Разное

Подключение диода к 220: Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Подключение диода к 220: Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Содержание

Как подключить светодиод к 220в: схемы, ошибки, нюансы, видео

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

 

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

 

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

 При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире.
 Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

 Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

 Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

 

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.

Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

 

(...как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не  стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

 

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

 Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье "Драйвер для светодиодов (светодиодной лампы)".

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений - первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Как подключить светодиоды к 220 В используя простые схемы

Достаточно часто нам приходится сталкиваться с таким вопросом — как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто — ставим ограничительный резистор и забываем. Светодиод как работал «в прямом направлении» так и будет работать. Резисторы любого номинала, а также наборами можно купить в этом магазине буквально за копейки и с бесплатной доставкой!

[contents]

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так — муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже. На нашем сайте есть уже подготовленный калькулятор расчета резистора для светодиода.

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод — вариант 1


Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.

Подключение LED по простой схеме с резистором и диодом — вариант 2


Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода — VD1. Как только в схему «попадает» отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод LED1 (при этом прямое падение напряжения на светодиоде LED1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода LED1).

Расчетная часть схемы


Номинальное напряжение сети:

UС.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

UС.МИН = 170 В
UС.МАКС = 250 В

Принимается к установке светодиод LED1, имеющий максимально допустимый ток:

ILED1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода LED1:

ILED1.АМПЛ.МАКС = 0,7*ILED1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде LED1(опытные данные):

ULED1 = 2 В

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

UR.ДЕЙСТВ.МИН = UС.МИН = 170 В
UR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/ILED1.АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

PR.ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

ILED1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
ILED1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

ILED1.СР.МИН = IVD1.СР.МИН = ILED1.ДЕЙСТВ.МИНФ = 3,3/1,1 = 3,0 мА
ILED1.СР.МАКС = IVD1.СР.МАКС = ILED1.ДЕЙСТВ.МАКСФ = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

UVD1.ОБР = ULED1.ПР = 2 В

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

UVD1.ДОП = 30 В
IVD1.ДОП = 20 мА
I0.МАКС = 250 мкА

Минусы использования схемы подключения светодиодов к 220 В по варианту 2


Главные недостатки подключения светодиодов по этой схеме — малая яркость светодиодов, за счет малого тока. ILED1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В


При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.

Расчет параметров схемы аналогичен второму варианту. Кому надо — посчитает и сравнит. Разница небольшая.

Минусы подключения по 3 варианту


Если самые «пытливые умы» уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень — придется поверить на слово. Минус такого подключения — также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего ILED1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

Подключение светодиода на 220 В с использованием диодного моста — 4 вариант


Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

UVD.ДОП = 30 В
IVD.ДОП = 20 мА
I0.МАКС = 250 мкА

Недостатки схемы подключения по 4 варианту


Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Однако при такой схеме мы получим заметное увеличение яркости светодиода: LED1: ILED1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

Как подключить светодиод к 220 В используя конденсатор


Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент — конденсатор. На схеме — C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.

 Подключение светодиода к сети 220 В на примере выключателя с подсветкой


Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки — не понятно.

Видео на тему подключения светодиода к сети 220 В


Ну и в конце всего длинного поста посмотрим видео на тему : «как подключить светодиоды к 220 В». Для тех, кому лень все читать было.

Как подключить светодиод к 220В: резистор, конденсатор, способы подключения

На чтение 9 мин Просмотров 1.5к. Опубликовано Обновлено

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Полярность светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Установка дополнительного резистора гасит излишки мощности электричества

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Встречно-параллельное подключение

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Использование накопительного конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

Схема подключения светодиода к сети 220В

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

Не следует устанавливать в цепь диодов полярные конденсаторы

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Подключение светодиода к сети 220В

Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод - для, собственно, индикации того, что напряжение в данный момент присутствует. Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется. В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

Самый простой способ ограничения тока - использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В - это ДЕЙСТВУЮЩЕЕ напряжение. Фактически же напряжение в бытовой сети меняется в более широких пределах - от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так - читайте в Википедии. Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

Сопротивление резистора рассчитывается по привычному закону Ома:

R = (Ua - UL) / I, где Ua - амплитудное значение напряжения (310В), UL - падение напряжения на светодиодах, I - требуемая сила тока.

Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

P = I2 * R

Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит. Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом. Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться "Калькулятором светодиодов".

Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита. В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду. Требования к диоду - он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 - обратное напряжение 1000В, прямой ток 1А.

Второй вариант - включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно. Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети - не менее 400В. Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

C = (4,45 * I) / (Ua - UL), где I - требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

Использование балластного конденсатора для подключения светодиода к сети 220В

В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом. Резистор R2 служит для ограничения начального тока заряда конденсатора C1. Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

Оставшиеся детали - светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны - готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

Схема обычного выключателя с подсветкой

Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой - около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

Схемы с балластным конденсатором используются в простых светодиодных лампах.

Схема светодиодной лампы мощностью до 5Вт

Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант - использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье "Схема драйвера для светодиода от сети 220В".

Есть еще один не совсем правильный, но достаточно простой и работающий способ - можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки). Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе. Как это сделать - читайте в статье "Простой драйвер светодиода от сети 220В".

Подключение светодиода к сети 220В: все схемы и расчеты

Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора. Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью. А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.

Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.

Схемы подключения

Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.

Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.

Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.

Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.

Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.

Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.

В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.

Расчет резистора для светодиода

Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи онлайн калькулятора.

Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.

Расчет гасящего конденсатора для светодиода

Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле: C = 3200*I/U, где I – это ток нагрузки, U – напряжение питания. Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.

Важно. Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.

Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.

Это нужно знать

Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.

Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.

При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.

Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности.

Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.

Небольшой эксперимент

Чтобы немного разбавить скучные схемы, предлагаем ознакомится с небольшим экспериментом, который будет интересен как начинающим радиолюбителям, так и опытным мастерам.

Как подключить светодиод к 220 В ⋆ diodov.net

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R1, необходимое для первого светодиода:

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Мощность рассеивания равна:

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Как подключить светодиод к 220 В с помощью конденсатора

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:

Из приведенной формулы нам необходимо найти значение емкости:

Сопротивления Xс мы принимаем аналогично ранее найденным для резисторов: XС1 = R1 = 11000 Ом; XС2 = R2 = 306 Ом.

Подставляем данные значения и находим емкости:

Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В!!!

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.

Еще статьи по данной теме

диодов Шоттки: старые хороши, новые лучше

Компании начинают осознавать потенциал новых рынков и возможности получения доходов от переработки, поскольку они исследуют более комплексную модель «кремний для обслуживания», которая охватывает центр обработки данных и подвижный край. В частности, с сокращением ASP (средние цены продажи) и все более непомерно высокими затратами на проектирование на все более низких узлах многие компании ищут новые потоки доходов в широком диапазоне вертикалей, включая Интернет вещей (IoT).

Однако с учетом того, что количество установок Интернета вещей, как ожидается, будет увеличиваться примерно на 15–20% ежегодно до 2020 года, безопасность в настоящее время воспринимается как серьезная возможность, так и серьезная проблема для полупроводниковой промышленности.

Помимо услуг, концепция оборудования с открытым исходным кодом (OSH) и построения микросхем из разукрупненных, предварительно проверенных чиплетов начинает набирать обороты, поскольку компании стремятся сократить расходы и сократить время вывода на рынок гетерогенных конструкций.

Конкретные стратегии для раскрытия всего потенциала кремния и услуг, несомненно, будут различаться, поэтому для нас важно исследовать будущее, в котором полупроводниковые компании, а также различные отрасли, организации и правительственные учреждения будут играть открытую и совместную роль в помогая устойчиво монетизировать как микросхемы, так и услуги.

В 2016 и 2017 годах продолжались быстрые приобретения и консолидация отрасли:

  • Компания Analog Devices приобрела Linear Technology
  • Infineon приобрела International Rectifier
  • Компания ROHM приобрела Powervation
  • .
  • Renesas приобрела Intersil

Крупные производители полупроводников позиционируют себя, чтобы лучше конкурировать в нескольких вертикалях, включая облачные вычисления, искусственный интеллект (AI) и беспилотные автомобили.Согласно KPMG, многие компании все чаще рассматривают слияния и поглощения (M&A) как единственный способ стимулировать рост реальной выручки, делая новый акцент на вопросе «производить или покупать», при этом многие выбирают ответ «покупать».

В то же время расходы на разработку микросхем продолжали расти и существенно влияли на количество разработок в усовершенствованных узлах. В частности, общее количество запусков SoC с расширенной производительностью многоядерных процессоров в первый раз практически не изменилось и выросло лишь незначительно за последние пять лет.Хотя цены на дизайн неуклонно растут с 40 нм, аналитиков больше всего беспокоит увеличение стоимости дизайна на 7 и 5 нм.

Рич Вавжиняк, старший аналитик Semico Research, подтверждает, что начало проектирования, превышающее 10 нм, будет сдерживаться ростом затрат на разработку. Хотя общее количество проектов, которые переносятся на новые узлы, может не сильно отличаться от предыдущих обновлений геометрии процесса, Вавжиняк говорит, что сроки для таких переходов большинством компаний будут более продолжительными.

Совершенно очевидно, что необходимы новые модели как для НИОКР, так и для доходов, поскольку усиление консолидации отрасли и ослабление АСП в долгосрочной перспективе невозможно. Именно поэтому отрасль стремится к Интернету вещей, чтобы создать дополнительные потоки доходов, и аналитики McKinsey Global Institute (MGI) оценивают, что IoT может иметь ежегодный экономический эффект от 3,9 до 11,1 триллиона долларов к 2025 году по нескольким вертикалям. Однако с учетом того, что количество установок Интернета вещей, как ожидается, будет увеличиваться примерно на 15–20% ежегодно до 2020 года, безопасность считается как серьезной возможностью, так и проблемой для полупроводниковых компаний.

Таким образом, MGI рекомендует создавать решения безопасности, которые позволяют компаниям, производящим полупроводники, расширяться в смежные области бизнеса и разрабатывать новые бизнес-модели. Например, компании могут помочь создать предложения по обеспечению сквозной безопасности, которые необходимы для успеха Интернета вещей. В идеале, заявляет MGI, отрасль должна играть ведущую роль при разработке таких предложений, чтобы гарантировать, что они получат свою справедливую долю в цепочке создания стоимости.

С нашей точки зрения, решения для сквозной безопасности Интернета вещей, развернутые как платформа как услуга (PaaS), имеют решающее значение для помощи полупроводниковым компаниям в получении возобновляемых доходов от реализации конкретных услуг.Для клиентов PaaS предлагает простой способ безопасной разработки, запуска и управления приложениями и устройствами без сложностей, связанных с построением и обслуживанием сложной инфраструктуры.

Такие решения безопасности, которые также могут использовать аппаратный корень доверия, должны поддерживать идентификацию устройства и взаимную аутентификацию (верификацию), регулярные проверки аттестации, безопасные обновления устройств по беспроводной сети (OTA), аварийное восстановление и ключ управление, а также вывод из эксплуатации и переназначение ключей для лучшего управления устройствами и смягчения различных атак, включая распределенный отказ в обслуживании (DDoS).

Умные города

Недоступные микросхемы - такие как микросхемы, встроенные в инфраструктуру интеллектуального города Интернета вещей - могут предложить полупроводниковым компаниям возможность реализовать долгосрочную модель PaaS «кремний для обслуживания». Действительно, инфраструктура будущего умного города почти наверняка будет спроектирована с использованием микросхем в труднодоступных местах, включая подземные водопроводные трубы, воздуховоды для кондиционирования воздуха, а также под улицами и на парковках.

Интеллектуальное уличное освещение, отзывчивые вывески и маячки Bluetooth нового поколения также требуют перспективных решений, чтобы избежать постоянного физического обслуживания и обновлений.Следовательно, микросхема, обеспечивающая питание инфраструктуры умного города, должна поддерживать безопасную конфигурацию функций в полевых условиях, а также различные услуги на основе PaaS, такие как расширенная аналитика, предупреждения о профилактическом обслуживании, алгоритмы самообучения и интеллектуальное проактивное взаимодействие с клиентами.

Умные дома

Прогнозируется, что к 2020 году глобальный рынок умного дома достигнет стоимости не менее 40 миллиардов долларов. По данным Markets and Markets, рост пространства умного дома можно объяснить множеством факторов, в том числе значительными достижениями в секторе Интернета вещей; возрастающие требования к удобству, безопасности и защищенности потребителей; более выраженная потребность в энергосберегающих решениях с низким уровнем выбросов углерода.Однако, как мы уже обсуждали ранее, крайне важно обеспечить реализацию безопасности Интернета вещей на этапе проектирования продукта, чтобы предотвратить использование злоумышленниками устройств умного дома и прерывание обслуживания.

В дополнение к потенциально прибыльным возможностям кибербезопасности для полупроводниковых компаний, устройства умного дома обещают создать повторяющиеся потоки доходов для поддержки устойчивой модели «кремний для обслуживания». В качестве примера Кристопер Дин из MarketingInsider выделяет популярные устройства Echo от Amazon.Поскольку уже продано не менее 15 миллионов Echo, пользователи Echo, скорее всего, станут активными потребителями Amazon, используя устройство для отслеживания списков желаний и поиска товаров, которые им впоследствии предлагается купить. Между тем, Nest использует данные термостата в качестве платформы для предложения услуг по управлению энергопотреблением коммунальным компаниям в Соединенных Штатах, причем компании платят за значимую и действенную информацию о клиентах по подписке.

Автомобильная промышленность

По данным IC Insights, в период с 2016 по 2021 год продажи микросхем для автомобильных систем и Интернета вещей будут расти на 70% быстрее, чем общие доходы от IC.В частности, продажи интегральных схем для автомобилей и других транспортных средств, по прогнозам, вырастут с 22,9 млрд долларов в 2016 году до 42,9 млрд долларов в 2021 году, а доходы от функциональности Интернета вещей увеличатся с 18,4 млрд долларов в 2016 году до 34,2 млрд долларов в 2021 году.

Прогнозируемый рост продаж автомобильных микросхем неудивителен, поскольку современные автомобили, по сути, представляют собой сеть сетей, оснащенных рядом встроенных методов и возможностей связи. Однако это означает, что автомобили теперь более уязвимы для кибератак, чем когда-либо прежде.

Потенциальные уязвимости системы безопасности включают незащищенную связь между транспортными средствами, несанкционированный сбор информации о водителе или пассажирах, захват контроля над критически важными системами, такими как тормоза или акселераторы, перехват данных транспортного средства, вмешательство в работу сторонних ключей и изменение избыточного кода. обновления прошивки по воздуху (OTA). Что касается последнего, производители автомобилей сейчас сосредоточены на предоставлении безопасных OTA-обновлений для различных систем, при этом глобальный рынок автомобильных OTA-обновлений, по прогнозам, будет расти со среднегодовым темпом роста 18.2% с 2017 по 2022 год и достигнет 3,89 миллиарда долларов к 2022 году.

Производители автомобилей также работают над тем, чтобы в цепочке поставок транспортных средств не было украденных и контрафактных компонентов. Тем не менее, широкий спектр устройств с серого рынка все еще можно найти для питания дорогостоящих модулей, таких как бортовые информационно-развлекательные системы и фары, а также в критически важных системах безопасности, включая модули подушек безопасности, тормозные модули и органы управления трансмиссией. Таким образом, защита периферийных устройств и компонентов транспортных средств от несанкционированного доступа путем внедрения ряда многоуровневых аппаратных и программных решений безопасности стала приоритетной задачей для ряда производителей автомобилей.

Помимо внедрения многоуровневых решений безопасности, полупроводниковая промышленность явно выиграет от принятия подхода IoT «как услуга» к автомобильному сектору. Например, компании могут развернуть автомобильные системы на основе датчиков, которые заранее обнаруживают потенциальные проблемы и неисправности. Это решение, которое в своей наиболее оптимальной конфигурации сочетало бы в себе микросхемы и услуги, могло быть продано как аппаратный и программный продукт или развернуто как услуга с ежемесячной или ежегодной абонентской платой.

Медицина и здравоохранение

Имплантированные медицинские устройства с длительным сроком службы, несомненно, потребуют от полупроводниковой промышленности высокой степени готовности к будущему, чтобы избежать частых физических обновлений и технического обслуживания. Срихари Яманур, специалист по дизайну в области исследований и разработок в Stellartech Research Corp., отмечает, что медицинские устройства в конечном итоге будут адаптированы для удовлетворения потребностей отдельных пациентов, что приведет к расширению применения точной медицины.

Кроме того, ожидается, что отрасль медицинского страхования будет использовать машинное обучение для оптимизации и снижения стоимости медицинского обслуживания, в то время как цифровые медицинские устройства также будут использоваться страховой отраслью для выявления пациентов из группы риска и оказания помощи.Поэтому медицинские устройства, особенно имплантируемые модели, должны быть спроектированы таким образом, чтобы поддерживать «модель перехода от кремния к услугам» через конфигурацию функций на месте и безопасные обновления OTA, а также услуги на основе PaaS, включая сбор и анализ соответствующих данных; проактивное обслуживание, продвинутые алгоритмы; и интуитивно понятный интерфейс как для пациентов, так и для врачей.

Аппаратное обеспечение с открытым исходным кодом и дезагрегированные чиплеты

Наряду с услугами, оборудование с открытым исходным кодом, предлагаемое такими организациями и компаниями, как RISC-V и SiFive, начало положительно влиять на индустрию полупроводников, поощряя инновации, сокращая затраты на разработку и ускоряя время вывода продукта на рынок.

Успех программного обеспечения с открытым исходным кодом - в отличие от закрытого, огороженного сада - продолжает создавать важный прецедент для полупроводниковой промышленности. Столкнувшись с непомерно высокими затратами на разработку, ряд компаний предпочитают избегать ненужных сборщиков дорожных сборов, уделяя больше внимания архитектуре с открытым исходным кодом, поскольку они работают над созданием новых потоков доходов, ориентированных на услуги.

Помимо аппаратного обеспечения с открытым исходным кодом, концепция построения кремния из предварительно проверенных чиплетов начинает набирать обороты, поскольку полупроводниковая промышленность движется к снижению затрат и сокращению времени вывода на рынок гетерогенных конструкций.По словам Энн Стефора Мутчлер из Semiconductor Engineering, концепция чиплета некоторое время находилась в стадии разработки, хотя исторически она воспринималась как потенциальное направление будущего, а не реальное решение в тени убывающего закона Мура. Это восприятие начинает меняться по мере увеличения сложности конструкции, особенно в усовершенствованных узлах (10/7 нм), а также по мере объединения новых рынков, требующих частично настраиваемых решений.

Концепция предварительно проверенных чиплетов вызвала интерес U.Агентство перспективных исследовательских проектов S. Defense (DARPA), которое недавно развернуло свою программу Общей гетерогенной интеграции и стратегий повторного использования IP (CHIPS). В сотрудничестве с полупроводниковой промышленностью для успешной реализации CHIPS будет виден ряд IP-блоков, подсистем и микросхем, объединенных на переходнике в корпусе, подобном 2.5D.

Инициатива CHIPS заняла центральное место в августе 2017 года, когда участники из военного, коммерческого и академического секторов собрались в штаб-квартире DARPA на официальном стартовом совещании по программе Агентства по стратегии общей гетерогенной интеграции и повторного использования интеллектуальной собственности (ИС).

Как сообщил на конференции д-р Дэниел Грин из DARPA, программа направлена ​​на разработку новой технологической структуры, в которой различные функции и блоки интеллектуальной собственности, в том числе хранение данных, вычисления, обработка сигналов, а также управление формой и потоком данных - можно разделить на небольшие чиплеты. Затем их можно смешивать, сопоставлять и комбинировать на промежуточном элементе, что-то вроде соединения частей головоломки. Фактически, говорит Грин, всю обычную печатную плату с множеством различных, но полноразмерных микросхем в конечном итоге можно было бы сжать до гораздо меньшего промежуточного устройства, на котором размещена куча, но гораздо меньших микросхем.

Согласно DARPA, конкретные технологии, которые могут появиться в результате инициативы CHIPS, включают компактную замену целых печатных плат, сверхширокополосные радиочастотные (RF) системы и системы быстрого обучения для извлечения интересной и действенной информации из гораздо больших объемов обычных данных. .

Возможно, неудивительно, что полупроводниковая промышленность уже рассматривает дезагрегированный подход в виде микросхем SerDes и специализированных маломощных интерфейсов «кристалл-кристалл» для конкретных приложений.Безусловно, жизнеспособное разделение кремниевых компонентов может быть достигнуто путем перемещения высокоскоростных интерфейсов, таких как SerDes, на отдельные кристаллы в виде микросхем SerDes, смещения IP аналогового датчика на отдельные аналоговые микросхемы и реализации перехода кристалла с очень низким энергопотреблением и малой задержкой. die интерфейсы через MCM или через переходник с использованием технологии 2.5D.

Помимо использования заведомо исправной матрицы для SerDes в более зрелых узлах (N-1) или наоборот, ожидается, что дезагрегация упростит создание нескольких SKU при оптимизации затрат и снижении риска.Точнее, дезагрегирование приведет к разбивке SoC на более высокопроизводительные и меньшие матрицы и позволит компаниям создавать определенные конструкции с несколькими вариантами. Действительно, интерфейсы «от кристалла к кристаллу» могут более легко адаптироваться к различным приложениям, связанным с памятью, логикой и аналоговыми технологиями. Вдобавок, интерфейсы "от кристалла к кристаллу" не требуют соответствующей скорости линии / передачи и количества полос, в то время как FEC может потребоваться, а может и не потребоваться в зависимости от требований к задержке.

Следует отметить, что несколько компаний активно занимаются агрегацией SoC / ASIC для коммутаторов и других систем.Точно так же полупроводниковая промышленность разрабатывает ASIC с интерфейсами "кристалл-кристалл" на ведущих узлах FinFET, в то время как по крайней мере один серверный чип следующего поколения разрабатывается с дезагрегированным вводом-выводом на отдельном кристалле.

Заключение

За последние пять лет полупроводниковая промышленность столкнулась с множеством сложных проблем. К ним относятся увеличение затрат на разработку, размытие ASP, насыщение рынка и повышенная, но неустойчивая деятельность по слияниям и поглощениям. В течение 2018 года полупроводниковая промышленность продолжает стремиться к возвращению к стабильности и органическому росту в рамках параметров новой бизнес-парадигмы, одновременно жизнеспособной и основанной на сотрудничестве.В этом контексте компании, производящие полупроводники, осознают потенциал новых рынков и возможности получения доходов в нисходящем направлении, поскольку они исследуют более комплексную модель «от кремния к услугам», которая охватывает центр обработки данных и мобильную периферию.

Сюда входят решения для сквозной безопасности IoT и услуги на основе PaaS, такие как конфигурация функций на месте, расширенная аналитика, предупреждения о профилактическом обслуживании, алгоритмы самообучения и интеллектуальное упреждающее взаимодействие с клиентами. Помимо услуг, концепция оборудования с открытым исходным кодом и создание микросхем из разукрупненных, предварительно проверенных микросхем начинает набирать обороты, поскольку компании переходят к сокращению затрат и сокращению времени вывода на рынок гетерогенных конструкций.

Конкретные стратегии раскрытия всего потенциала полупроводников, несомненно, будут различаться, поэтому для нас важно изучить будущее, в котором отрасль, наряду с различными исследовательскими организациями и государственными учреждениями, будет играть открытую и совместную роль, помогая устойчивой монетизации и кремний, и сервисы.

Для получения дополнительной информации по этой теме посетите сайт Rambus.

Шрикант Лохокаре, доктор философии, является вице-президентом и исполнительным директором Global Semiconductor Alliance в Северной Америке.

Однофазный диодный выпрямитель

- обзор

4.7 Явление перекрытия коммутации диодов

На рис. 4.24 (a) показана силовая цепь трехфазного полумостового выпрямителя, которая будет использоваться для объяснения явления перекрытия коммутации диодов. Перекрытие коммутации - это нежелательная одновременная проводимость двух диодов, которая приводит к короткому замыканию между любыми двумя входными фазами переменного тока. Это явление вызвано индуктивностями входного источника, которые влияют на увеличение и уменьшение скорости нарастания тока, протекающего через каждый диод, при переключении между состояниями с прямым и обратным смещением.Это явление короткого замыкания, показанное на рис. 4.24 (a), называется феноменом коммутационного перекрытия. Например, предположим, что диод D 1 проводит питание нагрузки чистым постоянным током величиной I¯o. В момент, когда диод D 2 становится смещенным в прямом направлении, он начинает проводить ток, подавая ток на нагрузку одновременно с D 1 . Это вызовет короткое замыкание между двумя входными фазами переменного тока a и b на короткое время μ, пока диод D 1 не перейдет в состояние блокировки.Это явление возникает каждый раз, когда диод переходит в состояние проводимости, в то время как другой диод переходит в состояние блокировки и все еще проводит. Время короткого замыкания μ зависит от индуктивности входного источника L S (то есть L S линии передачи), от тока нагрузки и от значения входного переменного напряжения источника питания. При анализе явления перекрытия коммутации входное сопротивление R s считается незначительным. На рис. 4.24 (b) показаны формы сигналов выпрямителя с учетом интервалов перекрытия диодов.

Рисунок 4.24. Углы перекрытия коммутации диодов D 1 и D 2 в интервале коммутации от D 1 до D 2 .

а) Схема питания трехфазного полуволнового диодного выпрямителя; (b) формы сигналов выпрямителя с учетом явления перекрытия во время коммутации тока.

Угол ωt = 0 ° - начало интервала перекрытия, где v an = v bn . За пределами этого угла к выпрямителю прикладывается линейное напряжение v ba , в результате чего возникает ток короткого замыкания i sc , который называется током коммутации.Как видно из рис. 4.24 (а), ток короткого замыкания зависит от напряжения v ba и полного сопротивления цепи. Во время коммутации ток короткого замыкания i sc протекает через индуктивности двух входных источников L s . Направление тока короткого замыкания i sc такое же, как у тока i D2 , потому что во время конкретной коммутации v bn > v an . Следовательно, из рис. 4.24 (a), пренебрегая напряжениями проводимости диодов и сопротивлениями источника переменного тока, во время перекрытия коммутации выполняется следующее уравнение:

(4.153) vbn − van = vba = 6V˜isinωt = 2Lsdiscdt

, где V˜i = действующее значение входного фазного напряжения.

Решение уравнения. (4.153) получается соотношение токов короткого замыкания:

(4.154) isc = ∫6V˜isinωt2Lsdt = −6V˜i2ωLscosωt + C

Применяя начальное условие i sc (ωt = 0) = 0 (см. Рис. 4.24 (b)) к формуле. (4.154) значение константы C находится:

(4.155) C = 6V˜i2ωLs

Подставляя уравнение. (4.155) в уравнение. (4.154) дает:

(4.156) isc = 6V˜i2ωLs (1 − cosωt)

Интервал перекрытия заканчивается под углом ωt = μ, когда isc = I¯o (см. Рис.4.24 (б)). Следовательно, из уравнения. (4.156) находится значение угла коммутации:

(4.157) I¯o = 6V˜i2ωLs (1 − cosμ)

или

(4.158) μ = cos − 1 (1−2I¯oωLs6V˜i )

Используя уравнение. (4.158) угол перекрытия коммутации μ может быть вычислен, если известны значения входного фазного напряжения, индуктивности входного источника, частоты входного напряжения и выходного тока.

Как видно из Рис. 4.24 (b), выходное напряжение для каждого интервала перекрытия уменьшается на величину, равную площади A.Следовательно, каждый интервал перекрытия снижает среднее выходное напряжение выпрямителя на:

(4,159) V¯μ = AT = 12π∫0μ (vbn − vo) d (ωt) = 12π∫0μvbn − van2d (ωt) = 12π ∫0μvba2d (ωt) = 14π∫0μ6V˜isin (ωt) d (ωt) = 6V˜i4π (−cosωt) | 0μ = 6V˜i4π (−cosμ + cos0 °) = 0,195V˜i (1 − cosμ)

Согласно рис. 4.24 (b), для трехфазного полуволнового диодного выпрямителя имеется три интервала перекрытия за цикл и, следовательно, среднее выходное напряжение будет уменьшено на:

(4,160) В ¯o (потери ) = 3V¯μ = 3 × 0,195V˜i (1 − cosμ) = 0.58 (1 − cosμ)

Пример 4.1

Для однофазного полномостового выпрямителя, работающего с чистым выходным током постоянного тока, дается следующая информация:

Входное напряжение = 120 В, среднеквадратичное значение 60 Гц, нагрузка источника постоянного тока E = 80 В, R = 2 Ом и L = 10 мГн.

Рассчитайте мощность, потребляемую источником постоянного тока E, а также мощность, потребляемую резистором.

Решение

Среднее выходное напряжение V¯o = 22V˜iπ = 22120π = 108V.

Следовательно, средний выходной ток равен I¯o = V¯o − ER = 108−802 = 14A.

Принимая во внимание только две высшие гармонические составляющие первого выходного напряжения, следующие результаты получены из формул. (4.15) и (4.16):

V˜o, 2 = 42V˜i3π2andV˜o, 4 = 42V˜i15π2I˜o, 2 = 42V˜i3π2 | Zo, 2 | и I˜o, 4 = 42V˜i15π2 | Зо, 4 |

Действующее значение выходного тока составляет I˜o≈I¯02 + I˜22 + I˜42

, где

I¯o = 14A

I˜o, 2 = 42V˜i3π2 | Zo, 2 | = 42 × 1203π222 + (2 × 2π × 60 × 0,01) 2 = 6.53A

I˜o, 4 = 42V˜i15π2 | Zo, 4 | = 42 × 12015π242 + (4 × 2π × 60 × 0,01) 2 = 0,65A

Следовательно, I˜o≈ (14) 2+ (6.53) 2+ (0,65) 2 = 15,46 А.

Мощность, потребляемая резистором нагрузки, равна PR = I˜o2R = (15.46) 2 (2) = 478 Вт.

Мощность, потребляемая источником постоянного тока нагрузки, равна PE = I¯oE = (14) (80) = 1120Вт.

Пример 4.2

Для выпрямителя на рисунке ниже, где ωL ≫ R, нарисуйте формы входных и выходных сигналов и вычислите среднее выходное напряжение и ток.

Solution

Для этого трехфазного полуволнового диодного выпрямителя диоды соединены таким образом, что в любой момент диод с самым высоким отрицательным анодным напряжением будет проводить и смещать два других в обратном направлении.На рис. 4.25 показаны основные формы сигналов выпрямителя.

Рисунок 4.25. Формы сигналов выпрямителя.

Используя форму выходного напряжения, среднее выходное напряжение и ток соответственно определяются следующим образом:

V¯o = −12π3∫ − π3π32V˜icosωtd (ωt) = - 32V˜i2π (sinωt) | −π3π3 = −32V˜ i2π (sin (π3) −sin (−π3)) = - 36V˜i2π = −1.17V˜iI¯o = V¯oR = −1.17V˜iR

Пример 4.3

Напряжение на нагрузке и ее ток задаются следующими уравнениями:

vi = 2 [200sinωt + 200sin (2ωt − 30 °)] ii = 2 [20sin (ωt − 45 °) + 10sin (2ωt − 60 °) + 10sin (3ωt + 60 °) ]

Вычислить: P, Q, S, D, λ, THD v % и THD i %.

Решение

V˜i = 2002 + 2002 = 282,84VI˜i = 202 + 102 + 102 = 24,49A

Si = V˜iI˜i = 6926,75ВА

Пока нет ни напряжения, ни тока синусоидальные формы сигнала:

Pi = ∑1nV˜nI˜ncosφn = V˜1I˜1cosφ1 + V˜2I˜2cosφ2 = 200 × 20 × cos45 ° + 200 × 10 × cos30 ° = 2828,43 + 1732,05 = 4560,48 Вт

Qi = ∑1nV˜nI˜nsinφn = V˜1I˜1sinφ1 + V˜2I˜2sinφ2 = 200 × 20 × sin45 ° + 200 × 10 × sin30 ° = 2828,43 + 1000 = 3828,43VAR

Di = Si2 − Pi2 − Qi2 = ( 6926,75) 2- (4560,48) 2- (3828,43) 2 = 3539,06ВА Искажение

λ = PiSi = 4560.486926,75 = 0,66

THDv% = Vi, 22Vi, 1 × 100 = 2002200 × 100 = 100%

THDi% = Ii, 22 + Ii, 32Ii, 1 × 100 = 102 + 10220 × 100 = 70,7%

Исследование Уравнение (4.39) коэффициент THD не учитывает серьезность гармоник более низкого порядка и рассматривает все гармоники одинаково. В связи с этим существует еще один коэффициент измерения качества электроэнергии, известный как взвешенное полное гармоническое искажение (WTHD), который используется в оборудовании звуковой системы и выражается следующим образом:

WTHDf% = [∑n = 2,3,4∞ ( Fnn) 2] F ~ 11/2 × 100

Пример 4.4

При подключении электролитического конденсатора к нагрузке однофазного диодного выпрямителя создается выходное напряжение постоянного тока с низкой пульсацией. Проанализируйте схему и рассчитайте емкость этого конденсатора по отношению к требуемой пульсации выходного напряжения.

Solution

На рис. 4.26 показан однофазный полномостовой диодный выпрямитель с конденсатором выходного фильтра и соответствующие формы сигналов. Как видно из рис. 4.26 (b), при подключении конденсатора фильтра к нагрузке сигнал выходного напряжения больше не является двухимпульсным, а имеет тенденцию становиться чистым постоянным током.Пара диодов D 1 и D 4 проводит от угла α к θ, а вторая пара D 2 и D 3 проводит от угла α + π к θ + π. Используя осциллограммы на Рис. 4.26 (b), выходное напряжение определяется по формуле:

Рис. 4.26. Выпрямитель с конденсатором выходного фильтра.

а) Силовая цепь; (б) формы сигналов выпрямителя.

(4.161) vo (ωt) = {| 2V˜isinωt |, когда пара диодов проводит (2V˜isinθ) e− (ωt − θ) / ωRC, когда диоды не проводят

, где V˜i = действующее значение входного напряжения; Vθ = 2V˜isinθ; θ = угол обратного смещения диодов.

Крутизна выходного напряжения согласно формуле. (4.161) равны:

(4.162) ddωt (2V˜isinωt) = 2V˜icosωtddωt (2V˜isinθe− (ωt − θ) / ωRC) = 2V˜isinθ (−1ωRC) e (ωt − θ) / ωRC

При угле ωt = θ градиенты функций равны, поэтому:

(4.163) 2V˜icosθ = 2V˜isinθ − ωRCe− (θ − θ) / ωRC = 2V˜isinθ − ωRCor2V˜icosθ2V˜isinθ = 1 −ωRCor1tanθ = 1 − ωRCorθ = tan − 1 (−ωRC) = - tan − 1 (ωRC) + π

На практике постоянная времени RC слишком велика (ωRC ≫ π) и, следовательно, из уравнения. (4.163):

(4.164) θ≈π2

Затем, подставляя уравнение. (4.164) в уравнение. (4.161)

(4.165) 2V˜isinθ≈2V˜i

При угле ωt = π + α две компоненты функции выходного напряжения равны, и, следовательно, выполняется следующее уравнение:

(4.166) (2V˜isinθ ) e− (π + α − θ) / ωRC = −2V˜isin (π + α) или (sinθ) e− (π + α − θ) / ωRC − sinα = 0

Применяя численные решения к уравнению. (4.166) можно найти значение угла α.

Согласно осциллограммам на рис. 4.26, размах пульсаций выходного напряжения выпрямителя определяется выражением:

(4.167) ΔVo = Vo, max − Vo, min = 2V˜i− | 2V˜isin (π + α) | = 2V˜i (1 − sinα)

На рис. 4.26 максимальное значение выходного напряжения составляет 2V˜i и его минимальное значение можно оценить, вычислив выходное напряжение под углом ωt = π + α. Из рис. 4.26 и уравнения. (4.161) мгновенное значение минимального выходного напряжения определяется как:

(4.168) Vo, min = vo (π + α) = 2V˜ie− (π + π / 2 − π / 2) / ωRC = 2V˜ie −π / ωRC

Следовательно, уравнение. (4.167) принимает следующий вид:

(4.169) ΔVo≈2V˜i (1 − e − π / ωRC) = 2V˜i (1 − e − 1 / 2fRC)

Кроме того, поскольку в большинстве приложений значения ω, R и C таковы, что e − π / ωRC≈1 − πωRC, тогда уравнение.(4.169) принимает следующий вид:

(4.170) ΔVo≈2V˜iπωRC = 2V˜i2fRC

Как видно из рис. 4.26 (b), качество входного тока очень низкое из-за конденсатора фильтра, который генерирует импульс тока во время зарядки. Этот импульс тока может вызвать выход из строя выпрямительных диодов. Для сглаживания входного тока вместе с конденсатором может быть применена катушка индуктивности, чтобы сформировать LC-фильтр нижних частот. На рис. 4.27 представлен новый выходной фильтр и полученный входной ток.

Рисунок 4.27. Диодный выпрямитель с выходным LC-фильтром.

а) Силовая цепь; (б) форма входного тока.

Пример 4.5

Для однофазного полномостового диодного выпрямителя с фильтрующим конденсатором, подключенным к нагрузке, приведены следующие характеристики:

Входное действующее напряжение = 220 В, 50 Гц, R = 200 Ом, C = 1000 мкФ .

Рассчитайте пульсации выходного напряжения (размах) и требуемый выходной конденсатор, чтобы снизить пульсации до 1% от составляющей постоянного тока.

Решение

Используя вышеуказанные спецификации, были получены следующие результаты:

ωRC = (2π × 50) (200) (1000) (10−6) = 62,8

θ = −tan − 1 (ωRC) + π = −tan − 1 (62,8) + π = 1,58рад = 90,9 °

2V˜isinθ = 2202sin90,9 = 311,09V

Используя уравнение. (4.166) угол α может быть вычислен по следующему уравнению:

sin (1.58) e− (π + α − 1.58) /62.88−sinα=0

При численных решениях значение α определяется как α = 72 °.

Используя значение α, амплитуда размаха выходного напряжения составляет:

ΔVo = Vo, max-Vo, min = 2V˜i− | 2V˜isin (π + α) | = 2V˜i (1 −sinα) = 2202 (1 − sin72 °) = 15.22V

Кроме того, размах колебаний выходного напряжения можно найти из следующего уравнения:

ΔVo≈2V˜i2fRC = 22022 × 50 × 200 × 1000 × 10−6 = 15,56V

Пульсации напряжения должны быть ограничены 1% составляющей постоянного тока, что составляет приблизительно 2202 = 311 В постоянного тока, должно выполняться следующее уравнение:

ΔVo2202 = 0,01≈12fRCorC≈12fR (ΔVo / 2V˜i) = 12 × 50 × 200 × 0,01 = 5000 мкФ

На рис. 4.28 показаны результаты моделирования, когда выходной конденсатор равен 1000 мкФ. Как видно, они полностью согласуются с соответствующими теоретическими.

Рисунок 4.28. Результаты симуляции.

(а) Входное напряжение; (б) выходное напряжение; (c) выходной ток; (d) конденсаторный ток; (e) входной ток; (е) ток перед выходным фильтром.

Пример 4.6

Однофазный двухполупериодный диодный выпрямитель используется для зарядки 12-вольтовой батареи. Внутреннее сопротивление батареи 0,1 Ом. Входное питание 230 В, 50 Гц подается на выпрямитель через силовой трансформатор (идеальный вариант с соотношением витков 20: 1). Рассчитайте максимальную входную активную мощность, потребляемую выпрямителем.

Решение

Iˆo = максимальный выходной ток, протекающий через резистор = Vˆo − ER

Кроме того,

Vˆo = максимальное выходное напряжение = (Vˆi) (120) = 230220 = 16,3 В

Следовательно,

максимальная выходная активная мощность = IˆoVˆo = 43 × 16,3 = 701 Вт

Пример 4.7

Трехфазный мостовой диодный выпрямитель имеет следующие характеристики:

Входное линейное напряжение 480 В, 50 Гц, R = 25 Ом, L = 50 мГн . Рассчитайте:

a)

Среднее выходное напряжение и ток.

b)

Среднеквадратичная основная составляющая выходного тока.

c)

Действующее значение входного тока.

d)

Средний и среднеквадратичный ток диода.

e)

Полная выходная мощность.

Решение
a)

Из уравнения. (4.94) среднее выходное напряжение и ток определяются как:

V¯o = 32V между линиями π = 32 × 480π = 648V

I¯o = V¯oR = 64825 = 25.9A

b)

Как видно из рис. 4.12, первая высшая гармоническая составляющая выходного тока является шестой и ее амплитуда равна:

Iˆo, 6 = Vˆo, 6 | Zo, 6 |

Также, используя уравнение. (4.55) амплитуда шестой гармонической составляющей выходного напряжения равна:

Vˆo, 6 = 62 × 480π (36−1) = 37V

| Zo, 6 | = R2 + (6ωL) 2 = 252 + [6 (314 ) (0,05)] 2 = 97,5 Ом

Iˆo, 6 = 3797,5 = 0,379AI˜o, 6 = 0,3792 = 0,268A

I˜o = I¯o2 + I˜o, 62 + I˜o, 122 + ⋯ ≈ (25,9) 2+ (0,268) 2≈25,9A

в)

I˜i = 23I¯o = 23 × 25.9 = 21.2A

d)

I¯D = I¯o3 = 25.93 = 8.63A, I˜D = I˜o3 = 25.93 = 15A

e)

S = 3V˜inI˜ in = 3 (480) (21,2) = 17,6 кВА

Пример 4.8

Трехфазный полуволновой диодный выпрямитель имеет следующие характеристики:

Входное напряжение 127 В 50 Гц, сопротивление нагрузки 1 Ом и нагрузка индуктивность 100 мГн.

a)

Рассчитайте среднее выходное напряжение и ток.

b)

Если входной источник имеет индуктивность 1 мГн на фазу и средний выходной ток составляет 129 А, рассчитайте угол перекрытия коммутации и среднее выходное напряжение.

Решение
a)

Используя уравнение. (4.89) среднее выходное напряжение:

В¯o = 1,17V˜i = 1,17 × 127 = 148,6В

Следовательно, средний выходной ток равен I¯o = V¯oR = 1481 = 148,6A.

Поскольку ωL ≫ R, выходной ток считается чистым постоянным током, равным 148 A.

b)

В случае наличия индуктивности входного источника L с в источнике питания, угол перекрытия коммутации μ определяется выражением:

μ = cos − 1 (1−2I¯oωLs6V˜i) = cos − 1 (1-2 × 129 × 2π × 50 × 0.0016 (127)) = cos − 1 (0,739) = 42,35 °

Уменьшение среднего выходного напряжения из-за явления перекрытия коммутации составляет:

V¯o (потери) = 0,58V˜i (1 − cosμ) = 0,58 × 127 (1 − cos42,35 °) = 19,22 В

Следовательно, среднее выходное напряжение V¯o = 148,6−19,22 = 129,39 В.

Из-за перекрытия коммутации среднее выходное напряжение снижается на 12,93%.

Пример 4.9

Для однофазного полномостового диодного выпрямителя приведены следующие характеристики: входное напряжение 220 В, 50 Гц, R = 1 Ом и L = 0.1 H.

Рассчитайте коэффициенты RF, FF, σ и λ.

Решение

Из рис. 4.6 (d), где выходное напряжение представляет собой двухимпульсную форму волны, получены следующие результаты:

V¯o = 22V˜iπ = 22 × 220π = 198V, V˜o = V˜i = 220VandI¯o = V¯oR = 1981 = 198A

Кроме того, из частотного спектра выходного напряжения однофазного полномостового выпрямителя, показанного на рис. 4.2, с учетом только первых двух высших гармонических составляющих, получены следующие результаты:

V˜o, 2 = 42V˜i3π2 = 42 × 2203π2 = 93.37V, V˜o, 4 = 42V˜i15π2 = 42 × 22015π2 = 18,67V

I˜o, 2 = V˜o, 2 | Zo, 2 | = 42V˜i3π2 | Zo, 2 | = 42 × 2203π2 ( 1) 2+ (2 × 2π × 50 × 0,1) 2 = 1,49A

I˜o, 4 = V˜o, 4 | Zo, 4 | = 42V˜i15π2 | Zo, 4 | = 42 × 22015π2 (1 ) 2+ (4 × 2π × 50 × 0,1) 2 = 0,148A

Следовательно, действующий выходной ток равен:

I˜o = I¯o2 + I˜o, 22 + I˜o, 42 = (198 ) 2+ (1,49) 2+ (0,148) 2≈198A

Выходная мощность постоянного и переменного тока соответственно определяется выражением:

P¯o = V¯oI¯o = (198) (198) = 39204WP˜o = V˜oI˜o = (220) (198) = 43560W

Следовательно, требуемые коэффициенты:

RF = V˜RV¯o = V˜o2 − V¯o2V¯o = (220) 2− (198 ) 2198 = 0.48

FF = V˜oV˜R = V˜oV˜o2 − V¯o2 = 220 (220) 2− (198) 2 = 2,29

σ = P¯oP˜o = 3920443560 = 0,9λ = PiSi = P¯oV˜iI˜i = 39204 (220) (198) = 0,9

Пример 4,10

Для однофазного полномостового диодного выпрямителя, когда входной источник имеет индуктивность L i , а ток нагрузки равен чистый постоянный ток значения I¯o, определить угол перекрытия коммутации.

Решение

Силовая схема для определения угла коммутации показана на рис. 4.29. Кроме того, на рис. 4.30 показаны формы сигналов ключевой цепи во время коммутации.

Рисунок 4.29. Однофазный полномостовой диодный выпрямитель.

а) Силовая цепь; (б) эквивалентная схема при коммутации.

Рисунок 4.30. Схема основных осциллограмм во время коммутации.

Во время коммутации выполняется следующее уравнение:

vi − Lidiidt = 0forπ <ωt≤π + μ

Умножение приведенного выше уравнения на dωt:

vidωt = Lidiidtdωtforπ <ωt≤π + μorvidωt = ωLidiπ μ

Путем объединения обеих частей:

∫ππ + μvidωt = ∫I¯o − I¯oωLidiior∫ππ + μ2V˜isinωtd (ωt) = ∫I¯o − I¯oωLidii

2V˜i (cosπ − cos ( π + μ)) = - 2ωLiI¯oor2V˜i (−1 + cosμ) = - 2ωLiI¯o

или

μ = cos − 1 (1−2ωLiI¯o2V˜i)

Время одной коммутации или Интервал перекрытия определяется выражением:

Δt = время коммутации = μω = 1ωcos − 1 (1−2ωLiI¯o2V˜i)

Как видно из рис.4.30, выходное напряжение для каждого интервала перекрытия уменьшается на величину, равную площади A. Следовательно, каждый интервал перекрытия снижает среднее выходное напряжение выпрямителя на:

V¯μ = AT = ∫0μvid (ωt) 2π = ∫0μ2V˜isinωtd (ωt) 2π = 2V˜i2π (1 − cosμ)

Поскольку в однофазном полномостовом диодном выпрямителе есть два интервала перекрытия за цикл, среднее выходное напряжение уменьшается на:

В ¯o (потеря) = 2V¯μ = 2V˜iπ (1 − cosμ)

Как добавить диод для снижения напряжения

Диод проводит электричество в одном направлении, от положительного вывода (анода) к отрицательному выводу ( катод).Диод не будет полностью проводить электричество, пока напряжение на нем не достигнет определенного значения, называемого «прямым напряжением». Для большинства кремниевых диодов с малым сигналом это значение составляет примерно 0,7 В. Напряжение, приложенное к диоду, будет уменьшено на величину, равную прямому напряжению. Это называется «прямое падение напряжения». Прямые падения напряжения на подключенных диодах складываются. Например, падение напряжения на двух последовательно соединенных диодах равно сумме их прямых напряжений - примерно 1.4 вольта для кремниевых диодов.

Подключите цепь последовательного диода

Подключите анод одного из диодов к полосе питания в верхней части макета.

Вставьте катод диода - обозначенный темной полосой на корпусе диода - в основную часть макета.

Подключите анод второго диода к катоду первого диода.

Подключите один вывод резистора к катоду второго диода.

Подключите другой вывод резистора к полосе заземления в нижней части макета.

Измерьте падение прямого напряжения на диоде

Подсоедините отрицательную клемму (черный провод) держателя батареи к полосе заземления.

Подсоедините положительный полюс (красный провод) держателя аккумулятора к полосе питания.

Вставьте четыре свежие батареи в батарейный отсек.

Присоедините отрицательный щуп вольтметра к полосе заземления.

Присоедините положительный щуп вольтметра к полосе питания и отметьте напряжение, показываемое вольтметром.

Присоедините положительный щуп вольтметра к катоду первого диода - ближайшего к полоске питания. Обратите внимание на напряжение, указанное вольтметром. Оно должно быть примерно на 0,7 В ниже, чем значение на шаге 6.

Присоедините положительный щуп вольтметра к катоду второго диода. Обратите внимание на напряжение, указанное вольтметром. Оно должно быть примерно на 1,4 В ниже значения, указанного в шаге 6.

Подключение источников питания параллельно или последовательно для увеличения выходной мощности

В некоторых приложениях использования одного источника питания может быть недостаточно для обеспечения мощности, необходимой для нагрузки.Причины использования нескольких источников питания могут включать избыточную работу для повышения надежности или увеличения выходной мощности. При обеспечении комбинированного питания необходимо следить за тем, чтобы все источники питания передавали его сбалансированным образом.

Источники питания, подключенные для резервирования

Резервные источники питания - это топология, в которой выходы нескольких источников питания соединены для повышения надежности системы, но не для увеличения выходной мощности. Резервные конфигурации обычно предназначены для получения выходного тока только от основных источников питания и для получения тока от резервных источников питания в случае отказа одного из основных источников питания.Поскольку отбор тока нагрузки создает нагрузку на компоненты в источнике питания, высокая надежность в системе достигается, когда ток не потребляется от резервных источников до тех пор, пока не возникнет проблема с одним из основных источников питания.

  • Источники питания A и B - аналогичные блоки; Vout и максимальный Iout одинаковые
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен максимальному выходному току одного источника
  • Электронный переключатель подключает один из выходов питания к нагрузке

Источники питания с параллельно подключенными выходами

Обычная топология, используемая для увеличения выходной мощности, заключается в параллельном подключении выходов двух или более источников питания.В этой конфигурации каждый источник питания обеспечивает необходимое напряжение нагрузки, а параллельное подключение источников увеличивает доступный ток нагрузки и, следовательно, доступную мощность нагрузки.

Эту топологию можно успешно реализовать, но есть много соображений для обеспечения эффективности конфигурации. Для параллельных конфигураций предпочтительны источники питания с внутренними цепями, поскольку внутренние цепи улучшают эффективность распределения тока. Если источники питания, используемые в приложении для разделения тока, не имеют внутренних цепей разделения, необходимо использовать внешние методы, которые могут быть менее эффективными.

Основная проблема заключается в том, насколько равномерно ток нагрузки распределяется между источниками питания. Распределение тока нагрузки зависит как от конструкции источников питания, так и от конструкции внешней цепи и проводников, используемых для параллельного подключения выходов источников питания. Почти всегда при параллельном подключении используются одинаковые блоки питания из-за проблем, связанных с эффективной настройкой блоков питания. Однако можно настроить источники питания параллельно с согласованными выходными напряжениями и несовпадающими максимальными выходными токами.

Более подробное обсуждение параллельного подключения источников питания можно найти в нашем техническом документе Current Sharing with Power Supplies.

  • Источники питания A и B должны иметь одинаковый Vout; Максимум Iout может быть разным
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен сумме максимального выходного тока обоих источников
  • Цепи контроля тока уравновешивают ток нагрузки между источниками питания

Источники питания с последовательными выходами

Другой вариант увеличения мощности, подаваемой на нагрузку, - это соединение выходов нескольких источников питания последовательно, а не параллельно.Некоторые из преимуществ использования последовательной топологии включают в себя: почти идеальное использование подачи питания между источниками, отсутствие необходимости в конфигурации или совместном использовании цепей, а также устойчивость к большому разнообразию конструкций приложений. Как упоминалось ранее, при параллельном подключении выходов источников питания каждый источник обеспечивает необходимое напряжение, а ток нагрузки распределяется между источниками. Для сравнения, когда выходы источников питания соединены последовательно, каждый источник обеспечивает требуемый ток нагрузки, а выходное напряжение, подаваемое на нагрузку, будет представлять собой комбинацию последовательно включенных источников.

Следует отметить, что, когда блоки питания сконфигурированы с последовательным соединением выходов, источники питания не обязательно должны иметь аналогичные выходные характеристики. Ток нагрузки будет ограничен наименьшим допустимым током нагрузки любого из источников в конфигурации, а напряжение нагрузки будет суммой выходных напряжений всех источников в цепочке.

Есть несколько ограничений, накладываемых на источники питания, когда они используются в конфигурации с последовательным выходом.Одним из ограничений является то, что выход источников питания должен быть спроектирован так, чтобы выдерживать смещение напряжения из-за последовательной конфигурации. Это напряжение смещения обычно не является проблемой, но выходные напряжения источников питания с заземлением не могут быть суммированы на выходах других источников. Второе ограничение заключается в том, что выход источника питания может подвергаться обратному напряжению, если выход неактивен, когда активны остальные выходы в цепочке. Проблема обратного напряжения может быть легко решена путем размещения диода с обратным смещением на выходе каждого источника питания.Номинальное напряжение пробоя диода должно быть больше, чем выходное напряжение отдельного источника питания, а номинальный ток диода должен быть больше, чем максимальный номинальный выходной ток любого источника питания в последовательной цепочке.

  • Источники питания A и B могут иметь разные максимальные значения Vout и Iout
  • Напряжение нагрузки равно сумме выходных напряжений питания
  • Максимальный ток нагрузки равен наименьшему из максимального выходного тока любого источника
  • Диоды обратного смещения защищают выходы источников питания

Резюме

Источники питания, подключенные параллельно:

  • Плохое использование мощности из-за допуска управления разделением тока между источниками
  • Требуется специальная цепь для управления разделением тока между источниками
  • Чувствительность к конструкции и конструкции проводников, соединяющих источники питания параллельно
  • Наиболее простая конструкция с аналогичными блоками питания

Источники питания, подключенные последовательно:

  • Эффективное использование мощности ограничено только точностью выходного напряжения каждого источника
  • Нет необходимости в цепях для управления распределением напряжения или тока между источниками
  • Отсутствие чувствительности к конструкции или конструкции проводников, соединяющих источники питания в серии
  • Простая конструкция с любой комбинацией источников питания

Хотя общий метод, используемый для увеличения мощности нагрузки, подаваемой от источников питания, заключается в параллельном подключении выходов, другое решение может заключаться в последовательном соединении выходов нескольких источников питания.У поставщиков источников питания, таких как CUI, есть технический персонал, который может помочь настроить приемлемое решение для этих и других проблем, связанных с применением источников питания.

Категории: Основы , Выбор продукта

Дополнительные ресурсы


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком

Светодиод

, подключенный к 120/240 В переменного тока

На этой схеме показаны один или два светодиода (светоизлучающий диод), напрямую подключенные к розетке (120 В переменного тока или 240 В переменного тока). Снижение входного переменного напряжения до напряжения, подходящего для использования в светодиодном диоде, достигается с помощью конденсатора и резистора.

Осторожно : Эта цепь подключена непосредственно к линии питания (120/240 В переменного тока), поэтому вы должны быть осторожны, чтобы проверить ее.

Когда подключены два светодиода, первый светодиод будет проводить в отрицательном полупериоде волны, а второй - в положительном полупериоде волны. Если вы хотите подключить только один светодиод, вы должны заменить другой на обычный выпрямительный диод. Если этого не сделать, светодиод сгорит.

Мы используем следующие формулы:

  • Xc = 1 / (2 p f C). Формула емкостного реактивного сопротивления.
  • I = V / Xc. Закон Ома для емкостного реактивного сопротивления.

Где:

  • p = (π) 3,1416
  • f = частота (50 или 60 герц)
  • C = емкость конденсатора (фарады)
  • V = напряжение
  • I = ток
  • Xc = емкостное реактивное сопротивление

Светодиодный диод, подключенный к 110/120 В, 60 Гц

  • Xc = 1 / (2 пФ C) = 1 / (2 x 3,1416 x 60 x 0,47 мкФ) = 5646 Ом
  • I = В / Xc = 120/5646 = 21,3 мА

С неполярным конденсатором 0,47 мкФ реактивное сопротивление будет 5646 Ом, а ток через светодиод (или светодиоды) будет равен 21.3 мА (миллиампер).

Светодиодный диод, подключенный к сети 220/240 В, 50 Гц

  • Xc = 1 / (2 пФ C) = 1 / (2 x 3,1416 x 50 x 0,22 мкФ) = 14,468 Ом
  • I = V / Xc = 240 / 14,468 = 16,6 мА

С неполярным конденсатором 0,22 мкФ реактивное сопротивление составляет 14,468 Ом, а ток через светодиод (или светодиоды) составляет 16 мА (миллиампер).

Примечание. Резистор сопротивлением 1 кОм используется для предотвращения возможных пиков тока, и его влияние незначительно, поскольку большая часть падения напряжения приходится на конденсатор.

Список компонентов

  • 1 резистор 1 кОм (0,5 Вт)
  • 1 неполярный конденсатор 0,47 мкФ, 200 В или более для корпуса 100/120 В переменного тока.
  • 1 неполярный конденсатор 0,22 мкФ, 300 В или более для корпуса 220/240 В переменного тока.
  • 2 светодиода
  • 1 1N4001 выпрямительный диод

% PDF-1.6 % 842 0 объект > эндобдж xref 842 65 0000000016 00000 н. 0000002813 00000 н. 0000002952 00000 н. 0000003018 00000 н. 0000003573 00000 н. 0000003704 00000 н. 0000004303 00000 п. 0000004929 00000 н. 0000005309 00000 н. 0000005788 00000 н. 0000006322 00000 н. 0000006425 00000 н. 0000006700 00000 н. 0000008838 00000 н. 0000011058 00000 п. 0000013252 00000 п. 0000015479 00000 п. 0000017195 00000 п. 0000018390 00000 п. 0000018800 00000 п. 0000018907 00000 п. 0000019234 00000 п. 0000020396 00000 п. 0000022051 00000 п. 0000026759 00000 п. 0000031616 00000 п. 0000034392 00000 п. 0000035937 00000 п. 0000051022 00000 п. 0000358581 00000 п. 0000359773 00000 н. 0000359878 00000 п. 0000360071 00000 н. 0000360330 00000 н. 0000360577 00000 н. 0000371239 00000 н. 0000371278 00000 н. 0000371810 00000 н. 0000371925 00000 н. 0000379645 00000 н. 0000379684 00000 н. 0000380216 00000 н. 0000380329 00000 н. 0000389199 00000 н. 0000389238 00000 п. 0000389769 00000 н. 0000389880 00000 н. 0000415723 00000 н. 0000415762 00000 н. ڣ y

ȨmCf \ mY !.-'Ttr * [nͼ76Ӫ?% T $ & Ĉg3bFo4 @ -Pp2Ÿ G @, aѯɧ>% opmVO {4uC'c% Ϣ {mUVw = ͚> vS'a & A ~ l3 / zQ & 9CWc1Ȩs {@ LSO $

Diode VS Thermistor - New Электроника Проект

Думаете сделать у себя дома схему миниатюрного датчика температуры? Но у вас нет никаких идей, как сделать дешевую и простую схему датчика температуры. Тогда этот проект только для вас

Сегодня мы воспользуемся двумя электронными компонентами для проверки цепи датчика температуры. Мы используем выпрямительный диод и термистор (ТТС-103).Нам также понадобится дополнительная электроника для создания этой схемы.

Для изготовления схемы диодного датчика нам понадобится -

1. Транзистор - BC 547 * 2

2. Резистор - 1 МОм

220 Ом

3. Диод - 1N 4007

4. Зуммер

5. Аккумулятор - 3,7 В

Схема подключения -

Для изготовления схемы диодного датчика 1 st соединяем 1 транзистор «Эмиттер» с другим транзистором «База».Затем подключаем оба транзистора «Коллектор» и подключаем резистор 220 Ом к «Коллектор». Теперь подключаем выпрямительный диод к схеме. Соедините отрицательную клемму диода с пустой клеммой резистора 220 Ом, а положительную клемму диода с «базой».

Теперь подключаем зуммер к цепи. Подключаем плюсовую ножку зуммера к «Излучателю». Затем подключаем к схеме резистор 1 МОм. Подключаем резистор к плюсовой ножке диода и минусовой ножке зуммера.

Теперь подключаем источник питания к цепи.Знаете, в качестве источника питания мы используем аккумулятор постоянного тока на 3,7 вольта. Подключите положительный кабель постоянного тока к «коллектору» транзистора, а отрицательный кабель постоянного тока - к отрицательной клемме зуммера.

Наша схема готова к использованию. Теперь просто нагреваем диод, если мы слышим звук зуммера, то мы пытаемся остудить диод, и тогда звук зуммера будет отключен.

Следуя этому методу, мы можем легко изготовить в домашних условиях схему диодного датчика температуры.

Для изготовления схемы датчика термистора нам понадобится -

1.Транзистор - BC 547

2. Резистор - 1 кОм

3. Светодиод - 3,7 В

4. Термистор (ТТС) - 103

5. Аккумулятор - 3,7 В

Схема подключения -

Чтобы сделать схему датчика термистора, 1 st , мы подключаем резистор 1 кОм к «Базе» и «Эмиттеру» транзистора. Теперь соединяем отрицательную ножку светодиода с «Коллектором» транзистора. Теперь подключаем термистор к цепи. Соедините термистор с «базой» транзистора, а другой вывод - с положительной клеммой светодиода.

Теперь подключаем источник питания к схеме. В качестве источника питания мы используем аккумулятор постоянного тока - 3,7 В. Подключите положительный кабель аккумулятора к положительному выводу светодиода, а отрицательный кабель аккумулятора подсоедините к «эмиттеру» транзистора.

Наша схема готова к использованию. Теперь мы просто нагреваем термистор, если мы видим, что светодиодный индикатор светится, мы пытаемся охладить термистор, и тогда светодиодный индикатор погаснет.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *