Ремонт драйвера светодиодного светильника своими руками
На чтение 8 мин Просмотров 45.9к. Опубликовано Обновлено
Содержание
- Ремонт драйвера (LED) лампы
- Ремонт драйвера (LED) фонарей
- Ремонт драйвера (LED) светильника
Светодиоды экономичны и долговечны. Но люстра или фонарь часто перестают гореть, хотя все элементы целы. Чтобы восстановить работоспособность различных устройств, необходим ремонт драйвера светодиодного светильника. В большинстве случаев он и является основной причиной неисправности.
Ремонт драйвера (LED) лампы
Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).
Мнение эксперта
Панков Алексей
Инженер-электрик.
Специальность: Проектирование и монтаж изделий электротехники.
Задать вопрос
Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.
Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.
Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.
Схема драйвера светодиодной лампыРекомендуем прочесть:
Ремонт светодиодных ламп своими рукамиКак отремонтировать:
- Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
- Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
- Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.
Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.
Есть два варианта таких источников:
- только LED приборы без дополнительных деталей;
- изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.
В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.
Cхема простого источника питания.При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.
Если хоть один или несколько элементов зажглись – напряжение питания поступает. В этом случае проверяют светодиоды и меняют их.
Читайте также
4 способа ремонта светодиодной ленты
Ремонт драйвера (LED) фонарей
Ремонт переносного источника света зависит от его схемотехнического решения. Если фонарь не горит или светит слабо, сначала проверяют элементы питания и меняют их, если это нужно.
После этого в драйверах с аккумуляторами проверяют тестером или мультиметром детали модуля зарядки: диоды моста, входной конденсатор, резистор и кнопку или переключатель. Если все исправно, проверяют светодиоды. Их подключают к любому источнику питания напряжением 2-3 В через резистор 30-100 Ом.
Рассмотрим четыре типичные схемы фонарей и неисправности, возникающие в них. Первые два работают от аккумуляторов, в них вставлен модуль зарядки от сети 220 В.
Схемы аккумуляторного фонарика с вставленным модулем зарядки 220 В.В первых двух вариантах светодиоды часто перегорают как по вине потребителей, так и из-за неправильного схемотехнического решения. При извлечении фонаря из розетки после зарядки от сети палец иногда соскальзывает и нажимает на кнопку. Если штыри устройства еще не отсоединились от 220 В, возникает бросок напряжения, светодиоды перегорают.
youtube.com/embed/nX5NGoFP3q4?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>Во втором варианте при нажатии кнопки аккумулятор подсоединяется к светодиодам напрямую. Это недопустимо, так как они могут выйти из строя при первом же включении.
Ели при проверке выяснилось, что матрицы сгорели – их следует заменить, а фонари доработать. В первом варианте необходимо изменить схему подключения светодиода, показывающего, что аккумулятор заряжается.
Схема драйвера светодиодного фонарика на аккумуляторе с кнопкой.Во втором варианте вместо кнопки следует установить переключатель, а затем последовательно с каждым источником света припаять по одному добавочному резистору. Но это не всегда возможно, так как часто в фонарях устанавливают светодиодную матрицу. В таком случае к ней следует припаять один общий резистор, мощность которого зависит от типа применяемых LED элементов.
Подобрать нужное сопротивление поможет статья: Расчет резистора для светодиодов + онлайн калькулятор
Схема светодиодного фонарика на аккумуляторе с переключателем и последовательно добавленным сопротивлением.Остальные фонари питаются от батарей. В третьем варианте светодиоды могут сгореть при пробое диода VD1. Если это случилось, надо заменить все неисправные детали и установить дополнительный резистор.
Схема фонарика на батарейках (без добавочного резистора).Схема фонарика на батарейках (с добавленным в цепь резистором).Основные элементы последнего варианта фонаря (микросхема, оптрон и полевой транзистор) проверить сложно. Для этого нужны специальные приборы. Поэтому его лучше не ремонтировать, а вставить в корпус другой драйвер.
Читайте также
Разборка и ремонт светодиодного фонарика
Ремонт драйвера (LED) светильника
В магазинах можно встретить светодиодные осветительные приборы с регулируемым потоком света. Одна часть таких устройств имеет отдельный пульт. Но почти у всех настольных светильников регулятор ручной, и он встроен в драйвер питания.
Основная схема этих светильников почти ничем не отличается от остальных. Чтобы осуществить ремонт драйвера светодиодной лампы, необходимо действовать по уже указанным алгоритмам.
Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает / Хабр
Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.
LED лампа выглядит вот так:
Рис 1. Внешний вид разобранной LED лампы
Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.
Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.
Вернемся к проблемам драйвера.
Вот так выглядит плата драйвера:
Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа
И с обратной стороны:
Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей
Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.
В МТ7930 встроены защиты:
• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла
Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂
Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:
Рис 4. LED Driver MT7930. Схема электрическая принципиальная
Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.
Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!
Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.
Рис 5. Фото разделительного трансформатора
Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.
Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.
Почему же срабатывает защита и по какому именно параметру?
Первое предположение
Срабатывание защиты по превышению выходного напряжения?
Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!
Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…
Дал схеме поработать часок – все ОК.
А если дать ей остыть? После 20 минут в выключенном состоянии не работает.
Очень хорошо, видимо дело в нагреве какого-то элемента?
Но какого? И какие же параметры элемента могут уплывать?
В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?
Второе предположение
Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.
Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?
Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.
К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.
Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.
К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.
Третье предположение
Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.
По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.
Прогрев микросхемы паяльником ничего не давал.
И очень смущало малое время нагрева… что там может за 15 секунд измениться?
В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.
Что же еще может мешать переходу от режима запуска в рабочий режим?!!!
От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.
И тут наступило счастье. Заработало!
Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.
Вот он, виновник проблемы:
Рис 6. Конденсатор с неправильной емкостью
Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.
Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.
Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.
Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.
Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:
• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.
Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?
Что такое светодиодный драйвер? Как проверить и заменить драйвер светодиода?
ЧТО ТАКОЕ ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ?
Это будущее уже сейчас, и светодиодные фонари взяли верх. Распространенный вопрос, который мы получаем, касается светодиодов и связан с драйвером.
Что это?
Зачем они вам?
Как они работают?
Как проверить драйвер светодиода? (перейти в конец этой страницы)
Ваш светодиод сам по себе может быть лучшим, но он не останется таким, если у вас нет хорошего драйвера для светодиодов. Подробнее об общих светодиодах см. в разделе «Как работают светодиоды».
В светодиодном фонаре водитель делает всю тяжелую работу. Будь то светодиодная лампочка кукурузы или светодиодный светильник, у него внутри есть драйвер. Этот драйвер получает ввод от здания в переменном токе или переменном токе и преобразует его в постоянный ток или постоянный ток. В вашем доме это означает от 120 В переменного тока до 36 В постоянного тока или 48 В постоянного тока. Он работает как гигантский трансформатор. Для этого постоянно требуется очень качественный конечный продукт. Большинство проблем, которые мы наблюдаем при сбоях светодиодов, связаны с драйвером.
Что такое драйвер светодиодов?=»q»>
A: Драйвер светодиода — это регулятор мощности. Технически это схема, которая отвечает за регулирование и подачу идеального тока на светодиод. Драйвер светодиода обеспечивает питание и регулирует переменные потребности светодиодов, обеспечивая постоянное количество энергии, поскольку его свойства меняются в зависимости от температуры. Драйверы светодиодов преобразуют переменный ток высокого напряжения в низкое напряжение.
Если у вас есть хороший светодиод и плохо работающий светодиодный драйвер, ваши светодиодные фонари для высоких пролетов не будут работать долго. Большинство отказов светодиодов происходит не из-за светодиода, а из-за драйвера. Обычно схемы перегорают и выходят из строя.
Драйверы светодиодов обычно должны подавать меньше энергии на светодиоды из-за их эффективного характера, но они также должны быть более точными. Светодиодное освещение спроектировано с высокой точностью и требует соответствующего напряжения для эффективной работы. Современная технология, используемая в драйвере светодиодов, основана на печатной плате и больше похожа на компьютер, чем на электрический регулятор.
Что такое балласт для светодиодов?=»q»>
A: Технически этого не существует. HID и другие лампы использовали балласт для увеличения мощности ламп. В светодиодах используется драйвер, который преобразует мощность переменного тока здания в постоянный. Для работы светодиодов требуется постоянный постоянный ток.
Балласты и драйверы светодиодов
Балласты и драйверы являются регуляторами мощности для освещения, но они работают по-разному. Оба обеспечивают небольшой буфер между источником света и источником тока, что делает его менее уязвимым к перегрузке электричеством, регулируя напряжение между ними. Хотя оба компонента служат одной и той же цели, между ними есть разница. Балласты являются традиционным компонентом, используемым в металлогалогенных лампах и компактных люминесцентных лампах (CFL), и обычно должны регулировать гораздо большую мощность. Они также использовали старые технологии, такие как магниты, для достижения результатов, хотя более новыми были электронные балласты.
Увидеть водителя внутри светодиодного парковочного фонаря NextGen III
Светодиодный фонарь для парковки NextGen III — распаковка, характеристики и обзор — лучший продаваемый светильник для парковки становится лучше Серия NextGen уже является самой популярной и самой продаваемой лампой для парковки, но теперь она…
Драйверы для светодиодов с регулируемой яркостью
Другая важная отличительная черта заключается в том, что драйверы для светодиодов могут включать опцию затемнения светодиодов. Диммируемые драйверы могут быть выполнены различными способами. Для небольших бытовых ламп количество тока, протекающего через светодиодное устройство, определяет светоотдачу. Уровень их яркости регулируется простым управлением током, проходящим через уложенные друг на друга слои полупроводникового материала, закрепленные на подложке. Для светодиодных светильников с более высокой мощностью, таких как светодиодные светильники High Bay, для управления светом используется 0-10 вольт или PMW. В любом случае хороший светодиодный драйвер гарантирует, что светодиод защищен.
Электропроводка
Электромонтаж любой цепи очень важен, когда речь идет о производительности, безопасности и экономии электроэнергии. В больших светильниках, таких как светодиодные уличные фонари, напряжение 110 В или 220 В подается прямо на драйвер светодиода с использованием стандартного трехпроводного соединения. Затем светодиод регулирует это в соответствии с правильным напряжением каждого OED. Проводка драйвера светодиода позволяет сэкономить до 70% электроэнергии по сравнению с традиционной люминесцентной лампой. Проводка драйвера делает его более безопасным и дает наилучшие результаты даже при экстремальных температурах.
Как заменить драйвер светодиода?=»q»>
A: Сначала необходимо убедиться, что драйвер исправен, то есть его можно заменить. Если это лампочка, то шансы на то, что она исправна, равны нулю. Они жестко впаяны в лампочку. Для крупных светильников есть приличный шанс. Вам нужно получить доступ к компоненту драйвера и собрать некоторые важные характеристики. Также неплохо проверить ввод и вывод драйвера, чтобы убедиться, что это всего лишь драйвер. Сначала попробуйте модель драйвера и посмотрите, сможете ли вы ее найти. Если нет, вам понадобится эквивалент. Какая номинальная входная мощность? Номинальное напряжение? Каков результат? Постоянный ток или постоянное напряжение? Есть ли диммирование 0-10В на плате. Затем вам нужно будет найти драйвер аналогичного размера, который соответствует входной мощности, напряжению, выходному току и т. д. Если вы найдете совпадение, все готово для их замены. Хорошей новостью является то, что обычно заменить их проще, чем найти их.
Просмотр светодиодного драйвера внутри светильника
Посмотрите это видео, чтобы увидеть, как мы открываем светодиодный светильник и проверяем драйверы в нем. Это пример исправного приспособления, в котором драйверы можно заменить.
Светодиодный фонарь для парковки NextGen III — распаковка, характеристики и обзор — лучший продаваемый светильник для парковки становится лучше
Светодиодный фонарь для парковки NextGen III — распаковка, характеристики и обзор — лучший продаваемый светильник для парковки становится лучше Серия NextGen уже является самой популярной и самой продаваемой лампой для парковки, но теперь она…
Светодиоды без драйверов
Электродвигатели переменного тока без драйверов для светодиодов превратились в важное новое оружие в сфере освещения. Прочтите нашу статью о светодиодах без драйверов, чтобы узнать, почему они становятся все более распространенными, но при этом более рискованными и подверженными сбоям.
Резюме
Драйверы светодиодов имеют решающее значение для работы вашего светильника. LEDLightExpert.com использует только высококачественные светодиодные драйверы таких торговых марок, как Meanwell или Invetronics. Вот как мы можем предоставить 5-летнюю гарантию на все светодиодные светильники с высоким световым потоком, потому что мы знаем, что у вас не возникнет проблем.
Как вы тестируете драйвер светодиода?=»q»>
A: Светодиоды требуют постоянного тока и поэтому питаются от постоянного тока. Мощность здания переменного тока. Убедитесь, что входное напряжение на стороне входа соответствует мощности здания. На стороне вывода убедитесь, что o=output соответствует драйверу dc. Обычно это 24dc, 36dc, 48dc или 54dc. Убедитесь, что диммирование и другие провода отключены. Подробнее читайте в нашей полной статье
Как протестировать драйвер светодиодов
Около 10 минут
При диагностике светодиодного светильника первым шагом должно быть питание. Подается ли питание на светодиодный драйвер. Мы объясняем, как тестировать
https://www.ledlightexpert.com/What-is-an-LED-Driver_ep_44-1.html
Необходимые элементы:
Светодиодный светильник, который имеет исправный драйвер
Гайки для проводов
Инструмент для зачистки проводов
Отвертка
Мультиметр
Подготовка
Безопасность прежде всего. Убедитесь, что у вас есть безопасный подъемник или лестница для крепления. Для более высоких установок следует использовать страховочные ремни и зажимы. На выключателе определяют напряжение выключателя. Вам нужно будет знать это для тестирования позже. дважды проверьте, что вы в безопасности, прежде чем продолжить.
Найдите отсек водителя и монтаж проводки
Найдите отсек водителя на приспособлении. Некоторые приборы могут иметь герметичный драйвер или использовать встроенный драйвер (DOB). Эти приспособления не подлежат обслуживанию, и все приспособление необходимо будет заменить. Мы рекомендуем исправные приспособления, когда это возможно, чтобы обеспечить техническое обслуживание. После того, как вы нашли отсек, вам нужно будет найти входные и выходные провода. Многие светильники также имеют диммирование 0-10 В и будут иметь 2 дополнительных провода. Их необходимо проверить, чтобы убедиться, что они не соприкасаются, чтобы завершить тест. Если установлен диммер или провода соприкасаются, это даст вам ложное считывание плохого драйвера.
Проверка входной стороны
Входная сторона драйвера может быть от 100 до 480 В переменного тока в зависимости от здания. Начиная с шага 1, вы будете знать напряжение и сможете соответствующим образом настроить свой измеритель. В большинстве приспособлений используются быстрые зажимы, но некоторые из них представляют собой проволочные гайки. Вы должны быть в состоянии проверить мощность с любым из них. Сфотографируйте счетчик со стороны входа. Если у вас нет питания, мы не можем проверить драйвер. Сначала устраните эту проблему. Как только у нас будут показания счетчика, соответствующие напряжению в здании, мы можем двигаться дальше.
‘
Проверка выходной стороны
Светодиоды работают от постоянного или постоянного тока. Величина постоянного тока может меняться в зависимости от приспособления, и вам нужно найти это в драйвере. Где-то между 24 и 54dc наиболее распространен. Переключите свой измеритель на постоянный ток и вставьте щупы мультиметра. Выход постоянного тока не имеет заземления, поэтому всего 2 провода. снова убедитесь, что диммирующие провода и любые другие провода закрыты для теста. Получите показания DC Out и посмотрите, соответствует ли он вашему драйверу.
Вывод
Драйверы обычно не достигают 0, поэтому на выходе обычно отображается 0. Если бы драйвер имел частичный выходной сигнал, светодиоды приборов были бы тусклыми или мигали. Знание того, что у нас хорошая мощность и нет выхода, говорит нам о том, что это плохой водитель. Если у вас хорошая мощность на входе и мощность на выходе постоянного тока, то у вас проблема с платой светодиодов
Дополнительные изображения ниже
Как починить сломанный драйвер светодиода?
Светодиодный драйвер
Драйвер светодиода представляет собой преобразователь. Его функция заключается в преобразовании нашей обычной сети или других источников питания в напряжение и ток, подходящие для светодиодов. Благодаря его преобразованию светодиод может правильно работать. Как будто мы хотим открутить гайку, мы должны использовать гаечный ключ того же типа.
Типы светодиодных драйверов
Рынок широко используемых драйверов светодиодных светильников в зависимости от режима привода делится на две части: один — драйвер постоянного тока, драйвер постоянного тока характеризуется постоянным выходным током, выходное напряжение в диапазоне изменений. Таким образом, мы часто видим на рынке диск с маркировкой оболочки (выход: DC ** V — ** V *** мА +-5%). Это означает, что выходное напряжение в диапазоне, ток сколько мА.
Другой тип — драйвер постоянного напряжения. Характеристика драйвера постоянного напряжения заключается в том, что выходное напряжение является фиксированным, а ток изменяется в зависимости от количества подключенных ламп в пределах максимального значения. Выход обычно отмечен на корпусе (выход: DC**V **A), что означает фиксированное количество вольт и максимальный выходной ток.
Светодиодный драйвер
Как исправить сломанный светодиодный драйвер?
Сделайте визуальную оценку неисправной платы невооруженным глазом, посмотрите, нет ли на поверхности оловянных шариков, окалины или других проводников, образовавшихся в результате короткого замыкания, также проверьте, нет ли плохо припаянных устройств, затем проверьте, нет ли сгоревших или поврежденных устройств.
1. Измерьте входную мощность модуля постоянного тока: 100 В постоянного тока, 12 В постоянного тока в норме; если входное напряжение слишком низкое или отсутствует, это означает, что источник питания переменного/постоянного тока был защищен или поврежден.
2. Если напряжение источника питания переменного/постоянного тока в норме, измерьте напряжение на обоих концах светодиодной ленты, если напряжение на обоих концах светодиодной лампы достигает 190 В постоянного тока или около того, это означает, что модуль драйвера исправен. , убедитесь, что светодиодная лента подключена слабо или соединительный кабель отключен, если соединение подтверждено, это означает, что светодиодная лента повреждена.
3. Если напряжение источника переменного/постоянного тока в норме и светодиодная лента хорошо подключена, но полоса не загорается, вам необходимо подтвердить следующие пункты.
1) Если напряжение на контакте 4 микросхемы постоянного тока составляет 12 В постоянного тока +/- 1 В, если нет, это означает, что источник питания переменного/постоянного тока поврежден.
(2) Напряжение на контакте 2 микросхемы постоянного тока должно быть 6,6 В постоянного тока +/- 0,5 В, а затем посмотрите на напряжение на контакте 12, которое должно быть 0,5 В, если эти напряжения в норме, значит, микросхема постоянного тока в порядке, и наоборот, что постоянный ток IC был уничтожен;.
(3) Проверьте трубку переключателя, если трубка переключателя не повреждена, проверьте трубку переключателя под 0,068 Ом и сопротивление 0,047 Ом, чтобы увидеть, видна ли дорога или разрушена.
Тестирование
Если после вышеуказанных шагов неисправность все еще существует, необходимо проверить сигнальную часть EN, использовать провод для замыкания накоротко контактов 5 и 3 IC постоянного тока после проверки мощности, если светодиодная лента может нормально гореть, это EN проблемы с сигналом, проверьте источник питания переменного/постоянного тока, чтобы убедиться, что сигнал EN в норме.
Найдите профессионального поставщика светодиодных драйверов
YUEQING WODE ELECTRICAL CO.