получаете от линии электропередачи, уменьшается с расстоянием.
Что вы можете сделать
Если вас беспокоит возможный риск для здоровья от электрических и магнитных полей, вы можете:
- Увеличить расстояние между вами и источником. Чем больше расстояние между вами и источником ЭДС, тем меньше ваша экспозиция.
- Ограничьте время, проводимое рядом с источником. Чем меньше времени вы проводите рядом с ЭМП, тем меньше ваша экспозиция.
Таблицы экспонент и образцы
В таблицах степеней целых чисел можно найти много интересных закономерностей.
Полномочия 2 | Полномочия 3 | Полномочия 4 |
2 1 знак равно 2 | 3 1 знак равно 3 | 4 1 знак равно 4 |
2 2 знак равно 4 | 3 2 знак равно 9 | 4 2 знак равно 16 |
2 3 знак равно 8 | 3 3 знак равно 27 | 4 3 знак равно 64 |
2 4 знак равно 16 | 3 4 знак равно 81 год | 4 4 знак равно 256 |
2 5 знак равно 32 | 3 5 знак равно 243 | 4 5 знак равно 1024 |
2 6 знак равно 64 | 3 6 знак равно 729 | 4 6 знак равно 4096 |
2 7 знак равно 128 | 3 7 знак равно 2187 | 4 7 знак равно 16384 |
2 8 знак равно 256 | 3 8 знак равно 6561 | 4 8 знак равно 65536 |
2 9 знак равно 512 | 3 9 знак равно 19683 | 4 9 знак равно 262144 |
2 10 знак равно 1024 | 3 10 знак равно 59049 | 4 10 знак равно 1048576 |
Одна вещь, которую вы можете заметить, — это закономерности в цифрах.В полномочиях 2 таблица, единичные цифры образуют повторяющийся узор 2 , 4 , 8 , 6 , 2 , 4 , 8 , 6 , … . В полномочиях 3 таблица, единичные цифры образуют повторяющийся узор 3 , 9 , 7 , 1 , 3 , 9 , 7 , 1 , … . Мы предоставляем вам разобраться, почему это происходит!
В полномочиях 4 таблица, чередуются единицы цифр: 4 , 6 , 4 , 6 . Фактически, вы можете видеть, что полномочия 4 такие же, как четные степени 2 :
4 1 знак равно 2 2 4 2 знак равно 2 4 4 3 знак равно 2 6 и т.п.
Такая же связь существует между полномочия 3 и полномочия 9 :
Полномочия 3 | Полномочия 9 |
3 1 знак равно 3 | 9 1 знак равно 9 |
3 2 знак равно 9 | 9 2 знак равно 81 год |
3 3 знак равно 27 | 9 3 знак равно 729 |
3 4 знак равно 81 год | 9 4 знак равно 6561 |
3 5 знак равно 243 | 9 5 знак равно 59 049 |
3 6 знак равно 729 | 9 6 знак равно 531 441 |
3 7 знак равно 2187 | 9 7 знак равно 4,782,969 |
3 8 знак равно 6561 | 9 8 знак равно 43 046 721 |
3 9 знак равно 19 683 | 9 9 знак равно 387 420 489 |
3 10 знак равно 59 049 | 9 10 знак равно 3 486 784 401 |
В полномочия 10 легко, потому что мы используем основание 10 : для 10 п просто напишите » 1 » с п нули после него.Для отрицательные силы 10 — п , написать » 0. » с последующим п — 1 нули, а затем 1 . Полномочия 10 широко используются в научная нотация , так что будет неплохо с ними освоиться.
Полномочия 10 | |
10 1 знак равно 10 | 10 0 знак равно 1 |
10 2 знак равно 100 | 10 — 1 знак равно 0.1 |
10 3 знак равно 1000 | 10 — 2 знак равно 0,01 |
10 4 знак равно 10 000 | 10 — 3 знак равно 0,001 |
10 5 знак равно 100 000 (сто тысяч) | 10 — 4 знак равно 0.0001 (одна десятитысячная) |
10 6 знак равно 1 000 000 (один миллион) | 10 — 5 знак равно 0,00001 (стотысячная) |
10 7 знак равно 10 000 000 (десять миллионов) | 10 — 6 знак равно 0.000001 (одна миллионная) |
10 8 знак равно 100 000 000 (сто миллионов) | 10 — 7 знак равно 0,0000001 (одна десятимиллионная) |
10 9 знак равно 1 000 000 000 (один миллиард) | 10 — 8 знак равно 0.00000001 (стомиллионная) |
10 10 знак равно 10 000 000 000 (десять миллиардов) | 10 — 9 знак равно 0,000000001 (одна миллиардная) |
Нажмите здесь для получения дополнительных имен для действительно большие и очень маленькие числа .
Еще одно последствие использования нами основание 10 хороший образец между отрицательными степенями 2 и полномочия 5 .
Степень 2 | Степень 5 |
2 — 5 знак равно 1 32 знак равно 0.03125 | 5 — 5 знак равно 1 3125 знак равно 0,00032 |
2 — 4 знак равно 1 16 знак равно 0,0625 | 5 — 4 знак равно 1 625 знак равно 0.0016 |
2 — 3 знак равно 1 8 знак равно 0,125 | 5 — 3 знак равно 1 125 знак равно 0,008 |
2 — 2 знак равно 1 4 знак равно 0.25 | 5 — 2 знак равно 1 25 знак равно 0,04 |
2 — 1 знак равно 1 2 знак равно 0,5 | 5 — 1 знак равно 1 5 знак равно 0.2 |
2 0 знак равно 1 | 5 0 знак равно 1 |
Ом
Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.
Закон Ома
ЗаконОма гласит, что ток через проводник между двумя точками прямо пропорционален напряжению.Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными. Закон Ома верен для цепей, содержащих только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли управляющее напряжение или ток постоянным (DC) или изменяющимся во времени (AC). Его можно выразить с помощью ряда уравнений, обычно всех трех вместе, как показано ниже.
Где:
В — напряжение в вольтах
R — сопротивление в Ом
Я ток в амперах
Электроэнергетика
Мощность — это скорость, с которой электрическая энергия передается по электрической цепи в единицу времени, обычно выражаемая в ваттах в Международной системе единиц (СИ).Электроэнергия обычно вырабатывается электрическими генераторами и поставляется предприятиям и домам через электроэнергетику, но также может поставляться от электрических батарей или других источников.
В резистивных цепях закон Джоуля можно объединить с законом Ома, чтобы получить альтернативные выражения для количества рассеиваемой мощности, как показано ниже.
Где:
P — мощность в ваттах
Колесо формул закона Ома
Ниже приведено колесо формул для соотношений по закону Ома между P, I, V и R.По сути, это то, что делает калькулятор, и это просто представление алгебраической манипуляции с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, затем используйте соотношение для двух известных переменных в поперечном сечении круга.
Обзор текущего развития технологий накопления электроэнергии и потенциала применения в эксплуатации энергосистем
Основные моменты
- •
Представлен обзор современного состояния накопления электроэнергии (EES).
- •
Проведен комплексный анализ различных технологий EES.
- •
Представлен анализ возможностей применения рассмотренных технологий EES.
- •
Представленный синтез технологий EES может быть использован для поддержки будущих НИОКР и внедрения.
Реферат
Производство электроэнергии резко меняется во всем мире из-за необходимости сокращения выбросов парниковых газов и внедрения смешанных источников энергии.Энергетическая сеть сталкивается с большими проблемами при передаче и распределении, чтобы удовлетворить спрос с непредсказуемыми дневными и сезонными колебаниями. Накопление электрической энергии (EES) признано основополагающими технологиями, обладающими большим потенциалом для решения этих задач, при этом энергия сохраняется в определенном состоянии в соответствии с используемой технологией и при необходимости преобразуется в электрическую энергию. Однако большое разнообразие вариантов и сложные матрицы характеристик затрудняют оценку конкретной технологии EES для конкретного приложения.Этот документ призван смягчить эту проблему, предоставив исчерпывающее и четкое представление о современных доступных технологиях и о том, где они подходят для интеграции в систему производства и распределения электроэнергии.