Разное

Выбор номинала автоматического выключателя: Онлайн расчет автомата по мощности

Выбор номинала автоматического выключателя: Онлайн расчет автомата по мощности

Содержание

Калькулятор расчёта тока нагрузки для выбора автоматического выключателя

С помощью данного калькулятора Вы можете рассчитать номинальный ток автоматического выключателя по мощности подключаемых через него электроприборов.

Введите значения в форму ниже: суммарную мощность электрооборудования, тип потребителя и параметры сети (фазность и напряжение).

*Примерные значения коэффициента мощности представлены в таблице:

Бытовые электроприборы Мощность, Вт cos φ
Электроплита 1200 — 6000 1
Обогреватель 500 — 2000 1
Пылесос 500-2000 0,9
Утюг 1000 — 2000 1
Фен 600 — 2000 1
Телевизор 100 — 400 1
Холодильник
150 — 600 0,95
СВЧ-печь 700 — 2000 1
Электрочайник 1500 — 2000 1
Лампы накаливания 60 — 250 1
Люминесцентные лампы 20 — 400 0,95
Бойлер 1500 — 2000 1
Компьютер 350 — 700 0,95
Кофеварка 650 — 1500 1
Стиральная машина 1500 — 2500 0,9
Электроинструмент Мощность, Вт cos φ
Электродрель 400 — 1000 0,85
Болгарка 600 — 3000
0,8
Перфоратор 500 — 1200 0,85
Компрессор 700 — 2500 0,7
Электромоторы 250 — 3000 0,7 — 0,8
Вакуумный насос 1000 — 2500 0,85
Электросварка (дуговая) 1800 — 2500 0,3 — 0,6

Как правильно выбрать автоматический выключатель

Автоматические выключатели («Автоматы») представляют собой специальные электромеханические системы, использование которых нацелено на, то чтобы защитить электрическое оборудование от возможных перенапряжений и коротких замыканий, которые нередко могут случаться в токоподводящих электрических цепях. Чтобы «Автоматы» эффективно работали и обеспечивали требуемый уровень защиты нужно, чтобы рабочие параметры выключателя, а также его конструкция соответствовали техническим параметрам электрической цепи, в которую они предназначаются. Для того чтобы правильно подобрать автоматический выключатель нужно пройти несколько этапов, о которых речь пойдет ниже.

Критерии выбора автоматических выключателей

Расчет номинального тока автоматического выключателя

В первую очередь следует выполнить расчет тока в линии электропередачи, который будет отличаться для одиночного потребителя и группы потребителей. В случае одного потребителя нужно определиться будет использоваться одно и трехфазная цепь питания, а для групповой линии изначально рассчитывается ее мощность, а уже после этого, в соответствии от используемой линии, проводится расчет значения рабочего тока линии. Изучить формулы, по которым выполняют расчеты как для одно-, так и трехфазных линий можно в специальных методиках по расчету бытовых и промышленных электрических цепей.

После того как определен расчетный ток в линии можно выбрать номинальный ток «Автоматов», который равный расчетному или ближайшему большему числу из имеющейся номенклатуры выключателей. Например, для розеточных линий номинальный ток не превышает 16 А, а для линий освещения не более 10 А.

Следующим шагом будет расчет по сечению используемых проводников. Он производится для того, чтобы убедиться, в том, что номинальный ток автомата не превышает допустимых токовых нагрузок для используемых проводов. В зависимости от используемой проводки медная или алюминиевая следует использовать соответствующие соотношения и нормативные таблицы, с которыми можно ознакомиться в методике по расчету электрических цепей.

Следует заметить, что использование автоматических автоматов с завышенными значениями рабочих токов не допускается, поскольку такое устройство не сработает на отключение питания в случае перегрузки. На режим короткого замыкания такой автомат сработает, а на перенапряжение – нет, то есть будет задействован не весь его потенциал, что может привести к серьезным поврежденьям выходу из строя проводки.

Выбор время-токовой характеристики

В основном используются автоматы с тремя вариантами время-токовой характеристики, которую обозначают как «В», «С» и «D». Характеристика «В» применяется для старого жилого фонда со старой проводкой, для осветительных сетей с лампами накаливания, а также для сетей, которые питают электрообогреватели, духовки, электрические плиты. «С» — характеристика используется когда нужно будет пользоваться такими приборами как стиральные машины, кондиционеры, холодильники, газоразрядные лампы с увеличенным током пуска, а также для розеточных групп бытового использования. Третья характеристика – «D» используется для защиты цепей, которые питают мощные компрессорные станции, станки, прессы и прочее оборудование промышленного типа.

Выбор селективности

При построении структуры используемой иерархии электрических цепей и расстановки автоматических выключателей важно придерживаться селективности. Это означает, что номинал по току входного автоматического выключателя должен превышать значения номиналов всех групповых автоматов и в полной мере соответствовать максимальному значению электрической нагрузки, которую может выдерживать входной питающий кабель и вся проводка, используемая на электрифицируемом объекте.

Важно помнить, что автоматические выключатели, которые располагаются на одной линии, должны монтироваться с соблюдением правила убывания номинала «Автомата».

Выбор предельной коммутационной способности (ПКС)

На этом этапе выбора «Автомата» следует определиться с коммутационной способностью электрической сети, которую будет защищать выключатель-автомат. Если на объекте используется старый вариант проводки, которая выполнена из алюминиевых проводов, то нужно выбирать выключатели, которые имеют значение ПКС равным показателю не меньше 4500 А. Если используется проводка из медных проводов, то ПКС следует выбирать не меньше 6000 А. В случае же нового дома, возле которого находится трансформаторная подстанция, нужно выбирать автоматический выключатель, который имеет ПКС хотя бы 10000 А.

Выбор класса токоограничения

На этом этапе определяется класс ограничивающего тока для подбираемого автомата-выключателя. Существует три класса тока ограничения, которые отличаются продолжительностью гашения дугового разряда, который может генерироваться при размыкании коммутационных контактов. Для 1-го класса время гашения дуги составляет больше 10 мс, для 2-го класса – от 6-ти до 10 мс и для 3-го класса показатель отвечает диапазону значений 2,5…6 мс. Рекомендуется выбыть «Автоматы» с 3-им классом токоограничения.

Выбор количества полюсов

Важным этапом в выборе выключателя является правильно подобранное количество рабочих полюсов. Для установки выключателей в однофазные сети подойдут однополюсные или двухполюсные конструкции. Чтобы выполнить защиту токопроводящей линии, идущей от электрического щита к розеточной цепи, или цепи освещения, достаточно будет однополюсного автомата. Для эффективной защиты всей проводки помещения нужно выбирать двухполюсные варианты выключателей.

Для 3-фазных сетей оптимальным выбором станут конструкции выключателей 3-полюсного и 4-полюсного типа.

Выбор дополнительных параметров

Этот этап определяет выбор дополнительных параметров, которые не вошли в предыдущие шаги, но играют важную роль в процессе эксплуатации автоматического выключателя. Среди дополнительных параметров, которые характеризуют выключатели можно выбрать напряжение питающей сети, частоту питающей сети, степень защиты IP, температурное исполнение. По этим параметрам подбирается «Автоматы», если они отличаются от стандартно установленных значений этих показателей в используемых электрических цепях.

Выбор производителя оборудования

Рекомендуется выбирать все автоматы, устанавливаемые при построении электрической цепи, одного производителя и из одной серии. В этом случае будет легче обеспечить селективность и эффективность работы всех устанавливаемых выключателей. Также важно выбирать продукцию проверенных и известных на рынке производителей, которые хорошо себя зарекомендовали. Не стоит стараться выбрать как можно дешевый автомат, который мало того, что прослужит не долго, но еще может привести и к возгоранию проводки.

Выбирая автоматический выключатель, следует помнить о важности каждого из представленных этапов, ведь от правильно подобранного устройства зависит безопасность в помещении, целостность его имущества и жизни людей.

Особенности выбора автоматического выключателя

При составлении схемы электропроводки квартиры или дома, одним из наиболее важных этапов является выбор автоматического выключателя. От правильности выбора автоматического выключателя зависит степень защиты конструктивных элементов электропроводки и соответственно срок их службы. В данном материале рассмотрим особенности выбора автоматического выключателя. Наиболее важный электрический параметр, по которому выбирается автоматический выключатель – это
номинальный ток.
Автоматические выключатели классифицируются по току срабатывания теплового расцепителя. Существует ряд номинальных токов данных защитных аппаратов. Приведем значения номинального тока автоматических выключателей, которые наиболее часто используются для защиты квартирной электропроводки: 6, 10, 16, 25, 32, 40, 50, 63 А. Что показывает это значение? Номинальный ток автоматического выключателя – это такое значение тока, при котором электрический аппарат может работать продолжительное время.
При этом срабатывания теплового расцепителя автомата не происходит. Автоматический выключатель осуществляет защиту конструктивных элементов электропроводки от повреждения. Следовательно, его выбор должен производиться с учетом всех элементов, питание которых осуществляется от данного аппарата.

Пример выбора автоматического выключателя

Приведем пример выбора автоматического выключателя. Линия электропроводки выполнена кабелем ВВГ-3х2,5. Номинальный ток для данного кабеля около 25 А (в зависимости от условий прокладки). Штепсельная розетка, питающаяся от данной линии электропроводки, рассчитана на номинальный ток 16 А. Выбранный автоматический выключатель должен осуществлять защиту всех конструктивных элементов данной линии проводки, в частности кабель и штепсельную розетку. В данном случае выбираем автомат с номинальным током 16 А. Но в этом случае есть исключение. Если схема электропроводки предусматривает питание нескольких розеток от одной распределительной коробки, то выбор автоматического выключателя производится иначе. Например, кабель, который идет от главного распределительного щитка квартиры к распаечной коробке комнаты имеет сечение 4 мм2. Линии электропроводки, питающие розетки данной комнаты, имеют сечение 2,5 мм2. Розетки, как и в предыдущем случае, рассчитаны на номинальный ток значением в 16 А. Автоматический выключатель на какой номинальный ток наиболее целесообразно выбрать? Автоматический выключатель в разрезе Если выбрать автоматический выключатель на 16 А, то все конструктивные элементы электропроводки, а именно кабель от главного щитка, от распределительной коробки до розеток, а также розетки, будут защищены от повреждения в результате перегрузки. Но при необходимости одновременного включения в обе розетки бытовых приборов общей нагрузкой более 16 А, автоматический выключатель отключится. Выходом в данной ситуации является выбор автоматического выключателя большего номинала, например, на 25 А. При этом в обе розетки могут быть включены электроприборы, суммарной нагрузкой в 25 А. Автоматический выключатель в данном случае осуществляет защиту от перегрузки только линии электропроводки. Поэтому в таком случае необходимо контролировать нагрузку, включаемую в каждую из розеток. В противном случае возможно повреждение одной из розеток. Следует отметить, что при возникновении короткого замыкания автоматический выключатель отключится в любом случае, как при выборе аппарата на 16 А, так и на 25 А. Номинальное напряжение, род тока, частота сети – это номинальные параметры сети, которые также следует учитывать при выборе автоматического выключателя. Номинальные параметры бытовой сети следующие: напряжение – 220 В для однофазной сети, 380 В – для трехфазной сети, род тока – переменный, частотой 50 Гц. Существует также такой критерий выбора автоматического выключателя, как класс аппарата. Класс данного электрического аппарата показывает кратность тока срабатывания электромагнитного расцепителя. Данный критерий следует учитывать в том случае, если вы планируете включать в сеть электроприбор, который имеет большой пусковой ток. Если же таких электроприборов нет, то класс автоматического выключателя не имеет принципиального значения, так как при коротком замыкании он отключится в любом случае.

Расчет автоматического выключателя

Расчет автоматического выключателя необходим для выбора номинального тока и время токовой характеристикой автомата. При этом количество полюсов у автомата не влияет на расчеты и определяется из схемы подключения и подключаемого оборудования.

Следует помнить, что основное назначение автоматического выключателя является защита электропроводки от разрушения токовыми нагрузками превышающие расчетные значения для данного сечения провода. Иными словами при расчет автоматического выключателя больше учитывается рабочий ток, а также пусковые токи возникающие при включении электрооборудования.

В расчете номинального тока автомата принимается во внимание рабочий ток электропроводки и таблица расчета автомата защиты на соответствие сечения жилы провода и материала жилы провода к номиналу тока автомата. При выборе автомата по время токовой характеристики следует учитывать пусковые токи подключаемой нагрузки.

Расчет мощности автомата.

Как было сказано выше, при расчете автомата учитывается сила тока, допускаемая для безопасной работы расчетной линии, защищаемой автоматическим выключателем. При расчете номинала автомата необходимо знать максимально допустимый ток линии питания, а не мощность и силу тока подключаемых электроприборов. Расчет величины тока по сумме мощностей нагрузок не учитывает того, что автоматический выключатель предназначен в первую очередь для защиты питающей лини, а не нагрузки.

Для определения допустимого тока электропроводов следует учитывать таблицы, приведенные здесь с целью ознакомления. Из таблиц видно, что допустимые токи провода разнятся не только в зависимости от сечения жилы, но и от способа прокладки и количества жил.

ПУЭ, Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто (в лотке) в одной трубе
двух одно-жильных трех одно-жильных четырех одно-жильных одного двух-жильного одного трех-жильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

ПУЭ, Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто (в лотке) в одной трубе
двух одно-жильных трех одно-жильных четырех одно-жильных одного двух-жильного одного трех-жильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645

Определив по таблице рабочий ток проводов, подбираем номинальный ток автомата, который будет защищать эту проводку. Номинал автоматического выключателя следует выбирать либо равным, либо меньшим рабочего тока проводов.

Выбор характеристики автоматов.

Выбрав номинал автомата необходимо выбрать время токовую характеристику, зависящую от подключаемой к линии нагрузки, вернее от пусковых токов этих нагрузок. В приведенной ниже таблице приведены кратности пусковых токов электроприборов и продолжительность их в секундах.

Вид нагрузки Кратность пускового к рабочему току Продолжительность пускового тока, сек

Лампы накаливания

5 — 13

0,05

Электронагревательные приборы из сплавов: нихром, фехраль, хромаль

1,05 — 1,1

0,5 — 30

Люминесцентные лампы с пусковыми устройствами

1,05 — 1,1

0,1 — 0,5

Приборы с блоками питания

5 — 10

0,25 — 0,5

Приборы с трансформатором на входе блока питания

до 3

0,25 — 0,5

Бытовые приборы с электродвигателями

3 — 7

1 — 3

Исходя из выше указанных кратностей пускового тока и известного тока электроприбора определяется величина силы тока в сети при включении в нее электроприбора, а так же продолжительность повышенного тока в секундах.

Например, зная, что при мощности электрической мясорубки 1,2 кВт рабочий ток будет 5,45 Ампер, а при учете кратности пускового тока до 7 раз выходим на 38 Ампер!, причем данный ток течет в цепи на протяжении от 1 до 3 секунд. Если данную линию защищает автоматический выключатель на 10А с характеристикой В (он срабатывает с 30А) и может сработать в момент включения по перегрузки и лучше его поменять на автомат с характеристикой С (срабатывает с 50А).

Если вы обратили внимание в таблице присутствуют достаточно большие пусковые токи, например у блоков питания (вплоть до 10 кратного), обычно мощность таких приборов мала и не создает опасности пускового отключения автоматического выключателя.

Материалы, близкие по теме:

Выбор автоматического выключателя: определяем нужную мощность

Домовой автоматический выключатель – важная предохранительная часть электросети. Она помогает продлить срок службы проводки, а также повышает уровень безопасности. Чтобы знать, какие автоматы ставить в частном доме, необходимо учесть сразу несколько параметров.

Для чего нужен автомат

Автоматические выключатели для квартиры, таунхауса, небольшого промышленного объекта обладают общим принципом работы.

Они оснащены двухступенчатой системой защиты:

  1. Тепловая. Тепловой расцепитель выполнен из биметаллической пластины. При длительном действии со стороны тока высокой мощности повышается гибкость пластины, из-за чего она задевает выключатель.
  2. Электромагнитная. Роль электромагнитного расцепителя играет соленоид. При регистрации повышенной мощности тока, на которую не рассчитан автомат и кабель, также срабатывает выключатель. Это уже защита от короткого замыкания.

АВ (общепринятое сокращение) защищает электросеть от нагревания изоляции и пожара. Именно по причине такой схемы работы важно знать, на сколько ампер ставить автомат в квартиру: если неправильно подобрать устройство, оно не сможет блокировать несоответствующий по мощности ток, и произойдет возгорание. Выбранный по всем рекомендациям АВ будет защищать от пожаров, ударов током, нагревания и сгорания микросхем домашних приборов.

Выбираем автомат по мощности нагрузки

Подбор автоматических выключателей, прежде всего, происходит на основании мощности, которую должна выдерживать домашняя электросеть.

Чем важен выбор автомата по мощности нагрузки:

  1. При несоответствии этого показателя данным АВ постепенно нагревается проводка.
  2. Постоянный нагрев приводит к тому, что изоляционный слой плавится. Это создает сразу две проблемы: токсичное задымление и риск возгорания.
  3. На фоне плавления изоляции появляется короткое замыкание. АВ наконец срабатывает (чего не произошло раньше, поскольку устройство подобрано неправильно), однако в квартире уже мог распространиться огонь, а тем более дым.

Чтобы предотвратить эти негативные последствия, важно учесть несколько нижеприведенных правил. Расчет автоматического выключателя может быть осуществлен при помощи точной формулы или приблизительно.

Первый вариант максимально доступный. Необходимо учесть общую мощность сети, то есть совокупность мощностей одновременно включенных электроприборов. Учитываются даже небольшие осветительные лампы, подогрев пола, если таковой имеется, бытовая кухонная техника и развлекательные электрические устройства. Полученная цифра должна быть выражена в кВт.

Пример, как проводить расчет мощности:

  • стиральная машина – 700 Вт;
  • электроплита – 2,5 кВт;
  • СВЧ – 1,8 кВт;
  • 5 лампочек – 600 Вт;
  • холодильник – 400 Вт;
  • телевизор – 200 Вт;
  • ПК – 550 Вт;
  • пылесос – 1 кВт.

Общая мощность подключенных на розетки или непосредственно проводку приборов составляет 7,75 кВт. Чтобы, учитывая эти данные, подобрать автомат, чей показатель выражается в амперах, достаточно умножить полученную сумму на пять. Именно такая разница в среднем присутствует в однофазной сети между значением тока АВ и мощностью устройств. Полученное число – 38,75 А. Показатель автоматического выключателя должен быть по крайней мере равным вычисленной сумме или выше ее.

Ближайшая по мощности распространенная модель – 40А. Такой АВ и следует монтировать в жилье с перечисленным количеством электроприборов. Он выдержит 7,75 кВт и даже немного превосходящую этот параметр нагрузку. Если в здании проведена трехфазная сеть, алгоритм вычисления не меняется, только умножать кВт нужно на 2. Пример: 7,75*2=15,5 А.

Однако вышеуказанная формула недостаточно точная.  Лучше выбор номинала осуществлять по закону Ома: I=P/U, где I – номинал тока АВ, P – мощность электроприемников, U – напряжение сети. При той же нагрузке вычисление по формуле даст иной результат, чем приблизительный расчет: 7750/220=35,2 А. Видно, что погрешность первого метода вычисления составляет около 3,5 А. Но выбор автомата от этого не меняется: все равно поставить на ввод в доме для однофазной сети нужно 40А.

Узнавать показания для электродвигателя лучше не навскидку, используя общедоступные таблицы, а по паспорту устройства. Если он утерян, рекомендуется связаться с производителем для выяснения характеристик.

Выбираем автомат по сечению кабеля

Если учитывать только мощность электросети, не принимая во внимание сечение кабеля, в квартире произойдет возгорание. По правилам пожарной безопасности, сечение должно соответствовать нагрузке сети. Что происходит, если это требование не соблюдено, видно по советским квартирам с устаревшей проводкой: в лучшем случае – постоянное срабатывание АВ, в худшем – возгорание проводки и всей квартиры вместе с ней.

Кабели с разными сечениями выдерживают различные нагрузки. Чем больше диаметр, тем значительнее может быть длительно допустимый ток. Последняя величина измеряется в А. Чтобы подобрать кабель с оптимальным диаметром жилы, достаточно провести расчет по одной из вышеуказанных формул и узнать величину номинала тока.

То, сколько ампер длительное время выдерживает кабель, зависит не только от диаметра, но и от материала изготовления жилы. Можно приобрести изделия с алюминиевой основной или из меди.

Таблица поможет лучше ознакомиться с разрешенными показателями для отдельных кабелей и упростит выбор автомата по сечению кабеля:

Сечение, мм Максимальный показатель для алюминиевых жил Для медных жил
1,5 19 Не изготавливаются
4 35 27
6 42 32
10 55 42
25 95 75
50 145 110

Как видно, лучше использовать алюминиевую проводку – при равных показателях сечения она оказывается более надежной. Это заметно по домам постройки 2003–2018 годов, при возведении которых было запрещено использовать медные кабели.

Чтобы АВ работал нормально, показатель предельно допустимого тока проводки должен совпадать с его номинальным током, а также с нагрузкой на электросеть. Для нагрузки в 7,75 кВт и АВ с показателем 40А устанавливается алюминиевая проводка 6 мм или медная 10 мм. При подборе диаметра проводника достаточно смотреть на показатель автоматического выключателя и сверяться по таблице.

Выбираем автомат по току короткого замыкания (КЗ)

Вычислять оптимальный тип автомата КЗ довольно сложно. Нужно учитывать показатели электростанции, длину проводки и ее сечение. Однако прибегать к сложным вычислениям и помощи калькулятора не нужно. Для удобства пользователей автоматы разделены на три группы по время-токовым характеристикам (времени, за которое происходит отключение при угрозе кз, и показателе, в случае регистрации которого срабатывает отключение).

Какие бывают автоматы:

  1. B. Срабатывает за 5–20 секунд. Выключается, если произошло превышение в 5 раз. Подходят только для домов, где не задействована современная электротехника, а используются только осветительные приборы.
  2. C. Токовая нагрузка может превышать номинальную в 10 раз, время срабатывания – 1–10 секунд. Нужны при монтаже электропроводки в жилом доме только АВ типа C.
  3. D. Ток срабатывания может быть больше номинального в 14 раз, отключение происходит не более чем за 10 с. Такие АВ предназначены для промышленного использования.

Выбираем автомат по длительно допустимому току (ДДТ) проводника

Выбор автоматического выключателя по току не отличается от подбора диаметру жилы. Суть в том, чтобы ДДТ не превышал возможности установленного кабеля. Достаточно учесть показатели таблицы, приведенной выше. Главное, чтобы показатель ДДТ автомата не превышал этот же показатель жилы. ДДТ проводника может равняться 42 А при модели АВ 40А, но обратная ситуация не допустима.

Пример выбора автоматического выключателя

В современной квартире используются все перечисленные выше устройства (совокупной мощностью 7,75 кВт) и дополнительно следующие наименования (показатели указаны в кВт).

  • чайник – 1,2;
  • духовка – 1,2;
  • обогреватель – 1,4.

Суммарная нагрузка на электросеть – 11,55 кВт. Как выбрать АВ таком случае:

  1. Вычислить номинал, используя формулу Ома. 11500/220 = 52,5 А.
  2. Подобрать проводник, который соответствует показателю 52,5 А или выше. В зависимости от производителя, ДДТ с таким номиналом может выдерживать алюминиевая жила 10 мм или 16 мм.
  3. Так как электросеть бытового пользования, подбирается АВ типа C.

Расчет автомата лучше проводить при помощи профессионала.

Таблица выбора автоматического выключателя для однофазной сети 220 В

В таблице представлено, как выбрать автоматический выключатель под сеть 220 в зависимости от кабеля и совокупной мощности приборов:

Номинальный ток автоматического выключателя, А. Мощность, кВт. Сечение (ал. жилы), мм
16 До 2,8 1,5
25 2,8–4,5 2,5
32 4,5–5,8 4
40 5,8–7,3 6
50 7,3–9,1 10
63 9,1–11,4 16
80 11,4–14,6 25
100 14,6–18 35
125 18–22,5 50
160 22,5–28,5 70

Таблица выбора автоматического выключателя для трехфазной сети 380 в

Расчет автомата по мощности 380:

Номинальный ток АВ Мощность, кВт. Сечение, мм
16 0–7,9 1,5
25 8,3–12,7 2,5
32 13,1–16,3 4
40 16,7–20,3 6
50 20,7–25,5 10
63 25,9–32,3 16
80 32,7–40,3 25
100 40,7–50,3 35
125 50,7–64,7 50

ТОП-5 моделей автомата на рынке в текущем году

Подбирая АВ, необходимо учитывать рейтинг производителей подобных устройств.

Самые лучшие автоматы (точнее, их производители) на сегодняшний день:

  • Schneider Electric. Французская фирма. Автоматы ее производства давно испытаны в российских условиях, служат долго и отличаются надежностью.
  • General Electric. Недостаток – высокая цена, зато надежность и качество исполнения также на высоте. Американский производитель выпускает отличные АВ для трехфазных сетей.
  • Siemens. Низкая цена, но качество хуже, чем у двух лидеров, представленных выше. Тяжело найти приборы в продаже. Изначально бренд был немецким, затем его приобрели американцы. Надежность АВ и средняя стоимость делают компанию такой популярной.
  • Контактор. Лучший бренд из российских, однако цены кусаются. Лучше приобрести автоматы европейского производства, хотя Контактор – хорошее решение для слабонагруженных сетей.

Лучший автомат – не только тот, который получил положительные отзывы, но и обязательно способный выдержать мощность электроприборов.

Как обезопасить электросеть от пожара

Чтобы избежать возгораний и выхода из строя электротехнике, лучше доверять проект подключения электросетей профессионалам. Они учтут такие важные аспекты, как номинальный ток, максимальная мощность одновременно включенных приборов, сечение кабеля, схема подключения в щитке и т.д. Рекомендуется заказывать такой проект не только при строительстве частного дома, но и при ремонте квартир советской постройки.

Выбор автоматического выключателя по характеристикам.

Автоматический выключатель – низковольтный коммутационный аппарат, обеспечивающий защиту электрической цепи от токовых перегрузок, связанных с подключением большого количества приборов (суммарная мощность которых превышает допустимую), неисправностью приборов или тока короткого замыкания (КЗ). Если выключатель не сработает вовремя и не обесточит линию, большая сила тока может вывести из строя бытовые приборы, а также привести к высокому нагреву кабеля с последующим возгоранием изоляции. Поэтому основная задача автоматического выключателя – определить появление чрезмерного тока и отключить сеть раньше, не допуская пожароопасной ситуации или повреждений приборов. В соответствии с требованиями Правил устройств электроустановок (ПУЭ), эксплуатация сети без автоматов защиты – запрещена. Для того, чтобы правильно подобрать необходимые автоматы защиты, нужно знать основные характеристики автоматических выключателей: это номинальный ток и время-токовая характеристика.

Номинальный ток – максимальный ток, который может протекать через автоматический выключатель бесконечно долго, не отключая защищаемую электрическую сеть.
Время-токовая характеристика — это зависимость времени срабатывания от силы тока, протекающего через автоматический выключатель.

Принцип работы автоматического выключателя

Основные органы срабатывания автоматического выключателя – Тепловой расцепитель (биметаллическая пластина) и электромагнитный расцепитель (соленоидом с сердечником). При нормальной работе электрической сети и подключенных в сеть приборов, через автоматический выключатель протекает электрический ток. Биметаллическая пластина от воздействия повышенного тока нагревается и изгибается приводя в действие механизм расцепления. В зависимости от категории автоматического выключателя, время срабатывания будет происходить быстрее или медленнее.

Категории (типы) автоматических выключателей

Автоматические выключатели делятся на типы в зависимости от чувствительности мгновенного расцепителя. Обозначаются класс латинскими буквами A, B, C и D.

Автоматические выключатели типа А (2 – 3 значения номинального тока) срабатывают без выдержки времени (неселективные). Применяются в основном для защиты цепей с большой протяженностью и для защиты микропроцессорных устройств.
Автоматические выключатели типа B (от 3 до 5 значений номинального тока). То есть выключатель с маркировкой В16 сработает при силе тока от 48А до 80А. Данные выключатели широко используются в быту, в основном в домах со старой проводкой, на дачах или в сельской местности.
Автоматические выключатели типа C (от 5 до 10 значений номинального тока). Выключатель с маркировкой С16 сработает при силе тока от 80А до 160А. Используются выключатели типа С в основном в новых многоквартирных домах, где в сеть может быть подключено много бытовой техники (стиральная машина, утюг, холодильник, кондиционер, посудомоечная машина, электрический чайник, микроволновая печь, пылесос и пр.).
Автоматические выключатели типа D (от 10 до 20 номинальных токов) используются для защиты цепей, питающих электрические установки с высокими пусковыми токами (компрессоры, электромоторы, станки, насосы и подъемные механизмы) и применяются в основном в производственных помещениях. Также устройства с характеристикой D используют в общих сетях зданий, где они выполняют подстраховочную роль, если в отдельных помещениях по каким-то причинам не произошло своевременного отключения электроэнергии.
Зависимость времени отключения от силы тока нагляднее всего можно изобразить в виде графика.

Автоматические выключатели типа  K приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Автоматические выключатели типа  Z приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.


Количество полюсов автоматических выключателей

Однополюсные автоматические выключатели используются для защиты цепей с приборами освещения и розетками, куда подключаются обычные однофазные бытовые приборы.
Для защиты однофазной проводки, куда подключаются отопительные приборы, водонагреватели, электрические плиты, стиральные машины в качестве защиты между щитом и помещением устанавливаются двухполюсные автоматические выключатели.

Двухполюсные АВ при отключении обеспечивает разрыв не только «фазы», но и «нуля».
Нельзя устанавливать два однополюсных выключателя для защиты фазного и нулевого провода! Для этих целей применяют двухполюсные автоматы, которые отключают «ноль» и «фазу» одновременно.

В трехфазной сети, в основном в промышленности, применяются 3-х полюсные автоматические выключатели.

4-х полюсные выключатели являются вводными автоматами и обеспечивают защиту 3-х фазной электросети: 3 фазы + нейтраль.

Вводной автоматический выключатель обязательно должен отключать все фазы и рабочий «ноль», так как имеется вероятность поражения электрическим током при проведении обслуживания или работ с проводкой.

Как рассчитать номинальный ток автоматического выключателя?

Приветствую вас, уважаемые читатели сайта elektrik-sam.info.

В предыдущей серии статей мы подробно изучили назначение, конструкцию и принцип действия автоматического выключателя, разобрали его основные характеристики и схемы подключения, теперь, используя эти знания, вплотную приступим к вопросу выбора автоматических выключателей. В этой публикации мы рассмотрим, как рассчитать номинальный ток автоматического выключателя.

Эта статья продолжает цикл публикаций Автоматические выключатели УЗО дифавтоматы — подробное руководство. В следующих публикациях планирую подробно разобрать, как выбрать сечение кабеля, рассмотреть расчет электропроводки квартиры на конкретном примере с расчетом сечения кабеля, выбором номиналов и типов автоматов, разбивкой проводки на группы. В завершении серии статей по автоматическим выключателям будет подробный пошаговый комплексный алгоритм их выбора.

Хотите не пропустить выхода этих материалов? Тогда подписывайтесь на новости сайта, форма подписки справа и в конце этой статьи.

Итак, приступим.

Электропроводка в квартире или доме обычно разделена на несколько групп.

Групповая линия питает несколько однотипных потребителей и имеет общий аппарат защиты. Другими словами — это несколько потребителей, которые подключены параллельно к одному питающему кабелю от электрощита и для этих потребителей установлен общий автоматический выключатель.

Проводка каждой группы выполняется электрическим кабелем определенного сечения и защищается отдельным автоматическим выключателем.

Для расчета номинального тока автомата необходимо знать максимальный рабочий ток линии, который допускается для ее нормальной и безопасной работы.

Максимальный ток, который кабель может выдержать не перегреваясь, зависит от площади сечения и материала токопроводящей жилы кабеля (медь или алюминий), а так же от способа прокладки проводки (открытая или скрытая).

Также необходимо помнить, что автоматический выключатель служит для защиты от сверхтоков электропроводки, а не электрических приборов. То есть автомат защищает кабель, который проложен в стене от автомата в электрическом щите к розетке, а не телевизор, электроплиту, утюг или стиральную машину, которые подключены к этой розетке.

Поэтому номинальный ток автоматического выключателя выбирается, прежде всего, исходя из сечения применяемго кабеля, а затем уже берется в расчет подключаемая электрическая нагрузка. Номинальный ток автомата должен быть меньше максимально допустимого тока для кабеля данного сечения и материала.

Расчет для группы потребителей отличается от расчета сети одиночного потребителя.

Начнем с расчета для одиночного потребителя.

1.А. Расчет токовой нагрузки для одиночного потребителя

В паспорте на прибор (или на табличке на корпусе) смотрим его потребляемую мощность и определяем расчетный ток:

В цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому мощность нагрузки характеризуется двумя параметрами: активной мощностью и реактивной мощностью.

Коэффициент мощности cos φ характеризует количество реактивной энергии, потребляемой устройством. Большинство бытовой и офисной техники имеет активный характер нагрузки (реактивное сопротивление у них отсутствует или мало), для них cos φ=1.

Холодильники, кондиционеры, электродвигатели (например, погружной насос), люминисцентные лампы и др. вместе с активной составляющей имеют также и реактивную, поэтому для них необходимо учитывать cos φ.

1.Б. Расчет токовой нагрузки для группы потребителей

Общая мощность нагрузки групповой линии определяется как сумма мощностей всех потребителей данной группы.

То есть для расчета мощности групповой линии необходимо сложить мощности всех приборов данной группы (все приборы, которые Вы планируете включать в этой группе).

Берем лист бумаги и выписываем все приборы, которые планируем подключать к этой группе (т.е. к этому проводу): утюг, фен, телевизор, DVD-проигрыватель, настольную лампу и т.д.):

При расчете группы потребителей вводится так называемый коэффициент спроса Кс, который определяет вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени. Если все электроприборы группы работают одновременно, то Кс=1.

На практике обычно все приборы одновременно не включаются. В общих расчетах для жилых помещений коэффициент спроса принимается в зависимости от количества потребителей из таблицы, приведенной на рисунке.

Мощности потребителей указываются на табличках электроприборов, в паспортах к ним, при отсутствии данных можно принимать согласно таблицы (РМ-2696-01, Приложение 7.2), или посмотреть на похожие потребители в интернете:

По расчетной мощности определяем полную расчетную мощность: Определяем  расчетный ток нагрузки для группы потребителей:

Ток, рассчитанный по приведенным формулам, получаем в амперах.

2. Выбираем номинал автоматического выключателя.

Для внутреннего электроснабжения жилых квартир и домов в основном применяют модульные автоматические выключатели.

Номинальный ток автомата выбираем равным расчетному току или ближайший больший из стандартного ряда:

6, 10, 16, 20, 25, 32, 40, 50, 63 А.

Если выбрать автомат меньшего номинала, то возможно срабатывание автоматического выключателя при полной нагрузке в линии.

Если выбранный номинальный ток автомата больше величины максимально возможного тока автомата для данного сечения кабеля, то необходимо выбрать кабель большего сечения, что не всегда возможно, или такую линию необходимо разделить на две (если понадобится, то  и более) части, и провести весь приведенный выше расчёт сначала.

Необходимо помнить, что для осветительной цепи домашней электропроводки используются кабели 3×1.5 мм2, а розеточной цепи — сечением 3×2.5 мм2. Это автоматически означает ограничение потребляемой мощности для нагрузки, питаемой через такие кабели.

Из этого также следует, что для линий освещения нельзя применять автоматы с номинальным током более 10А, а для розеточных линии — более 16А. Выключатели освещения выпускаются на максимальный ток 10А, а розетки на максимальный ток 16А.

Смотрите подробное видео Как рассчитать номинальный ток автоматического выключателя

Рекомендую материалы по теме:

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Автоматические выключатели — конструкция и принцип работы.

Номинал токовые характеристики автоматических выключателей.

Автоматические выключатели технические характеристики.

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

Конструкция (устройство) УЗО.

Устройство УЗО и принцип действия.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор ряда автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение …) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в месте установки
  • Характеристики защищаемых кабелей, шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором …
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Более того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшом закрытом металлическом корпусе.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока отключения при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номинальные значения ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых указаны значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. Рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор порога срабатывания мгновенного или кратковременного срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные расцепители мгновенного действия или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, которое расположено выше по потоку и которое имеет требуемую отключающую способность при коротком замыкании

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадный» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка с помощью символа.

Регламент некоторых стран может вводить дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора СН / НН (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 A и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM следует выбирать в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым во всех параллельно соединяемых блоках.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов с номинальным коэффициентом мощности более 2 параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, на рис. , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные устройства 4 кВ в соответствии с перечнем
  • Кабели от каждого трансформатора до его выключателя низкого напряжения состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. h56 как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинальное значение Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальная мощность трансформаторов 20 / 0,4 кВ Минимальная отключающая способность основных выключателей (Icu) кА Главные автоматические выключатели (CBM), полная селективность с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основных выключателей (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 X 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Х 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Номинальный ток отключения при коротком замыкании: 2-полюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для ИТ-схем

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор ряда автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в месте установки
  • Характеристики защищаемых кабелей, шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Более того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшом закрытом металлическом корпусе.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока отключения при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номинальные значения ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых указаны значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. Рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор порога срабатывания мгновенного или кратковременного срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные расцепители мгновенного действия или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, которое расположено выше по потоку и которое имеет требуемую отключающую способность при коротком замыкании

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадный» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка с помощью символа.

Регламент некоторых стран может вводить дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора СН / НН (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 A и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM следует выбирать в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым во всех параллельно соединяемых блоках.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов с номинальным коэффициентом мощности более 2 параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, на рис. , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные устройства 4 кВ в соответствии с перечнем
  • Кабели от каждого трансформатора до его выключателя низкого напряжения состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. h56 как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинальное значение Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальная мощность трансформаторов 20 / 0,4 кВ Минимальная отключающая способность основных выключателей (Icu) кА Главные автоматические выключатели (CBM), полная селективность с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основных выключателей (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 X 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Х 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Номинальный ток отключения при коротком замыкании: 2-полюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для ИТ-схем
Советы по выбору автоматических выключателей

— Руководство по выбору автоматических выключателей

Сегодня мы поговорим об очень важном и популярном элементе в любой электрической системе.Его значение распространяется на электростанции, дома и небольшие квартиры.

Мы не можем доставить электроэнергию на любую нагрузку; автоматический выключатель. Поэтому Яссер, один из участников нашего блога сообщества, прислал нам это руководство, в котором он отмечает некоторые моменты по этому поводу. Наслаждаться!

Важность автоматических выключателей

Автоматические выключатели используются в:

  1. На электростанциях и подстанциях они защищают основное оборудование от перегрузки, короткого замыкания и, следовательно, частичного или полного повреждения, которое стоит очень дорого.
  2. В ответвленных цепях они защищают в основном кабели от перегрузки и пробоя, а также в некоторых случаях защищают нагрузку от перегрузки.
  3. Они защищают вас от тока утечки в случае автоматических выключателей утечки на землю. Как и в случае прикосновения к проводу под напряжением, прерыватель определяет ток утечки через ваше тело на землю, а затем отключает цепь.

Типы автоматических выключателей

Есть много типов CB, вот некоторые из них:

  1. Миниатюрный автоматический выключатель: для применений с низким энергопотреблением и низким уровнем короткого замыкания.
  2. Автоматический выключатель в литом корпусе
  3. : выдерживает более высокую мощность до 630 А, а также может достигать 100 кА в режиме короткого замыкания.
  4. Воздушные автоматические выключатели: используются во многих приложениях в системах низкого напряжения и называются воздухом, поскольку изолирующая среда — воздух.
  5. Вакуумный автоматический выключатель
  6. : может выдерживать более высокие напряжения, чем воздух, поскольку он реализует вакуум в качестве изолирующей среды и используется в системах среднего напряжения.
  7. Масляный автоматический выключатель
  8. : используется при среднем и высоком напряжении, поскольку масло является очень прочной изолирующей средой и обладает хорошими характеристиками при гашении дуги.
  9. Автоматический выключатель
  10. SF6: наиболее распространенный тип, используемый в сетях среднего и высокого напряжения благодаря высокой диэлектрической прочности SF6, термической стабильности и теплопроводности.

Рисунок 1 (слева): Воздушный автоматический выключатель / Рисунок 2 (в центре): Автоматический выключатель в литом корпусе / Рисунок 3 (справа): Автоматический выключатель SF6

Поскольку мы вкратце показали общие типы автоматических выключателей и где они используются, теперь мы обсудим, как выбрать автоматический выключатель из диапазона среднего и низкого напряжения.Но чтобы сделать это правильно, вам нужно знать о некоторых аспектах, которые показаны ниже.

  • Класс нагрузки:
  • 1. Динамическая нагрузка: уникальным аспектом этого типа является действующее электромагнитное поле. Очевидно, мы говорим о двигателях и трансформаторах, потребляющих ток выше номинального при запуске.
    2. Статическая нагрузка: обычно он потребляет номинальный ток при работе на полной мощности и никогда не потребляет больше, чем он. В основном это резистивная нагрузка, например, нагреватели.

  • Кривая отключения — это соотношение между временем отключения и током повреждения, и существует много их типов. Вкратце это:
  • 1. Тип B: подходит для резистивных нагрузок, так как время срабатывания магнитного поля в 5 раз превышает номинальный ток.
    2. Тип C: подходит для большинства нагрузок, поскольку сочетает в себе преимущество длительного отключения при перегрузке, а время срабатывания магнитного поля примерно в 8 раз превышает номинальный ток.
    3. Тип B: подходит для резистивных нагрузок, так как время срабатывания магнитного поля в 5 раз превышает номинальный ток.
    4. Тип D: подходит для магнитных нагрузок, имеющих пусковой ток, поэтому выключатель не должен срабатывать во время пуска. Магнитное время срабатывания примерно в 15 раз превышает номинальный ток.
    5. Для автоматических выключателей в литом корпусе и других типов кривую срабатывания можно изменить, задав некоторые значения для управления защитой от перегрузки и магнитным срабатыванием.

Рисунок 4: Кривые срабатывания выключателя

Шаги по выбору автоматического выключателя

  1. Определите тип нагрузки, чтобы узнать, какой выключатель подходит для вашего применения.
  2. В случае нагрузок с пусковым током следует учитывать, что ток срабатывания магнитного выключателя выше пускового тока.
  3. В случае защиты источников (например, ИБП) вы должны выбрать автоматический выключатель с тем же значением, что и номинальный ток источника.
  4. В случае защиты нагрузки номинальный ток автоматического выключателя будет в 1,25 раза больше номинального тока нагрузки, чтобы учесть случаи перегрузки.
  5. Расчет уровня короткого замыкания на выключателе необходим для определения его значения, чтобы выключатель не вышел из строя в случае неисправности.

Итак, после этих коротких советов теперь вы готовы выбрать подходящий выключатель для вашей нагрузки или источника. Это очень простая процедура, но ее необходимо выполнять так, чтобы не подвергать персонал ударам, а ваши устройства не повредить. Помните, что безопасность превыше всего.

У вас есть еще советы, которыми вы можете поделиться с нами? Если да, поделитесь ими в комментариях.

Выбор автоматического выключателя | Симметричный ток

Выбор автоматического выключателя:

Существует два типа выбора номиналов автоматического выключателя, для которых требуется вычисление тока SC: (i) номинальный мгновенный ток и (ii) номинальный симметричный ток отключения .

Симметричный ток SC получается за счет использования субпереходных реактивных сопротивлений для синхронных машин. Затем рассчитывается мгновенный ток (среднеквадратичное значение) путем умножения симметричного мгновенного тока на коэффициент 1,6, чтобы учесть наличие постоянного тока смещения.

Симметричный прерываемый ток вычисляется с использованием субпереходных реактивных сопротивлений для синхронных генераторов, а переходные реактивные сопротивления для синхронных двигателей не учитываются. Значение смещения постоянного тока, добавляемое для получения прерываемого тока, учитывается путем умножения симметричного тока SC на коэффициент, указанный в таблице ниже:

Если SC MVA (поясняется ниже) больше 500, указанные выше множители увеличиваются на 0.По 1 штуке. Коэффициент умножения для воздушных выключателей на 600 В или ниже составляет 1,25.

Ток, который может прервать автоматический выключатель, обратно пропорционален рабочему напряжению в определенном диапазоне, т. Е.

Амперы при рабочем напряжении = Амперы при номинальном напряжении x номинальное напряжение / рабочее напряжение

Конечно, рабочее напряжение не может превышать максимальное расчетное значение. Кроме того, независимо от того, насколько низкое напряжение, номинальный ток отключения не может превышать номинальный максимальный ток отключения .В этом диапазоне напряжений произведение рабочего напряжения и тока отключения является постоянным. Следовательно, логично и удобно выразить выбор номинала автоматического выключателя в терминах SC MVA, которые могут быть отключены, определяемых как

.

Номинальная отключающая способность МВА (трехфазная)

, где V (линия) в кВ, а I (линия) в кА.

Таким образом, вместо вычисления тока SC, который должен быть прерван, мы вычисляем трехфазный SC MVA, который должен быть прерван, где

Если напряжение и ток указаны на единицу измерения для трехфазной сети

Очевидно, что номинальная отключающая способность автоматического выключателя должна быть больше (или равна) отключаемой мощности SC MVA.

Для выбора автоматического выключателя для конкретного местоположения мы должны найти максимально возможное значение SC MVA для прерывания в зависимости от типа и места повреждения и генерирующей мощности (также нагрузки синхронного двигателя), подключенной к системе.

Трехфазное короткое замыкание, хотя и редко, обычно дает наибольшее значение SC MVA, и автоматический выключатель должен быть способен его отключить. Исключением является замыкание LG (линия-земля) вблизи синхронного генератора. В простой системе место повреждения, которое дает наивысший SC MVA, может быть очевидным, но в большой системе необходимо опробовать различные возможные места, чтобы получить наивысший SC MVA, требующий повторных вычислений SC.Это проиллюстрировано следующими примерами.

Выбор правильного автоматического выключателя и его типа

Автоматический выключатель — это устройство защиты энергосистемы, которое может замыкать или размыкать цепь

Автоматический выключатель срабатывает в условиях неисправности и изолирует неисправную часть цепи от остальной, размыкая цепь. Эта операция выполняется автоматически с помощью реле вместе с автоматическим выключателем.

Следует отметить, что автоматические выключатели также могут управляться вручную, а также могут работать в нормальных условиях. Следовательно, автоматические выключатели также являются полезными коммутационными устройствами, которые используются для включения или отключения цепи в нормальных условиях.

Рабочий механизм:

В общем смысле автоматический выключатель состоит из двух электродов или контактов, которые при нормальных условиях остаются в контакте друг с другом, позволяя течь току.Но в случае неисправности контакты размыкаются или размыкаются, что приводит к разрыву цепи и предотвращению прохождения тока повреждения.

Размыкание контактов достигается включением катушки отключения автоматического выключателя, которая заставляет контакты перемещаться, как показано на рисунке. Также важно знать, что катушка отключения находится под напряжением от реле, поэтому в основном реле сигнализирует выключателю о срабатывании.

Эти контакты также можно размыкать вручную, например, во время обслуживания или переключения.

Мы только что выпустили нашу серию Power Systems Engineering Vlog , и прямо сейчас у нас есть для вас отличное предложение. Первые 50 участников, которые присоединятся к нашему сообществу видеоблогов, получат 75% скидку на . Предложение действительно до 15 мая -го . Чего ты ждешь? Зарегистрируйтесь сейчас.

Явления дуги:

Каждый раз, когда происходит короткое замыкание, через контакты автоматических выключателей проходит чрезвычайно высокий ток.Когда эти контакты начинают размыкаться, площадь контакта уменьшается, а сила тока быстро увеличивается. Это вызывает быстрый нагрев и ионизацию окружающего материала. Эта ионизированная среда, таким образом, действует как путь прохождения тока, задерживая разрыв цепи.

Это может привести к повреждению системы, а выделяемое тепло может повредить сам выключатель. Разность потенциалов между контактами довольно мала, но достаточна для поддержания дуги.

Методы гашения дуги:

Эту дугу необходимо устранить для успешного отключения и отключения цепи.Следовательно, это важный фактор при определении типа и размера автоматического выключателя, который будет использоваться в различных приложениях. Для этого у нас есть два метода гашения дуги.

1. Метод высокого сопротивления:

В этом методе сопротивление дуги увеличивается со временем и увеличивается до тех пор, пока значение тока не упадет до уровня, недостаточного для поддержания дуги. Недостатком являются огромные потери энергии и тепла, рассеиваемого в дуге.

2.Метод низкого сопротивления или нулевого тока:

Этот метод используется для систем переменного тока и наиболее широко используется. Весь синусоидальный ток и напряжения проходят через нулевые точки в каждом полупериоде. Сопротивление поддерживается низким до тех пор, пока не произойдет переход через нуль, где дуга гаснет естественным образом, после перехода через ноль, гасящая среда предотвращает повторное возникновение дуги.

Самый быстрый на сегодняшний день автоматический выключатель может погасить дугу за 2 цикла, в то время как наиболее распространенными средами, используемыми для гашения дуги, являются воздух, масло, гексафторид серы SF6 и вакуум.

Категории автоматических выключателей:

Автоматические выключатели

можно разделить на категории согласно соответствующему уровню напряжения системы. Поэтому их можно разделить на выключатели низкого, среднего и высокого напряжения.

Автоматические выключатели низкого напряжения:

Эти выключатели используются для напряжений до 600 В и делятся на 3 типа.

1. Литой корпус (MCCBS):

Они используются для токов от 20 до 2500 ампер и часто используются для включения или выключения цепи.Они помещены в герметичный корпус, поэтому не подлежат ремонту и обычно применяются в распределительных щитах и ​​щитах.

Следует отметить, что MCCBS следует тестировать в соответствии со стандартами UL489 и NEMA AB-1.

2. Силовой выключатель:

Силовые выключатели

имеют номинальные токи от 800 до 6000 ампер. Они используются для защиты генератора и двигателя. Силовые выключатели монтируются в металлических корпусах для распределительных устройств низкого напряжения и должны быть испытаны в соответствии с ANSI C37.13 и UL1066.

3. Изолированный корпус (ICCBS):

ICCBS по существу аналогичны автоматическим выключателям в литом корпусе. Однако они включают в себя двухступенчатый механизм закрытия с накоплением энергии. Зарядная рукоятка или двигатель заряжает пружину, которая затем отпускается кнопкой или соленоидом, чтобы окончательно закрыть прерыватель. Обычно они имеют размеры от 800 до 4000 ампер. Обычно они имеют типоразмер от 800 до 4000 ампер и используются в MCC или в качестве главного выключателя в распределительном щите.ICCB также проходят испытания в соответствии со стандартами UL489 и NEMA AB-1

.

Автоматические выключатели среднего и высокого напряжения:

Выключатели

MV используются для систем от 600 В до 69 кВ, а высоковольтные выключатели применяются в системах с напряжением более 69 кВ. Тип среды, которая существует внутри этих автоматических выключателей, используется для их классификации. Они следующие:

1. Масляные автоматические выключатели:

Главные контакты погружены в масло, которое действует как ионизирующая среда.Масло обладает высокой диэлектрической прочностью, чтобы выдерживать напряжение на контактах. Дуга разлагает масло на газы, которые обладают отличными охлаждающими свойствами для гашения дуги. Однако масло, как и газообразный водород, легко воспламеняется, поэтому существует риск возгорания. Эти гидромолоты также требуют своевременного осмотра и замены масла. OCB используются напряжением до 11кВ.

2. Воздушные автоматические выключатели:

В этих автоматических выключателях в качестве средства гашения дуги используется струя воздуха под высоким давлением.

Воздушный поток охлаждает дугу и отталкивает продукты дуги в атмосферу, что приводит к гашению дуги.

Воздушные выключатели в настоящее время в основном заменяют масляные выключатели, поскольку они не связаны с пожарной опасностью. Они также компактны и имеют меньшее время дуги. В большинстве систем высокого напряжения выше 110 кВ используются воздушные выключатели.

3. SF6 Автоматические выключатели:

Гексафторид серы (SF6) представляет собой инертный изолирующий газ, который используется в качестве среды для гашения дуги.Он обладает превосходными характеристиками гашения дуги, поскольку SF6 имеет тенденцию поглощать свободные электроны, поэтому дуга быстро изолируется из-за потери проводящих электронов. Также существуют автоматические выключатели F6 на напряжение до 115 кВ и 230 кВ с временем отключения менее 3 циклов. . Однако эти автоматические выключатели очень дороги.

4. Вакуумные выключатели:

В этих выключателях вакуум используется в качестве среды для гашения дуги.Он предлагает самые сильные изоляционные свойства, чем любой другой материал. Следовательно, как только в этом автоматическом выключателе возникает дуга, она немедленно гаснет. Они используются в системах от 22 кВ до 66 кВ.

Сводка типов автоматических выключателей:

Важные параметры при выборе автоматических выключателей:

Отключающая способность / KA: это максимальный ток, при котором автоматический выключатель рассчитан на безопасное прерывание при определенном напряжении.

Мгновенное срабатывание: Настройки, при которых автоматический выключатель срабатывает немедленно, без какой-либо преднамеренной задержки. Все MCCBS и ICB имеют настройки мгновенного отключения, а для PCBS это необязательно.

Настройки короткого замыкания: Автоматический выключатель остается замкнутым в течение некоторого времени в диапазоне высоких токов короткого замыкания. Это важный фактор в достижении избирательной координации автоматических выключателей.

Настройки длительного времени: Это настройка автоматического выключателя для определения продолжительности времени, в течение которого может протекать определенный ток перегрузки перед отключением. (для значений тока меньше кратковременного или мгновенного срабатывания).

Непрерывный ток: Это ток, который устройство будет выдерживать без отключения или перегрева.

Размер кадра: Размер кадра указывает физический размер выключателя, а также максимальный продолжительный ток, который он может выдерживать.

Номинальное напряжение, кВ: Указывает максимальное напряжение системы, которое может выдержать автоматический выключатель.

Номинальная мощность, кВА или МВА: Важной характеристикой автоматического выключателя является его отключающая или отключающая способность. Это максимальный ток, который автоматический выключатель способен отключать при заданном напряжении и в определенных условиях, например: фактор силы.

Дается следующей формулой:

Рейтинг МВА (отключающая способность) =

√3 x Напряжение в системе x ток SC 10 6

знак равно

√3 x V L x I F 10 6

МВА

Где I F = номинальный ток отключения в амперах.

Выбор автоматического выключателя в соответствии с его применением / отключающим устройством:

Это тип MCCB, предназначенный для защиты двигателей. Они содержат регулируемый магнитный расцепитель, который можно настроить для отключения двигателя в случае неисправности. Эта конфигурация может быть выполнена в соответствии с типом двигателя. Следует отметить, что пусковой ток не считается неисправностью и может пройти.

Твердотельное отключение:

Эти отключающие устройства оснащены силовой электроникой и программируемым программным обеспечением.Они намного быстрее и надежнее традиционных автоматических выключателей и требуют относительно меньшего обслуживания.

Они также имеют дополнительные функции отключения, такие как длительное, кратковременное, мгновенное отключение и отключение при падении на землю.

Термомагнитный:

Эти расцепители состоят из биметаллической термопласты, которая контролирует работу автоматического выключателя. Перегрев, вызванный высоким током короткого замыкания, приведет к срабатыванию биметаллической ленты для отключения автоматического выключателя, задержка будет зависеть от величины тока короткого замыкания.В основном они используются для защиты нашей системы от перегрузок.

Эти расцепители доступны как в автоматических выключателях, так и на печатных платах и ​​обеспечивают мгновенное отключение, в то время как установка короткого времени 30 циклов также может быть достигнута для печатных плат с использованием только тепловых устройств.

MCCB, ICCB или печатные платы? Какой выбрать?

В целом все автоматические выключатели обеспечивают защиту от перегрузки по току. Выбор автоматических выключателей в литом корпусе, автоматических выключателей с изолированным корпусом и силовых выключателей в системе обычно зависит от предполагаемого применения, требуемых стандартов проектирования и технических характеристик.

Инженер должен учитывать параметры, обсужденные выше, такие как кратковременный рейтинг, отключающая способность, размер кадра и т. Д., Чтобы определить, подходит ли устройство для обеспечения защиты, а также координации и селективности.

MCCB и ICCB имеют наивысшую отключающую способность наряду с мгновенным отключением, поэтому нашей системе не требуется выдерживать высокие токи при любой временной задержке. В то время как печатные платы имеют высокую отключающую способность, дополнительные настройки мгновенного срабатывания, но модели с наивысшим кратковременным рейтингом.

Рабочие требования, такие как выдвижной монтаж, потребуют печатных плат, в то время как для фиксированного монтажа потребуется MCCBS или ICCBS. Экономические преимущества всегда важны, поэтому выбирается лучший компромисс между номинальными характеристиками, размером корпуса и стоимостью. MCCBS и ICCBS относительно дешевле, чем печатные платы.

Окончательно , мы можем согласиться с тем, что автоматические выключатели являются неотъемлемой частью системы электроснабжения, и их правильное применение очень важно. Наряду с основами и принципами работы автоматических выключателей инженер должен также знать, как правильно выбирать автоматические выключатели в соответствии с их использованием.

100% против 80%: выбор правильного решения OCPD

Время чтения: 9 минут

Мы принимаем решения каждый день, как в личном, так и в профессиональном плане, имея в виду нашу чековую книжку. Когда принимается решение «спроектировать стоимость» или рассчитать стоимость дизайна, чтобы сэкономить деньги на проекте, необходимо уделять внимание деталям; расставьте точки над i и перечеркните их. Иногда вам кажется, что вы экономите деньги или время, но на самом деле итоги говорят о другом. Мы собираемся изучить тему защиты от перегрузки по току 100% по сравнению с 80% и заложить основу для следующего проекта, который вы спроектируете, установите или осмотрите.Помните, что черт может быть в деталях, но внимание к деталям поможет обеспечить безопасную и экономичную установку.

Обзор

Базовый процесс выбора правильного устройства защиты от перегрузки по току (OCPD) для этого обсуждения 80% номинального и 100% номинального, начинается с расчета нагрузки, включает в себя выбор проводника на основе расчетного тока нагрузки и заканчивается правильный OCPD для защиты проводника. Как мы увидим, при выборе OCPD, который будет использоваться на 100% от его текущего номинального тока, необходимо учитывать корпус / распределительное оборудование, в котором установлен автоматический выключатель или переключатель с предохранителем, а также все связанные списки.

Как правило, для всех устройств, кроме защиты двигателя от перегрузки, когда в сборке применяется устройство перегрузки по току, такое как автоматический выключатель в литом корпусе (MCCB) или предохранитель, его размер должен составлять 125% от продолжительной нагрузки. Это приводит к применению устройства максимального тока на 80% от номинала, указанного на паспортной табличке. Давай займемся математикой.

Если нагрузка на параллельную цепь является непрерывной нагрузкой и рассчитана на 100 А, NEC 210.20 (A) требует, чтобы номинальное значение OCPD составляло 125% от расчетного постоянного тока нагрузки.

«Если параллельная цепь обеспечивает постоянные нагрузки или любую комбинацию непрерывных и прерывистых нагрузок, номинальная мощность устройства максимального тока не должна быть меньше, чем прерывистая нагрузка плюс 125 процентов продолжительной нагрузки».

Номинальный ток устройства OCPD для этого примера рассчитывается следующим образом:

Рейтинг усилителя OCPD =

1,25 × продолжительный ток нагрузки =

1,25 × 100 А = 125 А

Число 80% — это процент от номинала усилителя OCPD, который представляет собой ток длительной нагрузки, в данном случае 100 А.100 А — это 80% от 125 А номинала OCPD согласно следующему уравнению:

% от рейтинга OCPD =

(ток нагрузки) / (рейтинг OCPD) × 100% =

(100 А) / (125 А) × 100% = 80%

Применение OCPD на 80% от его номинала для длительных нагрузок приводит к более высоким температурам окружающей среды, обнаруживаемым, когда устройство максимального тока находится внутри корпуса. Это также согласуется с тем, как OCPD тестируется в соответствии со стандартами, регулирующими их работу.

Для этого примера выше 100% номинальное решение будет иметь выключатель на 100 А, питающий эту расчетную постоянную нагрузку на 100 А. Давайте рассмотрим это дальше.

Расчет нагрузки

Расчет нагрузки — это то, с чего все начинается и где принимается решение о том, как будет спроектирована система в отношении выбора оборудования, рассчитанного на 80% или 100%. В дополнение к важному содержанию статьи 220, «Расчеты ответвлений, фидеров и услуг», которые мы оставим в другой статье из-за того простого факта, что расчеты нагрузки могут быть отдельной книгой, нам необходимо понять некоторую базовую терминологию.

Сделайте шаг назад и подумайте, что такое непрерывная и прерывистая нагрузка. Определить разницу между непрерывной и прерывистой нагрузкой не так просто, как кажется. Чтобы начать это обсуждение, откройте в своей книге Код статью 100 и просмотрите определение «непрерывной нагрузки». NEC 2014 сообщает нам, что «Непрерывная нагрузка» — это «нагрузка, при которой ожидается, что максимальный ток будет продолжаться в течение 3 часов или более». Для многих нагрузок это будет очень субъективная попытка анализа нагрузки, но для некоторых NEC специфичен в этом отношении.Вот несколько примеров продолжительных нагрузок, указанных в NEC 2014:

422.13 Водонагреватели накопительного типа. Стационарный водонагреватель накопительного типа емкостью 450 л (120 галлонов) или менее следует рассматривать как постоянную нагрузку при определении размеров ответвленных цепей.

424.3 Ответвительные цепи. (B) Определение размеров ответвленной цепи. Стационарное электрическое отопительное оборудование и двигатели считаются постоянной нагрузкой.

426,4 Непрерывная нагрузка. Стационарное наружное электрическое оборудование для удаления льда и снеготаяния следует рассматривать как постоянную нагрузку.

427,4 Непрерывная нагрузка. Стационарное электронагревательное оборудование трубопроводов и сосудов считается постоянной нагрузкой.

600,5 Отводных цепей. (B) Рейтинг. Ответвительные цепи, которые питают знаки, должны быть рассчитаны в соответствии с 600.5 (B) (1) или (B) (2) и должны рассматриваться как продолжительные нагрузки для целей расчетов.

625,41 Рейтинг. Оборудование для питания электромобилей должно иметь достаточную мощность для питания обслуживаемой нагрузки. Зарядные нагрузки электромобилей считаются непрерывными нагрузками для целей настоящей статьи.Если используется автоматическая система управления нагрузкой, максимальная нагрузка оборудования питания электромобиля на службу и фидер должна быть максимальной нагрузкой, разрешенной системой автоматического управления нагрузкой.

Теперь, когда непрерывная нагрузка и прерывистая нагрузка совершенно ясны, мы отправляемся в другие соответствующие секции NEC для этого обсуждения. Разделы включают:

Статья 210, Ответвительные цепи
Раздел 210.19, Минимальная допустимая нагрузка и размер
Раздел 210.20, максимальная токовая защита

Артикул 215, Фидеры
Раздел 215.2, Минимальные характеристики и размер
Раздел 215.3, Защита от перегрузки по току

Статья 230, Услуги
Раздел 230.42, Минимальный размер и рейтинг
VII. Сервисное оборудование — защита от сверхтоков

Как видите, общим для сервисов, фидеров и ответвлений является раздел (разделы 210.19, 215.2 и 230.42), в котором основное внимание уделяется определению размеров и номинальной мощности той части цепи, за которую отвечает каждое изделие.Статья 210 — хороший представитель; у остальных есть похожий язык, поэтому мы начнем здесь. В разделе 210.20 (A) говорится следующее:

210.20 Защита от перегрузки по току. (А) Непрерывные и прерывистые нагрузки. Если параллельная цепь обеспечивает постоянные нагрузки или любую комбинацию непрерывных и прерывистых нагрузок, номинал устройства максимального тока не должен быть меньше, чем прерывистая нагрузка плюс 125 процентов продолжительной нагрузки.

Первым шагом на пути к расчету нагрузки в соответствии с этим требованием должно быть изучение каждой нагрузки в системе и определение того, является ли она непрерывной (три часа или более) или прерывистой.Из 210,20 (A) мы понимаем, что коэффициент 125% применяется только к продолжительным нагрузкам. Уравнение для расчета тока нагрузки, которое будет определять выбор наших проводников и в конечном итоге будет определять выбор OCPD, выглядит следующим образом:

Ток нагрузки =

(ток непостоянной нагрузки) +

(1,25 × продолжительный ток нагрузки)

Это уравнение немного изменится, когда будет принято решение о 100% рейтинговой системе.Обзор исключения из исходного текста 210.20 (A) гласит:

Исключение: Если узел, включая устройства максимального тока, защищающие параллельную цепь (и), указан для работы на 100 процентов от его номинального значения, допустимая сила тока устройства максимального тока не должна быть меньше суммы непрерывных нагрузка плюс прерывистая нагрузка.

В зависимости от языка, указанного в этом исключении, ток нагрузки рассчитывается для 100% номинальной системы на основе следующего уравнения:

Ток нагрузки =

Амперы непостоянной нагрузки +

Ампер продолжительной нагрузки

Обратите внимание на недостающую цифру 1.25 в приведенном выше уравнении. Исходя из этого расчетного тока нагрузки и выбора проводника и OCPD, процесс в точности такой же, как и для системы с номиналом 80%.

Продолжим наш путь к выбору дирижера.

Выбор проводника

Выбор проводника основан на расчетном токе нагрузки, о котором говорилось ранее. Как всегда, главы 1–4 NEC применяются в целом, поэтому мы не можем забывать о деталях, связанных с регулировкой допустимой нагрузки проводника и т. Д.Но пока наш путь приводит нас к статье 310 для выбора проводника, а именно к таблице 310.15 (B) (16) NEC 2014. Поскольку у нас есть расчетный ток нагрузки, независимо от того, основан ли он на 80% или 100% непрерывной нагрузки Учитывая, что процесс выбора проводника теперь настолько же рутинный, насколько это возможно, со всеми деталями, связанными с окружающей средой и методами, используемыми для установки проводов.

Давайте воспользуемся некоторыми примерами, чтобы описать процесс выбора проводника для приложения.Как отмечалось выше, это обусловлено расчетом нагрузки. Имея это в виду, давайте воспользуемся следующими примерами.

Пример 1: Нагрузка в ответвленной цепи — это постоянная нагрузка 300 А.

(80% расчетная)

Ток нагрузки =

(амперы непостоянной нагрузки) +

(1,25 × продолжительный ток нагрузки)

Ток нагрузки = 1,25 × 300 А = 375 А

Размер жилы выбирается из Таблицы 310.15 (В) (16). Использование столбца 75 o C в этой таблице позволяет нам получить проводник 500 MCM, рассчитанный на ток 380 A.

Будет использоваться стандартный (80% -ный) автоматический выключатель на 400 ампер.

(100% номинальное исполнение)

Ток нагрузки =

(амперы непостоянной нагрузки) +

(ток длительной нагрузки)

Ток нагрузки = 300 А

Размер жилы выбирается из Таблицы 310.15 (В) (16). Использование столбца 75 o C в этой таблице позволяет нам получить проводник 350 MCM, рассчитанный на ток 310 A.

Должен использоваться автоматический выключатель со 100% номиналом на 300 ампер.

Пример 2: Нагрузка на фидер состоит из 200 ампер непрерывной нагрузки и 100 ампер прерывистой нагрузки.

(80% расчетная)

Ток нагрузки =

(амперы непостоянной нагрузки) +

(1.25 × продолжительный ток нагрузки) Ток нагрузки =

100 А + (1,25 × 200 А) = 350 А

Размер проводника выбирается из Таблицы 310.15 (B) (16). Использование столбца 75 o C в этой таблице позволяет разделить нас на два проводника 2/0 или один провод на 500 MCM.

Будет использоваться стандартный (80% -ный) автоматический выключатель на 350 ампер.

(100% номинальное исполнение)

Ток нагрузки =

(амперы непостоянной нагрузки) +

(ток длительной нагрузки) Ток нагрузки =

100 А + 200 А = 300 А

Размер жилы выбирается из Таблицы 310.15 (В) (16). Использование столбца 75 o C этой таблицы позволяет разделить нас на два проводника 1/0 или один провод 350 MCM.

Должен использоваться автоматический выключатель со 100% номиналом на 300 ампер.

Выбор OCPD

Теперь, когда у нас выбран проводник, выбирается OCPD для обеспечения защиты проводника. Исключение, которое позволяет определить размер OCPD для 100% продолжительной нагрузки плюс прерывистая нагрузка, читается следующим образом:

«Исключение: если узел, включая устройства максимального тока, защищающие параллельную цепь (и), указан для работы на 100 процентов от его номинального значения, допустимая сила тока устройства максимального тока должна быть не менее суммы непрерывная нагрузка плюс прерывистая нагрузка.”

Эти слова или некоторые их формы можно найти в каждой из ключевых статей, упомянутых выше, для ответвлений, фидеров и услуг. Обратите внимание, что исключение относится к OCPD и сборке, в которой они установлены. Поэтому важно понимать, как OCPD тестируется в соответствии с его списком UL.

Следующий текст взят из стандарта UL 489 «Автоматические выключатели в литом корпусе, переключатели в литом корпусе и корпуса для автоматических выключателей».

“9.1.4.4 Автоматический выключатель типоразмера 250 А или более или многополюсного типа с любым номинальным током более 250 В; и предназначенный для непрерывной работы при 100% номинальной мощности, должен иметь маркировку: «Подходит для непрерывной работы при 100% номинальной мощности, только если используется в корпусе автоматического выключателя. Тип (Кат.Нет) ____ или в ячейке пространство ___ на ___ на ___ мм (дюймов) ». Допускаются эквивалентные формулировки. Категория размещения C. Пробелы должны быть заполнены с минимальными размерами ».

Этот абзац разъясняет нам некоторые важные детали.

  1. 100% номинальные решения для автоматического выключателя будут иметь размер корпуса не менее 250 А при 250 В и ниже или любой размер корпуса для многополюсного автоматического выключателя с напряжением более 250 В. Применения, в которых размер корпуса OCPD меньше 250 А при 250 В и менее, должен использовать автоматический выключатель на 80% от его номинального тока (за исключением защиты двигателя от перегрузки).
  2. На выключателе будет указан конкретный каталожный номер корпуса или минимальные размеры корпуса. Это говорит нам о том, что мы не можем просто заменить автоматический выключатель на тот, который рассчитан на 100% -ную работу при длительных нагрузках; Следует учитывать, в каком корпусе установлено устройство. Не всегда возможно заменить автоматический выключатель со стандартным номиналом на автоматический выключатель со 100% номиналом и получить 100% номинал для данной области применения.

Существуют также требования, относящиеся к корпусу для 100% номинальных приложений, как показано в Разделе 7.1.4.1.19 UL 489, который гласит следующее:

“7.1.4.1.19 Для 100-процентного испытания автоматический выключатель должен быть подключен к медным шинам, если автоматический выключатель предназначен для использования как с шинами, так и с клеммами проводов. Если на автоматическом выключателе не указано иное, шины должны иметь поперечное сечение 1,55 А / мм2 (1000 А / дюйм2) для номиналов менее 1600 А. Для номинальных значений 1600 А и выше шина должна находиться в в соответствии с таблицей 7.1.4.1.3. Если автоматический выключатель предназначен только для использования с клеммами проводки, испытание должно проводиться с изолированными проводниками, как указано в 7.1.4.1.15. Шины или кабель должны иметь длину не менее 1,219 м (4 фута). Допускается повторение испытания с использованием изолированного кабеля для автоматического выключателя, предназначенного для использования как с шинами, так и с клеммами проводов ».

Для этих применений характерен не только материал шин, но и их размеры. Производители помогут в том, чего можно и чего нельзя добиться с их оборудованием. Важно не нарушать листинг решения, и, как всегда, дьявол кроется в деталях в этом отношении.

Заключительное слово

Использование автоматических выключателей и выключателей с предохранителями строго контролируется NEC® и стандартами UL, регулирующими автоматические выключатели, выключатели с предохранителями и оборудование, в которое они устанавливаются. Бывают случаи, когда может быть экономически выгодно использовать устройства на 100% от их рейтинга, но все i должны быть расставлены точками, а t перечеркнуты. В этой статье мы рассмотрели только исходную часть схемы. Чтобы завершить анализ, необходимо также исследовать поставляемое оборудование, чтобы определить, может ли оно поставляться с часто меньшими кабелями, связанными со 100% номинальными автоматическими выключателями или переключателями с предохранителями.

Рекомендации по выбору автоматического выключателя с правильным номиналом

Сегодня доступны буквально тысячи автоматических выключателей от многих производителей. Они сильно различаются по назначению, функциям, способам подключения и номинальной мощности / силе тока.

Как выбрать выключатель с правильным номиналом для вашего конкретного применения? Прочтите некоторые рекомендации по правильному выбору автоматического выключателя, который вам нужен.

Определение необходимого номинала автоматического выключателя

При выборе автоматических выключателей необходимо учитывать следующие факторы:

1.Функция цепи

Что будет обслуживать выключатель? Требования к выключателям, предназначенным для защиты электропроводки, будут отличаться от требований к выключателям, предназначенным для защиты оборудования, такого как двигатели. Это будет включать решение о том, требуется ли защита от тепловой перегрузки.

2. Требования к номинальному току / характеристики

Оцените диапазон уставок защиты, необходимый для защищаемого оборудования. Рейтинги нарушителей совпадают. Требование поддержки 80-амперного режима потенциально может быть удовлетворено, например, с помощью выключателя на 100 или 125 ампер.

Требования к номинальному напряжению и силе тока для полной нагрузки, ожидаемой в цепи, являются базовыми значениями, которые изначально определяют номинальные параметры выключателя.

Необходимые функции также будут задействованы в процессе выбора. В зависимости от монтажа или панельного кожуха выключателя, установка может потребовать использования выключателя с вращающейся ручкой или конструкции тумблера.

Требования к установке, конечно же, являются дополнительным фактором. Стандартные панели подходят для определенных типов автоматических выключателей, тогда как для модульных систем или систем, использующих специальные монтажные пластины, потребуются выключатели разных типов.

3. Факторы окружающей среды

При высоких температурах, большой высоте или необычно высоких частотах, превышающих 120 Гц, необходимо учитывать особые коэффициенты снижения мощности. Каждое из этих условий приведет к снижению номинальной мощности автоматического выключателя.

4. Максимальная отключающая способность

Максимальная отключающая способность — это самый высокий уровень тока короткого замыкания, который выключатель может выдержать без повреждения самого устройства. Отключающая способность выключателя должна превышать уровни неисправности, возникающие в цепи.В противном случае произойдет повреждение устройства.

5. Номинальный непрерывный рабочий ток

Стандартные выключатели рассчитаны на силу тока в зависимости от мощности проводов в цепи, которую они защищают. Таким образом, выбор автоматического выключателя будет зависеть не только от функции цепи, но и от номинала провода.

NEC определяет непрерывную работу как состояние, при котором «ожидается, что максимальный ток будет продолжаться в течение трех часов или более».

Дополнительные рекомендации по автоматическому выключателю

Факторы окружающей среды влияют на многие типы выключателей, например, воздействие источников тепла.Поскольку тепло является одним из факторов, способствующих срабатыванию выключателя, выключатели, расположенные близко друг к другу, как в кожухе панели, могут выделять дополнительное тепло, которое влияет на чувствительность функций отключения.

Вот почему Национальный электротехнический кодекс (NEC) требует, чтобы чувствительность выключателя включала коэффициент 80% вместо полных 100% указанной мощности выключателя. Убедитесь, что установленные в эксплуатации выключатели учитывают это.

Также важны испытания и надежность.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *