Определение сечения провода — обзор эффективных методик
Очень часто перед покупкой провода возникает необходимость самостоятельно определить его сечение, чтобы не стать жертвой обмана. Помимо этого, измерять диаметр жил приходиться при добавлении новой электрической точки, если на старой проводке отсутствует буквенная маркировка. Далее мы расскажем Вам, как правильно произвести измерения и какие методики определения для этого можно использовать.
Важный момент заключается в том, что даже если Вы правильно осуществите все вычисления и выберите подходящее изделие, такая неприятность, как авария, все равно может возникнуть. Это связано с тем, что не всегда сечение жил, которое указано на маркировке проводов, соответствует действительным значениям. В этом вина только завода-изготовителя, ведь, бесспорно характеристики не совпадают из-за каких-либо экономических «трюков» в компании. Иногда провода и кабели на прилавках вообще без маркировки, что также пускает под сомнение их качество.
- Завод решил сэкономить на качестве товара. К примеру, если сделать 2,5-милимметровую жилу тоньше на 0,2 мм.кв., можно выиграть несколько килограммов металла на 1 погонном километре. При массовом производстве экономия имеет приличные цифры.
- В борьбе за «место под солнцем» компании по изготовлению электропроводки пытаются переманить к себе потребителя, сделав цену ниже, чем у конкурентов. Соответственно низкая цена устанавливается за счет незначительного сокращения диаметра (на глаз не заметно).
Как вы видите, и тот и другой ответ вполне разумный, поэтому лучше себя предостеречь и сделать несколько простых вычислений, о которых мы и поговорим далее.
- Способы определения
- Способ №1 – Приборы в помощь!
- Способ №2 – Использование линейки
- Способ №3 – Использование таблиц
- Советы от электрика
- Видео инструкция
Способы определения
Существует несколько способов определения сечения кабеля. Все они сводятся к тому, чтобы сначала вычислить диаметр жилы, после чего с помощью небольших расчетов узнать окончательное значение.
Способ №1 – Приборы в помощь!
На сегодняшний день существуют инженерные приборы, с помощью которых можно запросто определить диаметр жилы провода либо кабеля. К таким приборам относятся штангенциркуль и микрометр (увеличьте фото нажатием, чтобы просмотреть все инструменты).
- Механический микрометр
- Электронный микрометр
- Механический штангенциркуль
- Электронный штангенциркуль
Данный способ определения наиболее точный, но «обратная сторона медали» заключается в стоимости самого штангенциркуля/микрометра. Цена, конечно, не космическая, но для единоразового использования нет смысла приобретать данный инструмент.
Чаще всего такой вариант выбирают профессиональные электрики, чья жизнь непосредственно связана с монтажом электропроводки.
После измерения необходимо воспользоваться следующей формулой:
Не забываем, что число «Пи» составляет 3,14. Для максимального упрощения формулы можно 3,14 разделить на 4, после чего вычисления сведутся к умножению 0,785 на диаметр в квадрате!
Способ №2 – Использование линейки
Если Вы не желаете тратить деньги (а правильно и делаете!), то рекомендуем использовать простой «дедовский» способ для того чтобы определить сечение провода по его диаметру. Если имеются проволока, простой карандаш и линейка, найти ответ можно за считанные минуты. Все что Вам нужно — зачистить жилу от изоляции, после чего плотно накрутить ее на карандаш (как показано на картинке) и линейкой измерить общую длину намотки.
Суть способа заключается в том, что необходимо измерить общую длину намотанного проводника и разделить ее на количество жил. Значение, которое получиться – диаметр, который Вам нужно определить.
Несмотря на свою простоту, вычисления имеют свою особенность:
- чем больше жил будет намотано на карандаш, тем точнее выйдет результат, минимальное количество витков – 15;
- витки обязательно должны быть вплотную прижаты друг к другу, чтобы не было свободного пространства, которое значительно увеличит погрешность;
- определение необходимо осуществлять несколько раз (меняя начальную сторону замера, переворачивая линейку и т.д.). Опять-таки, чем больше вычислений – тем меньше погрешность.
Обращаем Ваше внимание на существенные недостатки данного способа. Во-первых, для измерения подойдут только тонкие проводники (из соображений того, что толстый кабель будет сложно накручивать). Во-вторых, в магазине перед покупкой для такой методики необходимо отдельно приобрести небольшой кусочек изделия.
После всех измерений необходимо воспользоваться все той же формулой, которую мы указали выше. На видео демонстрируется пример определения сечения проводника с помощью линейки:
Применение линейки и формул
Способ №3 – Использование таблиц
Вместо того, чтобы определять сечение кабеля по формуле, можно просто использовать готовые таблицы, которые сократят Ваше время и сделают результат наиболее точным.
Таблица довольно простая: в одной колонке указаны диаметры жил, во второй – их поперечные сечения в квадратах.
Советы от электрика
Мы предоставили существующие методы, но это еще далеко не все.
Рекомендуем Вам ознакомиться со следующими советами от опытных электриков по определению сечения провода:
- Помимо сечения изделия обращайте внимание на металл жилы. Медная либо алюминиевая жила должна иметь характерный насыщенный цвет. Если цвет сомнительный, то, скорее всего это сплав металлов, который позволяет сэкономить заводу-изготовителю свои средства. Такой сплав крайне опасен для монтажа электропроводки в доме, т.к. его токопроводимость и номинальные нагрузки в разы меньше, чем у оригинального изделия.
- Сечение нужно определять только по жиле. Даже если с виду изделие нормальной толщины, возможен такой вариант, что уменьшенные размеры жилы были компенсированны повышенным слоем изоляции.
- Если Вы сомневаетесь в размере проводника, приобретите провод большего сечения. Запас мощности точно не повредит Вашей электропроводке!
- Если Вы имеете дело с кабелем, расчет будет немного изменен (из-за того что кабель может состоять из n-го количества проводов). Чтобы правильно осуществить вычисления, Вам необходимо сначала определить диаметр каждого отдельного провода, после чего суммировать все значения и выбрать изделия согласно итоговому числу.
Видео инструкция
Мы нашли очень интересную видео инструкцию, в которой показаны не только как определить сечение провода, но и наглядный пример различного качества изделий от нескольких заводов изготовителей. Если Вы знаете украинский язык, то видео станет Вам полезным и сможет ответить на возникнувшие вопросы, если такие имеются!
Видео инструкция по определению сечения жилы микрометром
Надеемся, что теперь Вы знаете, как определить сечение провода по его диаметру. Если возникли какие-либо вопросы, сразу же задавайте их нашим специалистам в комментариях либо категории «Вопрос электрику«!
Также читают:
- Технические характеристики кабеля ВВГнг
- Как снять изоляцию с провода?
- Как определить фазу и ноль без приборов
Расчет сечения провода по току: важность и особенности
Расчет сечения провода по току является важным условием для качественного монтажа электропроводки в помещении любого типа. Это связано с угрозой перегрева при недостаточной площади сечения, что в свою очередь приводит к плавлению его изоляции, короткому замыканию и даже пожару.
В связи с тем, что, в большинстве случаев, провода электрического обеспечения сооружений являются скрытыми внутри кладки или отделочного слоя стены, позаботиться о соответствующем сечении, значит обеспечить себе уверенность в сохранности и жильцов, и имущества. Именно в данном случае и проводится расчет сечения по мощности проходящего тока.
Содержание
- 1 Критерии выбора необходимого сечения провода
- 2 Процесс определения необходимого сечения провода
- 2.1 Расчет мощности потребителей
- 2.2 Расчет сечения провода
- 3 Медь или алюминий?
- 3.1 Сравнительный анализ медного и алюминиевого типов проводов
Критерии выбора необходимого сечения провода
Существует три основных принципа, согласно которым проводится выбор площади сечения кабеля для сети электрического обеспечения помещения. К ним относятся:
- Достаточная площадь сечения для обеспечения прохождения тока без возникновения перегрева.
- Падение напряжения в кабеле выбранного сечения не должно превышать норму.
- Площадь сечения провода и качество его изоляционного покрытия должны максимально обеспечивать соблюдение механической прочности, а, следовательно, общей надежности проводки.
Что касается состояния перегрева, то нормальным считается достижение температуры, не превышающей 60°С. В целом, двумя основными критериями, которым должно соответствовать выбранное сечение провода, являются поддержание мощности и обеспечение безопасности.
Процесс определения необходимого сечения провода
В процессе проведения электропроводки в помещении используется простой и быстрый способ того, как определить сечение провода по току. Так как основным показателем функциональности является величина тока, которую он способен пропускать в течение продолжительного периода, прежде всего, необходимо определить уровень предельной нагрузки, который будет ложиться на данный элемент проводки.
Расчет мощности потребителей
Чтобы высчитать величину тока, которая ляжет на искомый кабель, нужно суммировать мощность всех приборов, которые будут получать питание через него. Стоит отметить, что чаще всего, при устройстве электропроводки, освещение и питание электроприборов разделяются на отдельные линии. Поэтому, перед тем, как пытаться определить сечение провода по току для помещения, важно уточнить включение в общий перечень приборов освещения.
Для примера используется вариант расчета только силового обеспечения электричеством. В случае участия в общей нагрузке освещения, мощность ламп также суммируется с мощностями приборов. Допустим, что в помещении (кухня квартиры) планируется использование холодильника мощностью 200 Вт, микроволновой печи с показателем в 1100 Вт, электрического чайника с мощностью 2200 Вт и электроплиты в 500 Вт показателя мощности. Тогда общая нагрузка, которая ляжет на кабель, обеспечивающий силовое питание, составит P=200+1100+2200+500=4000 Вт.
Расчет сечения провода
Дальнейшее изыскание того, какое сечение провода необходимо, подразумевает определение предельной величины тока. Здесь расчет пойдет в двух направлениях: для однофазной и трехфазной сети. Формула расчета для сети в 220В (однофазная) будет иметь вид I=(P*Kи)/U*cos φ. При этом:
- Р – вычисленная выше мощность всех приборов.
- U – показатель напряжения сети (220В).
- Ки – величина коэффициента одновременности, составляющая для бытовых приборов 0,75.
- Сos φ – для бытовых приборов равен единице.
Если же речь идет о трехфазной сети, формула, вычисляющая величину максимального проведения тока, несколько изменится: I=P/√3*U*cos φ.
Исходя из данных рассматриваемого примера и применив формулу для однофазной сети, получим следующий расчет: I=(4000*0,75)/220*1=13,6 А. Получив показания по величине длительно предельной нагрузки, сечение провода определяется по таблице данных, согласно ГОСТ 31996—2012 «КАБЕЛИ СИЛОВЫЕ С ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ». Сама сводная таблица допустимой токовой мощности на провода медных или алюминиевых жил, согласно которой определяется площадь сечения кабеля, приведена ниже.
Медный тип проводов | Алюминиевый тип проводов | ||||||||
Сечение, мм2 | Одножильный | Многожильный | Сечение, мм2 | Одножильный | Многожильный | ||||
на воздухе | в земле | на воздухе | в земле | на воздухе | в земле | на воздухе | в земле | ||
1,5 | 22 | 30 | 21 | 27 | — | — | — | — | — |
2,5 | 30 | 39 | 36 | 2,5 | 22 | 30 | 21 | 28 | |
4 | 39 | 50 | 36 | 47 | 4 | 30 | 39 | 29 | 37 |
6 | 50 | 62 | 46 | 59 | 6 | 37 | 48 | 37 | 44 |
10 | 68 | 83 | 63 | 79 | 10 | 50 | 63 | 50 | 59 |
16 | 89 | 107 | 84 | 102 | 16 | 68 | 82 | 67 | 77 |
25 | 121 | 137 | 112 | 133 | 25 | 92 | 106 | 87 | 102 |
35 | 147 | 163 | 137 | 158 | 35 | 113 | 127 | 106 | 123 |
50 | 179 | 194 | 167 | 187 | 50 | 139 | 150 | 126 | 143 |
70 | 226 | 237 | 211 | 231 | 70 | 176 | 184 | 161 | 178 |
95 | 280 | 285 | 261 | 279 | 95 | 217 | 221 | 197 | 214 |
120 | 326 | 324 | 302 | 317 | 120 | 253 | 252 | 229 | 244 |
150 | 373 | 364 | 346 | 358 | 150 | 290 | 283 | 261 | 274 |
185 | 431 | 412 | 397 | 405 | 185 | 336 | 321 | 302 | 312 |
Если данные, выведенные в результате расчетов, не совпадают с показателями таблицы, берется ближайшее большее значение. Так, в случае рассматриваемого примера, сечение медного одножильного или многожильного провода составит 1,5 мм2, а при использовании алюминиевого, площадь будет равна 2,5 мм2.
Медь или алюминий?
Как видно на основе примера, расчет и определение того, какую площадь должен иметь провод в зависимости от мощности нагрузки, достаточно прост. Дополнительные вопросы могут также возникнуть касательно материала изготовления. В чем состоят различия медных и алюминиевых кабелей для электрической проводки, и какой из них лучше выбрать?
Сравнительный анализ медного и алюминиевого типов проводов
Для человека, хоть раз сталкивавшегося с вопросами проведения линий электрической сети в помещении или на улице, не секрет, что провода и кабели, изготовленные из меди, пользуются большим уровнем спроса, чем алюминиевые. Это связано с несколькими основными критериями функциональности, в которых данные материалы расходятся.
К таким показателям относятся:
- Уровень прочности.
- Степень гибкости.
- Способность противостояния процессам коррозии.
- Уровень проводимости тока.
В том, что касается показателей прочности и гибкости, медь значительно опережает алюминий. Она является более гибкой, не переламывается в местах сгибов, что делает ее незаменимой при необходимости проведения сложных систем электропроводки. При этом, медные провода значительно меньше подвержены окислению, которое поражает алюминий достаточно быстро. Кроме того медные провода хорошо соединяются методом пайки.
Разница в уровнях проводимости тока видна даже в данных сводной таблицы по мощности для каждого типа проводов. Медный провод при значительно меньшем сечении способен обеспечить проведение большей силы тока, чем алюминиевый.
Единственным ощутимым недостатком материала является его высокая стоимость. По этой причине алюминий до сих пор удерживается на рынке – дешевизна и доступность данного сырья, в некоторых случаях, играет решающую роль. Однако, по соотношению показателей цена-качество, медь занимает лидирующее положение в качестве материала для проводов и кабелей линий электрических сетей.
сопротивление и удельное сопротивление | Физика
Цели обучения
К концу этого раздела вы сможете:
- Объяснять понятие удельного сопротивления.
- Используйте удельное сопротивление для расчета сопротивления определенных конфигураций материала.
- Используйте термический коэффициент удельного сопротивления для расчета изменения сопротивления в зависимости от температуры.
Зависимость сопротивления от материала и формы
Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор на рисунке 1 легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорциональна его длине L , подобно сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше столкновений зарядов с его атомами произойдет. Чем больше диаметр цилиндра, тем больший ток он может пропускать (опять же аналогично потоку жидкости по трубе). На самом деле R обратно пропорционально площади поперечного сечения цилиндра A .
Рис. 1. Однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения А, тем меньше его сопротивление.
Для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы оказывают различное сопротивление потоку заряда. Определим удельное сопротивление ρ вещества так, что сопротивление R объекта прямо пропорционально ρ . Удельное сопротивление ρ является внутренним свойством материала, не зависящим от его формы или размера. Сопротивление R однородного цилиндра длиной L , площадью поперечного сечения A , изготовленного из материала с удельным сопротивлением ρ , равно
[латекс] R = \ frac{\rho L}{A }\\[/латекс].
В таблице 1 приведены репрезентативные значения ρ . Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что будет рассмотрено в последующих главах.
Материал | Удельное сопротивление ρ ( Ом ⋅ м ) |
---|---|
Проводники | |
Серебро | 1. 59 × 10 −8 |
Медь | 1. 72 × 10 −8 |
Золото | 2. 44 × 10 −8 |
Алюминий | 2. 65 × 10 −8 |
Вольфрам | 5. 6 × 10 −8 |
Железо | 9. 71 × 10 −8 |
Платина | 10. 6 × 10 −8 |
Сталь | 20 × 10 −8 |
Свинец | 22 × 10 −8 |
Манганин (сплав меди, марганца, никеля) | 44 × 10 −8 |
Константан (сплав Cu, Ni) | 49 × 10 −8 |
Меркурий | 96 × 10 −8 |
Нихром (сплав Ni, Fe, Cr) | 100 × 10 −8 |
Полупроводники [1] | |
Углерод (чистый) | 3,5 × 10 5 |
Углерод | (3,5 − 60) × 10 5 |
Германий (чистый) | 600 × 10 −3 |
Германий | (1−600) × 10 −3 |
Кремний (чистый) | 2300 |
Кремний | 0,1–2300 |
Изоляторы | |
Янтарный | 5 × 10 14 |
Стекло | 10 9 − 10 14 |
Люцит | >10 13 |
Слюда | 10 11 − 10 15 |
Кварц (плавленый) | 75 × 10 16 |
Резина (твердая) | 10 13 − 10 16 |
Сера | 10 15 |
Тефлон | >10 13 |
Дерево | 10 8 − 10 11 |
Пример 1.
{-9{-5}\text{m}\end{массив}\\[/latex]. ОбсуждениеДиаметр чуть меньше десятой доли миллиметра. Оно приводится только с двумя цифрами, потому что ρ известно только с двумя цифрами.
Изменение сопротивления в зависимости от температуры
Удельное сопротивление всех материалов зависит от температуры. Некоторые даже становятся сверхпроводниками (нулевое сопротивление) при очень низких температурах. (См. рис. 2.)
Рис. 2. Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры ее сопротивление делает резкий скачок, а затем возрастает почти до линейно с температурой.
И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы вибрируют быстрее и преодолевают большие расстояния при более высоких температурах, электроны, движущиеся через металл, совершают больше столкновений, что фактически увеличивает удельное сопротивление. При относительно небольших изменениях температуры (около 100ºC или меньше) удельное сопротивление ρ изменяется с изменением температуры Δ T , как выражается в следующем уравнении
ρ = ρ 0 (1 + α Δ T ),
где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент 0. (См. значения α в Таблице 2 ниже.) Для больших изменений температуры α может варьироваться, или может потребоваться нелинейное уравнение для нахождения ρ . Обратите внимание, что α положительно для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Манганин (состоящий из меди, марганца и никеля), например, имеет α близок к нулю (до трех знаков по шкале в табл. 2), поэтому его удельное сопротивление слабо зависит от температуры. Это полезно, например, для создания эталона сопротивления, не зависящего от температуры.
Материал | Коэффициент (1/°C) [2] |
---|---|
Проводники | |
Серебро | 3,8 × 10 −3 |
Медь | 3,9 × 10 −3 |
Золото | 3,4 × 10 −3 |
Алюминий | 3,9 × 10 −3 |
Вольфрам | 4,5 × 10 −3 |
Железо | 5,0 × 10 −3 |
Платина | 3,93 × 10 −3 |
Свинец | 3,9 × 10 −3 |
Манганин (сплав Cu, Mn, Ni) | 0,000 × 10 −3 |
Константан (сплав Cu, Ni) | 0,002 × 10 −3 |
Меркурий | 0,89 × 10 −3 |
Нихром (сплав Ni, Fe, Cr) | 0,4 × 10 −3 |
Полупроводники | |
Углерод (чистый) | −0,5 × 10 −3 |
Германий (чистый) | −50 × 10 −3 |
Кремний (чистый) | −70 × 10 −3 |
Отметим также, что α является отрицательным для полупроводников, перечисленных в таблице 2, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высокой температуре, потому что повышенное тепловое возбуждение увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках. Сопротивление объекта также зависит от температуры, так как R 0 прямо пропорционально ρ . Для цилиндра мы знаем, что R = ρL / A , и поэтому, если L и A не сильно меняются с температурой, то R будет иметь такую же зависимость от температуры, как ρ . (Изучение коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L and A is about two orders of magnitude less than on ρ .) Thus,
R = R 0 ( 1 + α Δ T )
is the температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, R — сопротивление после изменения температуры Δ T . Многие термометры основаны на влиянии температуры на сопротивление. (См. рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для получения его температуры. Устройство маленькое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Рисунок 3. Эти известные термометры основаны на автоматизированном измерении сопротивления термистора в зависимости от температуры. (кредит: Biol, Wikimedia Commons)
Пример 2. Расчет сопротивления: сопротивление горячей нити
Хотя следует соблюдать осторожность при применении ρ = ρ 0 (1 + α Δ и R = R 0 (1 + α Δ T ) для изменений температуры более 100ºC, для вольфрама уравнения работают достаточно хорошо для очень больших изменений температуры. Каково же тогда сопротивление вольфрамовой нити в предыдущем примере, если ее температуру повысить с комнатной (20°С) до типичной рабочей температуры 2850°С?
СтратегияЭто прямое применение R = R 0 (1 + α Δ T ), так как первоначальный сопротивление было дано Δ 0303030303030303030302020202020203, так как первоначальный сопротивление филамента была дана Δ 0303030303030303030303030303030203 0 = 0,350 Ом, а изменение температуры Δ T = 2830ºC. {-3}/º\text{C }\right)\left(2830º\text{C}\right)\right]\\ & =& {4.8\Omega}\end{массив}\\[/latex].
ОбсуждениеЭто значение согласуется с примером сопротивления фары в Законе Ома: сопротивление и простые схемы.
Исследования PhET: сопротивление в проводеУзнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.
Нажмите, чтобы запустить симуляцию.
Резюме сечения
- Сопротивление R цилиндра длиной L и площадью поперечного сечения A равно [латекс]R=\frac{\rho L}{A}\\[/latex], где ρ — удельное сопротивление материала.
- Значения ρ в таблице 1 показывают, что материалы делятся на три группы: проводники, полупроводники и изоляторы .
- Температура влияет на удельное сопротивление; для относительно небольших изменений температуры Δ T , удельное сопротивление равно [латекс]\rho ={\rho }_{0}\left(\text{1}+\alpha \Delta T\right)\\[/latex] , где ρ 0 исходное удельное сопротивление, а [латекс]\текст{\альфа}[/латекс] — температурный коэффициент удельного сопротивления.
- В таблице 2 приведены значения для α , температурного коэффициента удельного сопротивления.
- Сопротивление R объекта также зависит от температуры: [латекс]R={R}_{0}\left(\text{1}+\alpha \Delta T\right)\\[/latex], где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры.
Концептуальные вопросы
1. В каком из трех полупроводниковых материалов, перечисленных в таблице 1, примеси создают свободные заряды? (Подсказка: изучите диапазон удельного сопротивления для каждого из них и определите, имеет ли чистый полупроводник более высокую или более низкую проводимость. )
2. Зависит ли сопротивление объекта от пути прохождения тока через него? Рассмотрим, например, прямоугольный стержень — одинаково ли его сопротивление по длине и по ширине? (См. рис. 5.)
Рис. 5. Встречает ли ток, проходящий двумя разными путями через один и тот же объект, разное сопротивление?
3. Если алюминиевый и медный провода одинаковой длины имеют одинаковое сопротивление, какой из них имеет больший диаметр? Почему?
4. Объясните, почему [латекс]R={R}_{0}\left(1+\alpha\Delta T\right)\\[/latex] для температурного изменения сопротивления R объекта не так точен, как [латекс]\rho ={\rho }_{0}\left({1}+\alpha \Delta T\right)\\[/latex], что дает температурное изменение удельного сопротивления р .
Задачи и упражнения
1. Каково сопротивление отрезка медной проволоки 12-го калибра диаметром 2,053 мм длиной 20,0 м?
2. Диаметр медной проволоки нулевого калибра 8,252 мм. Найти сопротивление такого провода длиной 1,00 км, по которому осуществляется передача электроэнергии.
3. Если вольфрамовая нить диаметром 0,100 мм в электрической лампочке должна иметь сопротивление 0,200 Ом при 20ºC, то какой длины она должна быть?
4. Найти отношение диаметра алюминиевого провода к медному, если они имеют одинаковое сопротивление на единицу длины (как в бытовой электропроводке).
5. Какой ток протекает через стержень из чистого кремния диаметром 2,54 см и длиной 20,0 см, если к нему приложено напряжение 1,00 × 10 3 В? (Такой стержень можно использовать, например, для изготовления детекторов ядерных частиц). ? (б) Происходит ли это в бытовой электропроводке при обычных обстоятельствах?
7. Резистор из нихромовой проволоки используется в тех случаях, когда его сопротивление не может измениться более чем на 1,00% от его значения при 20,0ºC. В каком диапазоне температур его можно использовать?
8. Из какого материала изготовлен резистор, если его сопротивление при 100°С на 40,0% больше, чем при 20,0°С?
9. Электронное устройство, предназначенное для работы при любой температуре в диапазоне от –10,0ºC до 55,0ºC, содержит резисторы из чистого углерода. Во сколько раз увеличивается их сопротивление в этом диапазоне?
10. (a) Из какого материала сделан провод, если он имеет длину 25,0 м, диаметр 0,100 мм и сопротивление 77,7 Ом при 20,0ºC? б) Каково его сопротивление при 150°С?
11. При постоянном температурном коэффициенте удельного сопротивления, каково максимальное уменьшение сопротивления константановой проволоки в процентах, начиная с 20,0ºC?
12. Проволоку протягивают через матрицу, растягивая ее в четыре раза по сравнению с первоначальной длиной. Во сколько раз увеличивается его сопротивление?
13. Медный провод имеет сопротивление 0,500 Ом при 20,0°С, а железный провод имеет сопротивление 0,525 Ом при той же температуре. При какой температуре их сопротивления равны?
14. (a) Цифровые медицинские термометры определяют температуру путем измерения сопротивления полупроводникового устройства, называемого термистором (которое имеет α = –0,0600/ºC), когда оно имеет ту же температуру, что и пациент. Какова температура тела пациента, если сопротивление термистора при этой температуре составляет 82,0% от его значения при 37,0°С (нормальная температура тела)? (b) Отрицательное значение для α может не сохраняться при очень низких температурах. Обсудите, почему и так ли это, здесь. (Подсказка: сопротивление не может стать отрицательным.)
15. Комплексные концепции (a) Повторите упражнение 2 с учетом теплового расширения вольфрамовой нити. Вы можете принять коэффициент теплового расширения равным 12 × 10 −6 /ºC. б) На сколько процентов ваш ответ отличается от ответа в примере?
16. Необоснованные результаты (a) До какой температуры нужно нагреть резистор, сделанный из константана, чтобы удвоить его сопротивление при постоянном температурном коэффициенте удельного сопротивления? б) Разрезать пополам? в) Что неразумного в этих результатах? (d) Какие предположения неразумны, а какие предпосылки противоречивы?
Сноски
- 1 Значения сильно зависят от количества и типов примесей
- 2 Значения при 20°C. (2)).
Вопрос
Вопрос
Модули VMC Английские откровения на уровне материи -1
20 ВидеоРеклама
AB Padhai Karo Bina Ads KE
KHAREEDO DN PRO и DEKHO SARI VIDEOS BINA KISI ADAVAAVAVATAVATAVATAVATAVAT!
Ответить
Пошаговое решение, разработанное экспертами, чтобы помочь вам в решении вопросов и получении отличных оценок на экзаменах.
Расшифровка
данный вопрос представляет собой провод длиной один метр и площадью поперечного сечения 2 в 10 степени минус 6 метров квадратный, подвешенный к вершине крыши одним концом и приложенный к нему груз 20 ньютон на другом конце, если длину провода увеличить на 0,5 в 10 в степени минус 4 м, рассчитайте его модуль Юнга в единицах 10 в степени 11 ньютонов на квадратный метр, сообщите об этом, мы должны знать формулу для модуля Юнга, который равен Y равно f то есть нагрузка а l длина провода при дельте l на площадь поперечного сечения а Delta прирост длины ОК задается напрямую то есть l это одна из площадей поперечного сечения
— это 2 в 10 степени минус 6 квадратных метров, лорд, который равен f, равен 20 ньютонам, а дельта и увеличение длины составляет 0,5 в степени 10 минус 4 м, мы можем получить ответ напрямую, просто подставив его в формулу а это Y равно 20 ньютонов X длина то есть один при дельте л это 0,5 в 10 в степени минус 4 м в районе последний 2010 2 часть 6 2 в 10 в степени 6 м квадрат так что пусть идет быть в 22 на 2 в 10 в мощность 11 хорошо просто найти это будет
получить модуль Юнга как y равный 2 в 10 степени 11 ньютонов на квадратный метр, так что это требуемый ответ на вопрос, который выражается в 10 в степени 11 значение Y равно 2 в 10 в степени 11 ньютон на квадратный метр квадратный метр это все за вопрос спасибо за просмотр другой конец.