Жидкое стекло натриевое представляет собой густую жидкость желтого или серого цвета без механических включений и примесей,видимых невооруженным глазом. | |
Плотность | 1,36 — 1.55 кг/кб.м |
Силикатный модуль | от 1,6 до 3,5 |
Процентное содержание SiO2 | 24,1-35% |
Процентное содержание Na2O | 8,0 — 13,3 % |
Поведение жидкостекольных систем при повышенных температурах
Растворимое и жидкое стекло
При умеренном нагревании натриевые жидкие стекла по мере потери влаги увеличивают вязкость и затвердевают, когда содержание воды понижается до 20—30%. Выше 100 °С скорость потери веса снижается и обращается в ноль около’ 600 °С, когда гидратные формы кремнезема полностью отдадут воду.
Весьма важен темп нагревания. Если давление насыщенного пара в глубинных слоях стекла окажется выше атмосферного давления, то произойдет вспучивание материала. Этим явлением пользуются для получения пористых материалов, резко снижая внешнее давление в нагретой системе в той стадии, когда жидкое стекло еще сохраняет пластичность. Такой же результат получается при быстром повышении температуры после гранулирования жидкого стекла, так как существует значительный градиент влажности материала от поверхности к центру гранулы [58, 59].
В других случаях, когда жидкое стекло используется как связующее в бетонах, желательно получить наиболее плотные и прочные структуры. Пористость в бетонах возникает как за счет уменьшения объема жидкого стекла в ходе потери влаги и образования крупных пустот, так и из-за возникновения капиллярной пористости затвердевшего жидкого стекла при его дальнейшем высушивании.
Пористость собственно затвердевшего жидкого стекла, высушенного при разных температурах, была определена нами для калиевых систем различных модулей, начиная от трех и кончая золями, стабилизированными калиевой щелочью. Также была измерена удельная поверхность по азоту методом БЭТ. Пористость определяли измерением эффективной ПЛОТНОСТИ (бэф) пикнометри — ческим методом и кажущейся плотности (ек)- Затвердевшие в
Течение недели растворы в слое 2—3 мм затем сушили до постоянного веса при различных температурах. Данные приведены в табл. 21.
Чем ниже модуль жидкого стекла, тем выше проявляется склонность системы изменять при потере воды свой общий объем, мало изменяя сплошность структуры.
И наоборот, золи стремятся сохранить свой общий объем, создавая пористость при потере воды.Равновесная сушка, т. е. высушивание жидкого стекла до постоянного веса при каждой температуре, и вопросы кинетики сушки описаны в разд. 4.3.
При дальнейшем нагревании обезвоженного силиката, как отмечает Вейл [13], стекло увеличивается в объеме при температуре ниже ликвидуса градусов на 300 и это приводит к частичной потере прочности. Затем прочность начинает существенно возрастать за счет анионной полимеризации и уплотнения всей системы при непосредственном возникновении безводных стекольных связей. Водостойкость системы на этом этапе заметно возрастает. Вблизи 1000 °С начинают протекать реакции между силикатом и теми или иными наполнителями, если силикат находится в составе Жаростойкого бетона, и после достаточной выдержки при этой температуре система приобретает свою эксплуатационную прочность и жаростойкость максимум до 1600 °С (в зависимости от наполнителя) с началом размягчения под нагрузкой 0,2 МПа при этой температуре [57].
Высокотемпературные фазовые превращения безводных нат — Риевых и калиевых стекол можно увидеть по диаграммам в разд. 2-1 и 2.2.
При распылительной сушке натриевого жидкого стекла для получения легкорастворимых порошков температуру воздуха можно повышать до 300 °С, сокращая соответственно время сушки, Для калиевого жидкого стекла такое повышение недопустимо из — за образования нерастворимых форм силиката калия. Силикаты лития при потере гидратной влаги в районе 150—200 °С начинают превращаться в формы, нерастворимые в воде, и материал быстро приобретает водостойкость.
Силикаты четвертичных аммонийных оснований при нагревании начинают разлагаться и теряют не только воду, но и органическую составляющую. На рис. 41 приведены кинетические данные этого процесса при различных температурах. Видно, что нагревание до 300 °С приводит к потере подавляющей части органики. Гидрат тетраметиламмония разлагается с образованием триме- тиламина и метилового спирта
(СН3), NOH—(CH, bN+Ch4OH. R3N + h30+R’-CH=Ch3.
Силикат при этом превращается в частично гидратированный кремнезем, система становится полностью нерастворима в воде, но сохраняет влагопроницаемость. Переход от силиката четвертичного аммония к кремнезему не нарушает целостность пленок и покрытий и используется в практических целях.
Особую область использования растворимых стекол образуют технологии, в которых получение жидкого стекла и его отверждение совмещаются в одном непрерывном процессе [57]. Такая технология включает совместный сухой помол растворимого стекла, части наполнителя и отвердителя. Затворяя по месту использования такую смесь водой и получая требуемые композиции, при повышенной температуре, подчас изменяющейся по заданному графику, проводят операции образования жидкого стекла и отверждения всей композиции. Когда растворимым стеклом являются гидратированные порошки силикатов калия или натрия, растворяющиеся при обычной температуре за несколько минут, то такая технология в физико-химическом отношении мало отличается от обычного процесса использования жидкого стекла в соответствующей композиции.
Другое дело, когда используют безводные растворимые стекла. Большей частью применяют не очень высокомодульные порошки с повышенной щелочностью. Они растворяются лучше, и с применением автоклава, т. е. при температуре выше 100 °С, растворение продолжается десятки минут, часы и может вообще не завершаться полностью. Образовавшееся в системе жидкое стекло уступает во взаимодействие с не очень активным отвердителем, которым может быть и собственно наполнитель; система приобретет начальную прочность, и в дальнейшем, повышая температуру По заданному графику, проводят полное отверждение.
Использование более щелочных растворимых стекол, повышенная температура и необходимое давление пара позволяют связывать карбонатные породы, прежде всего известняки, магнезит, доломиты, достигая прочности на сжатие несколько десятков МПа. Подобная технология была опробована также с алюмосиликатами, некоторыми кремнеземсодержащими породами и целым рядом наполнителей, практически не взаимодействующих с жидким стеклом при обычной температуре [57].
Взаимодействие растворов силикатов с соединениями кальция занимает важное место в практической химии и заслуживает отдельного анализа. Чтобы разобраться в огромном количестве известных из практики фактов, подытожим общехимические сведения, характеризующие их …
В общем виде под силикатными красками следует понима1 суспензию наполнителей, отвердителей (силикатизаторов) и пигментов в водных растворах водорастворимых силикатов, в частности жидких стекол. Применение жидкого стекла в качестве пленкообразователя для …
Наиболее высокомодульными щелочными силикатами являются стабилизированные кремнезоли. Это дисперсные системы с низкой вязкостью и клейкостью. Раствор с содержанием Si02 более 10% при размерах частиц до 7 нм прозрачен, выше 50 …
Жидкое стекло натриевое: применение в строительстве
Что такое жидкое стекло? Жидко стекло – это раствор из силикатных солей, другими словами, силикатный клей. В состав смеси входит калий и натрий. Данные элементы также используют для производства традиционного стекла. Материал назван исходя из составляющих компонентов. Жидкое стекло широко применяют в различных сферах, к примеру, сельском хозяйстве и строительстве. Так как оно имеет подходящие свойства и характеристики.
Как правило, в строительстве используют его для гидроизоляции. А также оно выполняет защитную функцию. Слоем жидкого стекла покрывают стенки бассейнов, колодцев, напольный материал и стены помещений повышенной влажности. Срок эксплуатации конструкции с применением этого материала будет продлён на достаточное количество времени.
Содержание статьи
- 1 Основные свойства материала
- 1.1 Виды силикатного клея
- 1.2 Жидкое стекло: применение для гидроизоляции
- 2 Преимущества и недостатки жидкого стекла
- 3 Применение силикатного состава
- 4 Рекомендации профессионалов при работе с продуктом
- 5 Особенности материала
Основные свойства материала
По мнению профессиональных строителей, жидкое стекло имеет два основных свойства – склеивание строительных элементов и гидроизоляция. Склеенные материалы становятся более прочными и крепко соединёнными между собой.
По составу материалы снаружи крепче, чем внутри. После их обработки жидким стеклом, периферия изделия достигает внутреннего уровня прочности. Жидкое стекло проникает в структуру материала и делает его более крепким. На поверхности образуется водонепроницаемая гладкая плёнка.
Следует знать, что жидкое стекло нельзя наносить на поверхности, которые подлежат дальнейшей окраске, лакированию или покрытию штукатуркой и шпаклёвкой. Так как отделочные материалы не будут связываться с покрытым силикатным клеем.
Обработанные семена жидким стеклом дают возможность получить высококачественный сельскохозяйственный продукт с повышенной устойчивостью к различным заболеваниям растения и эффективным ростом.
Виды силикатного клея
Смесь бывает нескольких видов, в зависимости от компонентов в составе материала. Используемая соль в производстве влияет на основные характеристики и его предназначения.
Жидкое стекло натриевое обладает гидроизоляционными свойствами. Оно может служить добавкой для укрепления растворов для фундаментальной конструкции. И также используется для изготовления клеевых смесей, антисептических средств и огнеустойчивых составов.
Калийный раствор обладает повышенной устойчивостью к химическим воздействиям и атмосферному влиянию. В основном его используют для изготовления красок с защитными свойствами.
Жидкое стекло: применение для гидроизоляции
Свойства клея продлевают срок эксплуатации штукатурки, исключают отслаивание и трещины отделки. Образовывается крепкий продукт силикат кальция после вступления в химическую реакцию жидкого стекла с отделочным материалом.
Производители добавляют жидкое стекло для изготовления плит или блочных элементов с высокой теплоизоляцией. Особенность элементов с использованием жидкого стекла – высокая степень гидроизоляции.
Смесь применяется для укрепления цоколя, фундамента или стен сооружения. Окружающая среда может негативно влиять на конструкцию из традиционных строительных материалов. К примеру, перепад температуры, повышенная влага. Жидкое стекло для гидроизоляции бетона служит как добавочный материал, способный продлит срок службы готовой бетонной конструкции.
Преимущества и недостатки жидкого стекла
Смесь имеет низкую теплопроводность и клеящую структуру. Её покрытие характеризует высокую степень плотности и прочности. При обработке материал выдерживает до 1300 градусов, легко переносит оттаивание и заморозку.
Жидкое стекло может применяться в быту также как антисептик. Состав эффективен при борьбе с плесенью, грибком и прочими вредными микроорганизмами.
Продукт не содержит вредных веществ, безопасен для окружающей среды. Состав не несёт вреда человеку при низких и высоких температурах.
К недостаткам относят высокую щелочную среду смеси. В работе с данным составом нужно надевать перчатки для защиты от повреждений кожи. Попавший клей на накожный покров может образовать ожоги.
Применение силикатного состава
Для получения хорошего результата в работе с данным материалом следует придерживаться технологических рекомендаций. Неправильно нанесенный на основание клей может снизить качество произведенной конструкции.
Жидкое стекло – применение и его особенности:
- На первом этапе нужно очистить рабочую поверхность от загрязнений.
- Если обрабатывается плоскость из бетона, то как правило, не используют чистую смесь. Предварительно производится силикатный раствор с добавлением цементного песка в соотношении 1:10. Нужно цементный песок размеренно распределить по заготовленному раствору.
- Силикат нужно наносить на рабочее основание кистью или валиком.
- Обработка силикатом дерева не требует добавочных материалов. Небольшие деревянные элементы можно окунуть в стекло. Его состав не только покроет внешние стороны изделия, но и немного проникнет в структуру.
- Клей имеет жидкую консистенцию, благодаря которой проникает даже в самые мелкие щели, делает конструкцию монолитной и гидроизоляционной.
Рекомендации профессионалов при работе с продуктом
Для исключения неприятных ситуаций в работе, стоит обратить внимание на следующие советы:
- Жидкое стекло не вносят в готовые растворы. Как правило, его равномерно вводят в водный состав, согласно пропорции.
- Работать с данным строительным материалом можно в пределах температуры от +5 до +30 градусов по Цельсию.
- Грунтовочная смесь изготавливается по пропорции 1:1. То есть, объем жидкого стекла равен объему цемента. Наносится раствор аналогично, как и силикатный клей без добавок.
- Если обрабатываются деревянные элементы, то пропитка изготавливается в соотношении 1:2,5 (жидкое стекло и вода).
- Рекомендовано заготавливать смесь из жидкого стекла в небольших объёмах, так как материал имеет свойство очень быстро схватываться. Работать с таким составом нужно быстро и оперативно.
- Обработка металлических поверхностей требует предварительного обезжиривания специальным средством.
- Проникновения силикатного раствора в однократном нанесении на бетонное основание доходит до 3 мм, и 20 мм в многослойном покрытии.
Особенности материала
Для работы с бетоном, строители используют натриевое жидкое стекло. Оно способствует затвердению залитой бетонной смеси в короткий срок. За интенсивное затвердение материала отвечает алюминат натрия, который возникает в реакции бетонного раствора и силикатного клея.
На сегодняшний день на рынке доступен этот клей от различных производителей. Ценовая политика находится в допустимых значениях. Особенно экономически выгодно использовать жидкое стекло для гидроизоляции.
Нередко жидкое стекло для пола используют в современности. К примеру, укладке линолеума, плитки или заливки полов по различным технологиям. Целесообразно использовать его в качестве замазок для водопроводных труб из чугуна. Современные садоводы используют материал для обрезки деревьев. Покрытый срез ограничивает растение от различных заболеваний и вредителей.
Срок хранения клея не должен превышать один год. Обязательным условием является плотное закрытие ёмкости с материалом и запретный доступ для детей.
Таким образом, жидкое стекло — это уникальный силикатный продукт. Универсальное средство из солей можно использовать в чистом виде и добавлять в строительную смесь. Его свойства дают возможность получить высококачественную работу в быту строительстве и прочих сферах деятельности.
Видео по теме:
цементная стяжка после обработки жидким стеклом
02:43
Простой совет КАК БЫСТРО и ЛЕГКО дозировать по ОБЪЁМУ жидкие ДОБАВКИ в бетон.
02:19
Приготовление растворов жидкого стекла и хлористого кальция для монолитного арболита
03:06
Жидкостные стеклянные термометры — Chipkin Automation Systems
Жидкость в стекле Термометр – самый простой и наиболее часто используемый тип прибора для измерения температуры. это один из старейших термометров, доступных в отрасли. Он дает достаточно точные результаты в диапазон температур от -200 до 600°C. Для измерения температуры с помощью этих термометры. Можно легко прочитать показания температуры человеческими глазами. Они находят свое применение в различных приложений, таких как медицина, метрология и промышленность. Первый стеклянный жидкостный термометр был введенный в 1650 году, в котором жидкость была залита спиртом из вина. Позже, более линейный термометры были разработаны с использованием ртути в качестве жидкости внутри термометра.
«В термометре ЛИГ термочувствительным элементом является жидкость, содержащаяся в градуированной стеклянной оболочке. Принцип, используемый для измерения температуры, основан на кажущемся тепловом расширении жидкости. Это разница между объемным обратимым тепловым расширением жидкости и ее стеклянного сосуда, позволяет измерять температуру».
Конструкция
Типичный стеклянный жидкостный термометр показан на рисунке ниже.
В основном включает:
- Колба, действующая как контейнер для функционирующей жидкости, где она может легко расширяться или сжиматься в емкости.
- Стебель, «стеклянная трубка, содержащая крошечный капилляр, соединенный с колбой и расширенный в нижней части. в колбу, частично заполненную рабочей жидкостью».
- Температурная шкала, которая в основном предустановлена или отпечатана на стержне для отображения температуры чтения.
- Точка отсчета, т. е. точка калибровки, которая чаще всего является точкой на льду.
- Рабочая жидкость обычно представляет собой ртуть или спирт.
- Инертный газ, в основном аргон или азот, который заполняют внутри термометра над ртутью для регулировки вниз его улетучивание.
Основные характеристики
Основные характеристики жидкостных стеклянных термометров включают:
- Степень погружения этих термометров в среду при измерении температуры в основном определяет точность результатов. Как правило, существует три класса погружения: полное, частичное и полное погружение классифицируются в зависимости от уровня контакта между средой и чувствительный элемент.
- «Ошибка может возникать, когда термометр не погружен на ту же глубину, что и при погружении. изначально откалиброван. «Экстренная коррекция ножки» может быть необходима, когда невозможно погрузить термометр достаточно глубоко».
- Время отклика жидкостного термометра зависит от типа термометра, его колбы. объем, толщина и общий вес. Для получения быстрой реакции колба термометра должна быть сконструирован таким образом, что в результате получается маленькая, а стенка луковицы тонкая.
- Их чувствительность основана на характеристиках обратимого теплового расширения жидкости в сравнение со стеклом. Чем больше тепловое расширение жидкости, тем выше чувствительность датчика. термометр есть.
- Органические жидкости, которые обычно используются для изготовления жидкостных стеклянных термометров, включают: толуол, этиловый спирт и пентан. Несмотря на высокое тепловое расширение, они нелинейны и их использование ограничено при высоких температурах.
Применение
Жидкостные стеклянные термометры в основном используются в военно-морском флоте и корпусе морской пехоты в различных конфигурации. Они также применяются в метеорологических и океанографических приложениях, где они обычно откалиброван по градуировке, вечно выгравированной на стекле.
Преимущества
Ниже перечислены основные преимущества, связанные с использованием жидкостных стеклянных термометров:
- Они сравнительно дешевле, чем другие устройства для измерения температуры.
- Удобны в использовании.
- В отличие от электрических термометров, им не требуется источник питания или батареи для зарядки.
- Их можно часто применять в местах, где есть проблемы с электричеством.
- Они обеспечивают очень хорошую воспроизводимость, и их калибровка остается неизменной.
Ограничения
Использование стеклянных жидкостных термометров также включает следующие ограничения:
- Они считаются непригодными для применения при очень высоких или низких температурах.
- Их нельзя применять в регионах, где желательны высокоточные результаты.
- По сравнению с электрическими термометрами они очень слабые и хрупкие. Поэтому с ними нужно обращаться с особой осторожностью, потому что они могут сломаться.
- Кроме того, они не могут предоставлять цифровые и автоматические результаты. Следовательно, их использование ограничено областями, где достаточно только ручного считывания, например, бытового термометра.
- «Показания температуры следует записывать сразу после извлечения, поскольку стеклянный термометр может зависит от температуры окружающей среды, тепла, выделяемого рукой, чисткой и т. д. Это Температуру следует записывать, потому что стеклянный термометр не позволяет вспомнить измеренное значение. температура».
- Для считывания температуры с помощью жидкостных термометров требуется хорошее зрение.
- Жидкие элементы, содержащиеся в стеклянном термометре, могут быть опасны или опасны для здоровья из-за их возможные разливы химических веществ.
- Эти термометры отображают температуру по шкале Цельсия или Фаренгейта. Таким образом, температура преобразование потребуется, если требуется показание температуры в какой-либо другой шкале.
Знаете ли вы, что мы также предлагаем решения для интеграции BACnet?
У Чипкина есть решения BACnet практически для любой ситуации. У нас более 20 лет опыт в BACnet интеграции, ознакомьтесь с нашими продуктами BACnet:
Ссылки
- http://www.evitherm.org/default.asp?lan=1&ID=996&Menu1=996
- http://www.tpub.com/
Ученые определили температуру, при которой стекло становится жидкостью
Метод проникновения инертного газа, разработанный в PNNL, используется для исследования образования стабильных стекол.В то время как стекло можно рассматривать как средство для хранения вина или как окно, стабильность стекла влияет на такие разные области, как хранение ядерных отходов, фармацевтические препараты и мороженое. Недавно физики-химики из Тихоокеанской северо-западной национальной лаборатории сделали ключевое открытие о том, как формируется стекло.
Они обнаружили, что температура, при которой стеклообразующие материалы осаждаются на подложку, влияет на стабильность. Их выводы, опубликованные в The Journal of Physical Chemistry Letters показывают способность метода, называемого проникновением инертного газа, определять, при какой температуре твердое тело «плавится». Их работа приносит больше понимания фундаментальных свойств стекла.
«Стекла — это метастабильные материалы с механическими свойствами твердого тела — их можно трогать и держать, а не газ», — сказал доктор Скотт Смит, соавтор статьи. «Но они не похожи на кристаллические материалы, которые находятся в идеальном порядке. Молекулы в стеклах расположены беспорядочно. В жидкостях молекулы постоянно движутся, если вы внезапно заморозите жидкость, молекулы будут беспорядочно ориентированы и неструктурированы. В некотором смысле стакан можно рассматривать как застывшую жидкость».
Независимо от того, как производится стекло, важно понимать его свойства. Например, причина, по которой некоторые лекарства имеют срок годности, заключается в том, что их физическое состояние меняется с аморфного на кристаллическое. Как только это происходит, лекарство не так быстро растворяется при приеме и, следовательно, неэффективно. Поиск способов повысить его стабильность и эффективность продлит срок его хранения. Точно так же, когда ядерные отходы помещаются в стеклянную матрицу, стекло должно оставаться стабильным, чтобы предотвратить выброс радионуклидов. И, как известно большинству любителей мороженого, когда вы открываете коробку и видите, что на поверхности образовались кристаллы, оно теряет большую часть своего вкуса.
«Наше исследование является фундаментальной работой, которая может иметь важное значение для стабильного производства стекла, поскольку способствует пониманию жидкостей и их поведения», — сказал Смит. Стекла зависят от температуры для стабильности. При правильной температуре стекло остается стабильным, потому что его молекулы остаются на месте. При более высоких температурах он превращается в переохлажденную жидкость, а затем кристаллизуется.
Чтобы создать стекло, материалы должны быть быстро охлаждены до достаточно низкой температуры, чтобы у молекул не было достаточно времени или энергии, чтобы найти конфигурацию с наименьшей энергией (кристалл). Эта температура называется температурой стеклования, или Tg, и она варьируется в зависимости от условий эксперимента и скорости охлаждения.
Смит и его коллеги д-р Алан Мэй и д-р Брюс Кей взяли стеклообразующие материалы толуол и этилбензол и переохладили их, поместив на поверхность при температуре 30 К. Когда материалы ударились о поверхность, они образовали аморфное твердое вещество— стекло. Затем исследователи нагрели образец. Слой криптона, осажденный между двумя слоями стеклообразного материала (сэндвич), оставался в ловушке до тех пор, пока стекло не превратилось в переохлажденную жидкость (см. рисунок). Начало газовыделения показывало, при какой температуре стекло переходит в переохлажденную жидкость.
Исследователи варьировали температуру осаждения материала от 40 до 130 К. Они обнаружили, что стабильность стекла зависит от температуры осаждения. Они обнаружили, что как для толуола, так и для этилбензола осаждение при температуре на несколько градусов ниже Tg дает наиболее стабильное стекло, наиболее устойчивое к превращению в переохлажденную жидкость. Эти результаты согласуются с калориметрическими исследованиями профессора Марка Эдигера из Университета Висконсин-Мэдисон.
«Мы обнаружили, что можем контролировать одну переменную: температуру осаждения. Даже разница в один кельвин может привести к разнице в сроке службы и стабильности материала на годы», — сказал Смит.
Узнать больше
Переохлаждая жидкости, ученые могут определить физику, происходящую в очках
Дополнительная информация: Р. Скотт Смит и др. Зондирование стабильного толуола и этилбензола стеклообразования с использованием проникновения инертного газа, Журнал физической химии Letters (2015). DOI: 10.1021/acs.jpclett.5b01611
Информация журнала: Journal of Physical Chemistry Letters
Предоставлено Тихоокеанская северо-западная национальная лаборатория
Цитата : Ученые определили температуру, при которой стекло становится жидкостью (2016, 18 марта) получено 19октябрь 2022 г. с https://phys.org/news/2016-03-scientists-temperature-glass-liquid.html
Этот документ защищен авторским правом. Помимо любой добросовестной сделки с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в ознакомительных целях.
Правильное применение жидкостных стеклянных термометров для точного измерения температуры в клинической лаборатории. | Клиническая химия
Фильтр поиска панели навигации Клиническая химияЭтот выпускЖурналы AACCБиохимияМедицинские навыкиПатологияМетоды исследования в науках о жизниКнигиЖурналыOxford Academic Термин поиска мобильного микросайта
Закрыть
Фильтр поиска панели навигации Клиническая химияЭтот выпускЖурналы AACCБиохимияМедицинские навыкиПатологияМетоды исследования в науках о жизниКнигиЖурналыOxford Academic Термин поиска на микросайте
Расширенный поиск
Журнальная статья
Получить доступ
Южная
С Вен
Ищите другие работы этого автора на:
Оксфордский академический
Google ученый
Клиническая химия , том 22, выпуск 7, 1 июля 1976 г. , страницы 1112–1113, https://doi.org/10.1093/clinchem/22.7.1112
Опубликовано:
01 июля 1976 г.
Фильтр поиска панели навигации Клиническая химияЭтот выпускЖурналы AACCБиохимияМедицинские навыкиПатологияМетоды исследования в науках о жизниКнигиЖурналыOxford Academic Термин поиска мобильного микросайта
Закрыть
Фильтр поиска панели навигации Клиническая химияЭтот выпускЖурналы AACCБиохимияМедицинские навыкиПатологияМетоды исследования в науках о жизниКнигиЖурналыOxford Academic Термин поиска на микросайте
Расширенный поиск
Предварительный просмотр первой страницы статьи PDF
Закрыть
Этот контент доступен только в формате PDF.
© 1976 Американская ассоциация клинической химии, Inc.
© 1976 Американская ассоциация клинической химии, Inc.
В настоящее время у вас нет доступа к этой статье.
Скачать все слайды
Войти
Получить помощь с доступом
Получить помощь с доступом
Доступ для учреждений
Доступ к контенту в Oxford Academic часто предоставляется посредством институциональных подписок и покупок. Если вы являетесь членом учреждения с активной учетной записью, вы можете получить доступ к контенту одним из следующих способов:
Доступ на основе IP
Как правило, доступ предоставляется через институциональную сеть к диапазону IP-адресов. Эта аутентификация происходит автоматически, и невозможно выйти из учетной записи с IP-аутентификацией.
Войдите через свое учреждение
Выберите этот вариант, чтобы получить удаленный доступ за пределами вашего учреждения. Технология Shibboleth/Open Athens используется для обеспечения единого входа между веб-сайтом вашего учебного заведения и Oxford Academic.
- Нажмите Войти через свое учреждение.
- Выберите свое учреждение из предоставленного списка, после чего вы перейдете на веб-сайт вашего учреждения для входа.
- Находясь на сайте учреждения, используйте учетные данные, предоставленные вашим учреждением. Не используйте личную учетную запись Oxford Academic.
- После успешного входа вы вернетесь в Oxford Academic.
Если вашего учреждения нет в списке или вы не можете войти на веб-сайт своего учреждения, обратитесь к своему библиотекарю или администратору.
Войти с помощью читательского билета
Введите номер своего читательского билета, чтобы войти в систему. Если вы не можете войти в систему, обратитесь к своему библиотекарю.
Члены общества
Доступ члена общества к журналу достигается одним из следующих способов:
Вход через сайт сообщества
Многие общества предлагают единый вход между веб-сайтом общества и Oxford Academic. Если вы видите «Войти через сайт сообщества» на панели входа в журнале:
- Щелкните Войти через сайт сообщества.
- При посещении сайта общества используйте учетные данные, предоставленные этим обществом. Не используйте личную учетную запись Oxford Academic.
- После успешного входа вы вернетесь в Oxford Academic.
Если у вас нет учетной записи сообщества или вы забыли свое имя пользователя или пароль, обратитесь в свое общество.
Вход через личный кабинет
Некоторые общества используют личные аккаунты Oxford Academic для предоставления доступа своим членам. Смотри ниже.
Личный кабинет
Личную учетную запись можно использовать для получения оповещений по электронной почте, сохранения результатов поиска, покупки контента и активации подписок.
Некоторые общества используют личные аккаунты Oxford Academic для предоставления доступа своим членам.
Просмотр ваших зарегистрированных учетных записей
Щелкните значок учетной записи в правом верхнем углу, чтобы:
- Просмотр вашей личной учетной записи и доступ к функциям управления учетной записью.
- Просмотр институциональных учетных записей, предоставляющих доступ.
Выполнен вход, но нет доступа к содержимому
Oxford Academic предлагает широкий ассортимент продукции. Подписка учреждения может не распространяться на контент, к которому вы пытаетесь получить доступ. Если вы считаете, что у вас должен быть доступ к этому контенту, обратитесь к своему библиотекарю.
Ведение счетов организаций
Для библиотекарей и администраторов ваша личная учетная запись также предоставляет доступ к управлению институциональной учетной записью. Здесь вы найдете параметры для просмотра и активации подписок, управления институциональными настройками и параметрами доступа, доступа к статистике использования и т. д.
Покупка
Стоимость подписки и заказ этого журнала
Варианты покупки книг и журналов в Oxford Academic
Кратковременный доступ
Чтобы приобрести краткосрочный доступ, войдите в свою учетную запись Oxford Academic выше.
У вас еще нет учетной записи Oxford Academic? регистр
Правильное применение стеклянных жидкостных термометров для точного измерения температуры в клинической лаборатории.