Разное

Светодиодная лампа разборка: Как разобрать светодиодную лампу для её ремонта

Светодиодная лампа разборка: Как разобрать светодиодную лампу для её ремонта

Содержание

Как разобрать светодиодную лампу на 220, e27, e14 и g13 в домашних условиях

Содержание:

  • Устройство любой светодиодной лампы
    • Почему не горит лампа
    • Как починить
  • Как разобрать лампу
    • Лампы с цоколем e27 и e14
    • Лампы с цоколем g13
  • Замена галогеновых точечных ламп на светодиодные

Светодиодные лампы выпускаются разной формы и на различных цоколях. В настольные лампы и потолочные люстры обычно вставляются приборы с винтообразным цоколем e27 или е14. Последний тоньше первого. В ряд настольных ламп, в аквариумы и в офисные люстры последнее время вставляются светодиодные лампы Т8 с цоколем g13 — они внешне напоминают трубку с штырями контактов с обоих торцов.

Эти модели заменяют газоразрядные аналоги, которые тратят больше энергии, быстрее выходят из строя, стоят дороже и, к тому же, содержат вредные компоненты, которые усложняют их утилизацию.

Если аккуратно разобрать светодиодную лампочку, её удастся починить, так что она прослужит ещё не один год.

Устройство любой светодиодной лампы

Любая лампочка такого типа состоит из цоколя с контактами, корпуса и матового светорассеивателя (в современных модификациях — пластикового купола или трубки).

Внутреннее устройство светодиодной лампы:

  • платформа с диодами, соединёнными последовательно;
  • радиатор теплоотвода, защищающий платформу от перегрева;
  • провода, передающие питание («плюс» и «минус»), один из них выведен вниз, на контакт, другой заведён под цоколь;
  • драйвер, распрямляющий переменный ток и понижающий напряжение 220 вольт до приемлемого для светодиодов;
  • конденсаторы, поглощающие скачки напряжения и защищающие прибор от взрыва и перегорания (обычная ёмкость — 250, идеальная — 800 микрофарад).

Почему не горит лампа

Чаще всего, лампа перестаёт гореть вовсе не из-за тотальной поломки на плате или взрыва конденсатора (что тоже случается), а из-за банального разрыва цепи. Один из диодов на платформе перегорает по той или иной причине.

Подсоединены эти элементы последовательно. Соответственно, цепь разрывается, и перестают гореть все диоды. Такой же принцип работы у ёлочных гирлянд. Попробуйте выкрутить один диод, и погаснет вся цепочка.

Взрыв конденсатора — относительно редкая причина. Она характерна для дешёвых марок, где стоят элементы с недостаточной ёмкостью, порядка 200—250 микрофарад.

Как починить

Перегоревший диод обычно заметен сразу: на нём появляется чёрное пятно. Если уверенности нет, лучше проверить каждый элемент. Это делается либо амперметром, либо батарейкой с прикреплёнными к её концам проводками. По очереди замыкается каждый из диодов, пока не определятся неисправные.

Чтобы восстановить цепь, перегоревший диод нужно убрать и замкнуть контур иным способом либо заменить элемент. Запасные диоды нужного образца продаются в радиодеталях, а также на китайских торговых площадках, например «АлиЭкспресс». Ресурс

mschistota.ru напоминает, что диоды выпускаются разного качества, и брать их стоит у проверенного продавца.

Самый вероятный выход — поставить перемычку одним из двух способов:

  • припаять короткую и тонкую проволочку, соединив «+» и «–» контактной площадки под удалённым диодом;
  • капнуть сначала флюсом, а затем припоем так, чтобы занять края контактной площадки.

Совет
Используя паяльник, будьте осторожны, чтобы не расплавить корпус лампочки и не задеть работающие диоды.

Как разобрать лампу

Конкретный способ зависит от модели и марки светодиодной лампы, журнал «Мисс Чистота» предлагает ознакомиться с типовыми подходами.

Лампы с цоколем e27 и e14

Если светорассеиватель выполнен из пластика, то процедура не занимает много времени:

  1. Снять светорассеиватель. В случае фиксации шипом — слегка сжать и отделить от корпуса. Если деталь держится силиконовым герметиком (в более дешёвых моделях, в том числе
    Ecola
    ) — провести скальпелем или канцелярским ножом, подрезая пасту, затем убрать купол.
  2. Отпаять, нагрев паяльником, два провода в центре платформы с диодами.
  3. Открепить винты либо подрезать силиконовый слой по окружности платформы.
  4. Перевернуть лампочку на бок, поддеть ножом заглушку на конце цоколя, вынуть и отложить её.
  5. Отогнуть показавшийся провод.
  6. Аккуратно потянуть или поддеть ножом и осторожно поднять платформу с диодами. Во многих моделях она слита с радиатором. В других случаях нужно сначала вынуть платформу, а затем поднять радиатор.
  7. Вытянуть или отрезать (первый вариант предпочтителен) провод, заведённый под корпус.
  8. Извлечь плату с драйвером и конденсаторами.

Чтобы усилить яркость светодиодной лампы, можно попробовать заменить диодную платформу, припаяв провода к пучку диодных лент. При этом важно смазать дно платформы термопастой, а конденсаторы заменить на более ёмкие. Однако ленты, вставленные в пластиковый светорассеиватель, будут его неизбежно перегревать, так что прослужит такая лампа, скорее всего, недолго. Плюс этого метода в том, что отрезки ленты подключаются параллельно, и если одна из них перегорит, остальные продолжат работать.

Лампы с цоколем g13

Главное отличие этих устройств — прямое, а не круговое расположение диодов, в остальном конструкция того же типа. Чтобы разобрать её, нужно:

  1. Освободить винты либо аккуратно прогреть торцевую заглушку (и силиконовый слой под ней).
  2. Снять колпачок с контактами, не разрывая провода.
  3. Если светорассеиватель самостоятельная деталь и крепится на алюминиевой базе, вытянуть его и снять. Если крепление монолитное, то нужно аналогично первому снять второй торцевой контакт.
  4. Отпаять провода от контактов.
  5. Вынуть площадку с диодами. Обычно на ней снизу крепятся драйвер и конденсаторы.

Важно
Если не прогреть силиконовое сцепление или действовать неаккуратно, торцевая заглушка лопнет. Это особенно опасно для аквариумных ламп, поскольку они работают в условиях постоянной влажности.

Все описанные способы подходят для случаев с пластиковыми светорассеивателями. На рынке всё ещё встречаются светодиодные лампочки со стеклянными корпусами. К сожалению, любая попытка разобрать такую конструкцию почти гарантированно приведёт к поломке: стекло расколется. Чинить подобные устройства опасно, легко порезаться. Поэтому имеет смысл либо заменить их новой лампой, либо попытаться найти пластиковый светорассеиватель и поставить на старый корпус.

Замена галогеновых точечных ламп на светодиодные

Галогеновые лампы сильно греются и потребляют много энергии, поэтому имеет смысл заменить их на светодиодные.

Как заменить галогеновый фонарь:

  1. Надавить на галогеновую лампу и выяснить, с какой стороны расположена запирающая скоба.
  2. Протолкнуть лампу в пространство над потолком в обратную сторону от скобы.
  3. Двумя крючками по очереди зацепить распорочные скобы («уши»).
  4. Отжать пружины и вынуть патрон.
  5. Вытянуть лампу.
  6. Нажать фиксатор и освободить цоколь. В потолки старого образца монтировались светильники под цоколь g
  7. Вставить светодиодную лампу с тем же цоколем, например «Онлайт» MR
  8. Ввести её в патрон.
  9. Монтировать всю конструкцию обратно в отверстие в потолке.

Идеальный вариант, конечно, перепаять гнездо на вариант GX53 (в линейке того же «Онлайт»), чтобы впоследствии не вынимать патрон, а просто заменять светильник, провернув на пол-оборота. Однако такую операцию имеет смысл доверить электрику, тем более, что заменять придётся не одно и не два гнезда, а гораздо больше.

Светодиодные лампы считаются сегодня наиболее удачным решением и для жилых, и для офисных помещений. Благодаря рассеивателю LED даёт мягкий, приятный для глаз свет, при этом он достаточно яркий. Большое преимущество — отсутствие пульсации, экономичный расход энергии и возможность отремонтировать лампу, заменив всего один диод или просто поставив «пломбу» на его место. Поэтому не стоит отказываться и от светодиодных настольных светильников — лампочку в них не заменишь, но легко переставить диоды, прикупив заранее светодиодные ленты, которые стоят совсем недорого.

Как разобрать светодиодную лампочку е27

Содержание

  1. Устройство светодиодной лампы
  2. Простейшая схема устройства светодиодной лампы 220 В
  3. Разборка светодиодной лампочки с герметиком
  4. Выявляем причину выхода из строя светодиодной лампочки
  5. Ремонт
  6. Замена блока питания
  7. Замена светодиодов
  8. Ремонт драйвера
  9. Особенности ремонта лампы «кукуруза»
  10. Модернизация лампы в ходе ремонта
  11. Моргание и устранение их причин в светодиодной лампочке
  12. Заключение
  13. Устройство диодного прибора
  14. Назначение и разновидности цоколей
  15. Роль драйвера светодиодной лампы
  16. Особенности монтажной платы
  17. Нюансы устройства LED-элементов
  18. Специфика работы радиатора
  19. Несколько слов про оптику
  20. Частые причины неисправностей
  21. Предварительная диагностика устройства
  22. Как разобрать светодиодный модуль?
  23. Способ #1 — откручивание
  24. Способ #2 — нагревание феном
  25. Самостоятельная замена светодиодов
  26. Решение проблем с драйвером
  27. Выводы и полезное видео по теме
  28. Устройство и принцип работы светодиодной лампы на 220 вольт
  29. Схема-чертеж драйвера светодиодной лампы
  30. Почему может потребоваться ремонт светодиодной лампы, устройство и электрические схемы
  31. Основы ремонта светодиодной лампы на 220 В своими руками
  32. Как аккуратно разобрать светодиодную лампу и выявить причину поломки
  33. Процедура замены светодиодов
  34. Ремонт драйвера светодиодной лампы
  35. Замена блока питания
  36. Видео: инструкция по подбору резистора
  37. Причины моргания LED-лампочек
  38. Подводим итоги: ремонт светодиодных ламп своими руками

Несмотря на огромное разнообразие электрических осветительных приборов, высокая экономичность и максимально продолжительные сроки эксплуатации позволяют светодиодам существенно опережать конкурентов.

Именно такие источники света предпочитают сегодня жители многих стран мира, однако большой спрос порождает и массовое производство. Далеко не все изготовители относятся добросовестно к технологиям и рекомендациям, что приводит к быстрому перегоранию изделий. Постоянно покупать новые устройства — «себе дороже». В таких ситуациях и требуется ремонт светодиодных ламп своими руками.

Не стоит пугаться и моментально закрывать статью — прочитав информацию ниже, вы поймете, что с такой работой может справиться даже неквалифицированный человек без опыта работы. В сборе светодиодная лампа или светильник — дорогостоящее изделие, но по отдельности купить сгоревшую деталь не составит труда.

Устройство светодиодной лампы

Приступая к ремонту чего-либо, для начала следует тщательно изучить устройство и принцип работы оборудования. Независимо от внешнего вида и используемых светодиодов каждая лампа, включая филаментную, сконструирована по одной электрической схеме. Снимите корпус изделия и внутри увидите драйвер — электронную плату, к которой крепятся различные радиотехнические компоненты.

Любая LED-лампа функционирует по одному принципу. Напряжение питания поступает на контакты электрического патрона и передается на вывод обычного цоколя лампочки (E27 или другого формата). Таких выводов может быть несколько штук. К ним паяются два провода, по которым напряжение переходит на вход электронной платы. Драйвер преобразует переменное напряжение в постоянное, обычно понижая его, после чего передает на другую электронную плату со светодиодами.

Драйвер — электронный блок, генерирующий и преобразующий ток с напряжением в те значения, которых достаточно для работы светодиодов. В более дорогостоящих изделиях в целях защиты плата прячется под рассеивающим стеклом.

Простейшая схема устройства светодиодной лампы 220 В

Максимально простая схема для светодиодной лампы, подключаемой к сети 220 В, включает драйвер, состоящий из двух гасящих резисторов, стабилизирующих напряжение. Подключение LED-диодов происходит в разных направлениях, что гарантирует идеальную защиту от обратного напряжения. В таком случае частота мерцания увеличивается с 50 до 100 Гц.

К примеру, для подключения светодиодной ленты к цоколю припаиваются два провода. Концы этих проводов впоследствии соединяют с концами светодиодной ленты. Электрическая цепь плюсового провода включает конденсатор с параллельно подключенным резистором и проходит через положительную часть диодного моста, а цепь минусового провода — резистор и соединяется с отрицательной частью диодного моста. Между диодным мостом и светодиодной лентой устанавливают второй блок «конденсатор-резистор», подключаемый к обоим проводам.

Проще говоря, питающее напряжение проходит через ограничительный конденсатор и поступает на диодный мост, а оттуда — на светодиодные элементы. Заменив светодиод на выпрямительный диод, вы в два раза не увеличите, а понизите напряжение — с 50 до 25 Гц. При таком раскладе мерцание изделия станет чувствительным, вредным для зрительных органов, приводящим к быстрой утомляемости и мигреням.

Разборка светодиодной лампочки с герметиком

Далеко не все изделия легко и просто разобрать, не повреждая составных частей. Попробуйте повернуть верхнюю часть корпуса. Если ничего не получается, придется воспользоваться растворителем. Наберите некоторое количество растворителя в шприц и через иголку выдавите вдоль шва. Подождите около 5 – 10 минут, затем повторите операцию.

Проделайте действия не менее трех раз, затем начните поворачивать верхнюю часть корпуса в разные стороны, чтобы раскачать ее. Когда колба будет снята, очистите внутренние стенки, удалив герметик и обезжирив поверхности. Если устройство будет эксплуатироваться в помещении с невысоким уровнем влажности, герметик не накладывается.

Выявляем причину выхода из строя светодиодной лампочки

Срок эксплуатации любого изделия, включая светодиодные лампы, зависит от условий применения, соблюдения правил и рекомендаций, прописанных изготовителями.

Существует масса причин, из-за которых срок службы, указанный производителем, не соответствует действительности: применение некачественных кристаллов и неправильная оценка работоспособности, поскольку условия реальной эксплуатации практически всегда отличаются от потенциальных.

Перечислим главные причины выхода из строя светодиодных изделий:

  1. Скачки напряжения. Звучит странно, поскольку диодные лампы из всех осветительных приборов менее чувствительны к колебаниям электрических параметров. Любые изменения напряжения в худшую сторону влияют на функциональность устройства. Это менее заметно по сравнению с лампами накаливания, галогенками, экономками или КЛЛ, но имеет место быть.
  2. Просчеты при выборе светильника — выбор неподходящего плафона. Если конфигурация технически неверная, возрастает вероятность перегрева. И вновь нужно вспомнить о том, что в сравнении с остальными источниками света светодиодные лампы выделяют минимум тепла. Возгорания не произойдет, но повышение температуры на несколько градусов снизит долговечность устройства.
  3. Использование некачественных компонентов (кристаллов). Немногие производители применяют детали с хорошими технико-эксплуатационными характеристиками, что обусловлено желанием снизить себестоимость. В результате лампы быстрее выходят из строя.
  4. Технические ошибки, допущенные при построении электрической цепи системы освещения. К примеру, при подключении светодиодных ламп использовалась электропроводка с недостаточным сечением кабеля.
  5. Разнообразные внешние факторы, несмотря на повышенные прочностные характеристики устройств, спрятанных в пластиковой колбе. Сюда относятся вибрации, механические удары.

Чтобы продлить срок эксплуатации светодиодных ламп и повысить качество свечения, постарайтесь исключить или снизить до минимума влияние вышеперечисленных факторов. Доверьте прокладку электрической проводки мастерам, создайте максимально комфортные и приемлемые условия для использования изделий.

Хорошее устройство будет иметь ровные края. Не всегда получается оценить качество применяемых кристаллов, поэтому старайтесь покупать лампы в проверенных магазинах от брендовых производителей.

Другой вариант продления срока службы светодиодной лампочки — использование диммера, регулирующего световой поток. Важно заранее купить диммируемые устройства или самостоятельно выполнить модернизацию имеющихся. Диммер позволит понизить пусковой ток: чем меньше значение, тем лучше.

Ремонт

Светодиодную лампу можно отремонтировать независимо от причин выхода из строя. Чтобы это сделать, нужно разобрать изделие на части и добраться до начинки. Для начала удаляется рассеиватель, выполняющий несколько функций. Компонент либо крепится к базовой части через герметик, либо удерживается с помощью защелки. Если элемент будет поворачиваться отдельно от корпуса, для снятия достаточно в нужном месте надавить.

Выше было описано, что нужно делать, если рассеиватель надежно приклеен к корпусу. Добавим к применению растворителя возможность удаления корпуса при помощи тонкой отвертки: аккуратно подденьте, не прикладывая больших усилий.

Неремонтопригодны светодиодные лампы со стеклянными колбами, поскольку удалить подобный рассеиватель без повреждений практически нереально.

Замена блока питания

В комнатах с повышенным уровнем влажности используются осветительные приборы низкого напряжения — 12 или 24 В, которые подключаются к общей электрической сети 220 В. Для понижения высокого напряжения переменного тока до необходимых значений постоянного используются стабилизирующие блоки питания, которые могут выйти из строя.

Причиной поломки блока питания может стать повышенная нагрузка (если суммарная мощность используемых светильников превышает допустимую для стабилизатора) или неправильно подобранная степень защиты от проникновения пыли и влаги (IP). Чтобы починить данные изделия, следует обратиться в специализированные сервисные центры, поскольку в бытовых условиях восстановить их нереально (требуется определенное оборудование и знания радиоэлектроники). Единственный вариант — поменять блок питания.

Во время замены стабилизатора светодиодная лампа должна быть полностью отключена от сети питания — перерезаны провода или отключены клеммы. Не надейтесь исключительно на выключатель. Обязательно отключите напряжение через распределительный щиток квартиры.

Мощность для стабилизирующего блока питания должна быть выше суммарного значения подключаемых ламп. После отключения вышедшего из строя элемента подключите новый в соответствии с коммутирующей схемой. Найти ее можно в технической документации к оборудованию. Процесс максимально прост, поскольку провода имеют цветовую, а контакты — буквенную маркировки.

Степень защиты от пыли и влаги для ванной комнаты должна быть не менее IP45.

Замена светодиодов

Чтобы максимально упростить процедуру, воспользуйтесь паяльной станцией/феном. Паяльником действовать труднее, но можно.

Большинство устройств состоят из нескольких светодиодов, соединенных последовательно. Если выходит из строя хотя бы один, перестает работать целая группа или весь источник света. В таком случае, если под рукой нет подходящего светодиода, сгоревший можно заменить обычной перемычкой. Помните, что из-за перемычки лампа проработает недолго, но так можно выиграть немного времени на покупку нужного элемента. Чем меньше общее число светодиодов, тем быстрее лампа с перемычкой выйдет из строя.

В современных осветительных приборах используются SMD-диоды, которые могут быть выпаяны из ленты. При замене убедитесь, что купили деталь с идентичными техническими параметрами.

Ремонт драйвера

Если вышел из строя драйвер, изучите его конструкцию. Электронная плата может состоять из нескольких SMD-диодов, размер которых гораздо меньше, чем у жала паяльника. В таком случае нужно выбрать паяльник с медной проволокой на жале. Выполните выпаивание сгоревшего элемента и подберите подходящий по характеристикам или маркировке.

Когда видимых неисправностей не обнаружено, задача усложняется. Придется выпаивать каждую деталь отдельно и прозванивать ее. Как только будет найден сгоревший компонент, замените его на новый и верните все элементы на свои места. Для упрощения работы используйте пинцет.

Никогда не удаляйте с платы все детали разом. Вы можете не запомнить их правильное расположение и впоследствии перепутать. Действуйте следующим образом: выпаяйте один диод, проверьте его работоспособность, а затем верните на место. Повторите то же самое для остальных элементов.

Особенности ремонта лампы «кукуруза»

«Кукуруза» — одна из разновидностей светодиодных ламп, получившая название из-за своей формы и расположения полупроводников.

Обслуживать такие изделия проще простого! Светодиоды расположены сверху и ничем не защищены, поэтому при их замене необязательно разбирать устройство и лезть в его начинку.

Прозвоните каждый элемент отдельно и замените вышедшие из строя. Неисправный компонент может быть заменен обычной перемычкой. Наличие таковой незначительно снижает срок эксплуатации «кукурузы», но никак не влияет на стабильность и надежность устройства. Это актуально только для ламп данного типа!

Модернизация лампы в ходе ремонта

Параллельно ремонту ламп можно немного поэкспериментировать со светодиодами. Делается это по причине того, что одинаковые светодиоды (по типу и яркости) с разной цветовой температурой (теплым желтым и холодным белым свечением) отличаются по цене в 3 – 4 раза. Несмотря на это, покупные светодиоды с теплым свечением, считающиеся наиболее дорогими по сравнению с обычной лампой накаливания, имеют синеватый оттенок.

Более дешевые заводские лампы выпускаются без выпрямителя или сглаживающего конденсатора. Вы можете самостоятельно установить его в домашних условиях, используя обычный паяльник. Обычно элементы отсутствуют в китайских изделиях, производители которых просто соединяют пары светодиодов, подключенных в разных направлениях, и добавляют балластный конденсатор. Мерцание лампы усиливается в 2 – 3 раза, что негативно сказывается на здоровье человека.

Моргание и устранение их причин в светодиодной лампочке

Главная причина, по которой мерцают светодиодные лампочки, — использование слабого конденсатора или отсутствие такового. Проблема решается довольно просто — путем установки более мощного компонента. Если напряжение конденсатора будет составлять 102 В, а светодиодов — 180 В, значение первого должно быть повышено в 1,5 – 2 раза.

Установите аналогичный конденсатор, но уже большей емкости. Просто перепаяйте старый конденсатор, заменив его на новый. Другой выход — параллельно подключить второй конденсатор, чтобы увеличить суммарную емкость и мощность.

Заключение

Несмотря на постепенное снижение стоимости светодиодных ламп, их цена по-прежнему высока. Не каждому человеку по карману покупать постоянно качественную продукцию, но и дешевые изделия прослужат недолго.

В случае поломок не стоит торопиться с походом в магазин. Возможно, проблема не так страшна, как кажется, и вы обойдетесь банальной заменой блока питания или сгоревшего светодиода. Не забывайте о соблюдении правил и условий эксплуатации ламп, что обеспечит их долговечность.

Возникли проблемы с источниками света, но вы не спешите покупать новые и не хотите вызывать электрика? Неплохо попытаться провести ремонт светодиодных ламп своими руками, ведь верно? Тем более, что это может оказаться не так уж сложно. Но вы не знаете, с чего начинать?

Мы подскажем вам, как можно обнаружить проблему и выполнить ремонт проблемного участка — в статье рассмотрены наиболее распространенные причины поломок. Главное, правильно выявить область проблемы и с помощью профильных инструментов аккуратно устранить неисправность. Корректно восстановленное изделие продолжит свою службу.

В помощь домашнему мастеру мы подобрали фотоматериалы и снабдили инструкции по ремонту информативными видеороликами. С их помощью с задачей сможет справиться даже мастер, не имеющий колоссального опыта в работах подобного плана.

Устройство диодного прибора

Прежде чем приступать к ремонту испортившейся светодиодной лампы, нужно узнать, из каких деталей она состоит и где именно искать неисправность.

Общее устройство агрегатов подобного типа примерно одинаково и включает в себя такие элементы, как:

  • цоколь;
  • драйвер;
  • монтажная плата;
  • светодиоды;
  • радиатор;
  • оптические элементы.

Каждая из частей очень важная и отвечает за определенную функцию. Найдя место дислокации проблемы, можно понять уровень ее серьезности и приступить к устранению.

Назначение и разновидности цоколей

В LED-приборах цоколь изготовляется из металла, керамики или прогрессивного высокотемпературного пластика, славящегося отличной термостойкостью.

В изделиях от брендовых производителей при монтаже детали в лампу не применяется пайка. Это полностью исключает окисление или подлипание цокольного элемента к патрону светильника.

Чаще всего в светодиодных приборах, предназначенных для использования в быту и промышленности, применяются резьбовые и штырьковые цоколи.

Прочие виды считаются более редкими и используются в определенных, специфических случаях. Сам цоколь обладает хорошим рабочим ресурсом и практически никогда не выходит из строя.

Роль драйвера светодиодной лампы

Драйвер в устройстве LED-прибора играет одну из ключевых ролей. Эта небольшая деталь выступает как общий блок питания, нейтрализует перепады напряжения, а постоянный ток направляет непосредственно на диоды, которые преобразуют его в видимый человеческим глазом свет.

Драйверы в современных лампах бывают электронными или конденсаторными. Каждый вид имеет свои специфические отличительные черты и достоинства. Подробнее о видах и выборе преобразователей тока для светодиодных лампочек мы говорили здесь.

Первый вариант ценится более дорого и чаще используется в брендовой продукции среднего и люксового сегмента, второй обходится производителям достаточно дешево и ставится в изделия бюджетной серии.

Особенности монтажной платы

Монтажная плата служит плацдармом для расположения светодиодов и прочих рабочих элементов. Производители используют для ее создания разные материалы. Самой актуальной сейчас считается плата, выполненная из анодированного алюминиевого сплава.

Она проявляет себя максимально эффективно и абсорбирует до 90% теплового излучения, возникающего в процессе эксплуатации.

Нюансы устройства LED-элементов

Диоды, регенерирующие светопоток, бывают нескольких видов. Наиболее часто в лампах стоят SMD и COB-чипы. Чем больше их располагается на плате, тем мощнее получается прибор и тем большее количество тепла выделяется в процессе работы.

Для нормальной эксплуатации и длительной службы необходимо обеспечить корректный теплоотвод, и за это отвечает установленный на корпусе радиатор.

Специфика работы радиатора

Излишний нагрев губительно сказывается на функционировании светодиодов. Отсутствие качественного теплоотвода в разы уменьшает период работы лампы и в итоге приводит к ее сгоранию.

Некоторые изготовители экономят и оснащают прибор нескольким поперечными или продольными отверстиями, располагая их по всей территории корпуса.

Бюджетные производители ставят дешевые пластиковые, стеклянные и композитные детали. Продвинутые бренды идут дальше и комплектуют свои LED-приборы радиаторами, выполненными из металла с анодированным антикоррозийным покрытием.

Поэтому лучше изначально покупать надежные лампы из лучших материалов. Хотя они и обойдутся дороже, но пользователь обезопасит себя от постоянных поломок.

Отдельные торговые марки, преимущественно китайского происхождения, снабжают лампочки радиаторными элементами из керамики.

Такие изделия получают качественное охлаждение, но, вместе с ним, частично теряют конструкционную прочность и становятся более хрупкими по сравнению с металлическими аналогами.

Несколько слов про оптику

Основная масса LED-ламп обязательно снабжается рассеивателем, изготовленным из матового пластика. Он помогает концентрировать светопоток под определенным углом и делает его более равномерным.

В некоторых моделях вместо рассеивателей используют линзы, созданные из различных современных и практичных материалов. В этих элементах поломок не наблюдается, и под ремонт они не подпадают.

Частые причины неисправностей

К выходу из строя светодиодной лампы часто приводят некорректная эксплуатация и резкие перепады напряжения в центральной электросети. Сами диодные элементы в этом случае сохраняют работоспособность, а вот драйвер может испортиться.

Если в самом светильнике не обеспечена качественная вентиляция, драйвер будет перегреваться. В итоге это плохо отразится на его функционировании и спровоцирует поломку.

Лампа начнет чувствительно мерцать и моргать, раздражая глаз, когда испортится токоограничивающий резистор, и совсем перестанет гореть, если выйдет из строя конденсатор.

Все эти моменты неприятны, но впадать в панику не стоит. Исправить неполадку без особых усилий получится дома своими руками.

Плохо подействует на Led-элемент и приведет к его выходу из строя неправильно организованная в доме или квартире электрическая система.

Плюс к тому она увеличит нагрузку на проводку и, возможно, создаст дополнительные проблемы в ближайшем будущем. Поэтому ее обустройство лучше доверить профессионалам.

В процессе эксплуатации в лампе может произойти нарушение базовой кристаллической структуры полупроводниковых диодов.

Провоцирует эту неполадку реакция на повышение уровня плотности инжектированного тока со стороны материала, из которого изготовлен полупроводник.

Когда пропайка краев осуществлена некачественно, отвод тепла теряет необходимую интенсивность и ослабевает. Проводник перегревается, в системе происходит перегрузка и короткое замыкание выводит лампу из строя.

Все эти мелочи не фатальны и подлежат незатратному по времени и финансам ремонту.

Предварительная диагностика устройства

LED-модуль обычно не горит из-за обрывов в общей проводке, неисправностей в системе выключателя, при отсутствии контакта в патроне или возникновении неполадок в самой лампе.

Чтобы разобраться в вопросе, нужно провести предварительную диагностику и понять, где располагается проблема.

Когда при активации включателя лампа не загорается, нужно выкрутить ее из патрона и вкрутить другую, причем, не обязательно диодную.

Если ситуация изменилась и свет появился, значит неисправна сама лампа. Отсутствие поступления освещения означает, что неполадки заключаются в проводке.

На следующем этапе понадобится с помощью мультиметра выяснить, имеется ли напряжение в электрической цепи.

Для этого достаточно прислонить прибор к патронной части при активированном выключателе и посмотреть на показатели. Они должны быть на уровне 220 В. Если цифры иные, значит зона неисправности обнаружена.

Когда наличие корректного напряжения подтверждено, а лампа все равно не горит, следует проверить, имеется ли контакт между цоколем и усиками патрона. Если в этой области происходят нарушения, возникает дуга и на усиковых элементах образуется нагар.

Чтобы его удалить, необходимо отключить напряжение, счистить некорректные образования, а сами усики аккуратно подогнуть. После всех этих мероприятий можно вкрутить в патрон рабочую лампу и проверить результат.

При отсутствии напряжения на контактах патрона, его обязательно нужно снять и проверить, есть ли фаза на самой проводке. Если при активированном выключателе она присутствует, патрон подлежит замене.

Когда же ее нет, стоит обратить пристальное внимание на выключатель и поискать проблему в нем.

Если все выше описанные элементы, узлы и детали в результате проверки подтвердили свою исправность, становится совершенно ясно, что проблема находится именно в LED-лампе.

Как разобрать светодиодный модуль?

Для осуществления ремонта светодиодную лампу обязательно придется разобрать. Процедура эта не представляет большой сложности, но требует аккуратности, внимания и некоторой сноровки.

При желании, можно заснять весь процесс в пошаговом режиме на телефон, чтобы потом не перепутать порядок действий.

Желательно действовать крайне осторожно. Не все внутренние элементы прибора подлежат замене, поэтому чрезвычайно важно не нанести им повреждений и сберечь в целости и сохранности.

Особенно это касается такой уязвимой, но крайне значимой детали, как монтажная печатная плата.

Способ #1 — откручивание

Светодиодная лампа – довольно хрупкий прибор, разбирать который нужно предельно осторожно и аккуратно. Тут не требуются какие-то значительные усилия, да и пользоваться острыми инструментами там, где есть шанс справиться вручную, нет нужды.

Чтобы снять рассеивающий купол, достаточно взять лампочку двумя руками за края и, мягкими вращательными движениями отделить верхнюю часть от корпуса.

Обычно сделать это удается легко, так как слой скрепляющего герметика крайне тонок и сразу реагирует на движение и нарушение целостности.

Потом придется решить самую сложную задачу – отделить пластину, несущую светодиоды, от остальной части корпуса. Для этого придется выкрутить все крепежные болты.

Так как их головки отличаются крошечным размером, придется воспользоваться специальными отвертками прецизионного типа.

На следующем этапе понадобится отсоединить монтажную пластину от радиаторного устройства. Сделать это поможет предмет с плоским острым краем, например, ювелирный пинцет. Им удастся аккуратно поддеть край платы и осторожно снять ее целиком.

Потом придется аккуратно распаять зоны прилегания провода питания и окончательно отделить пластину с диодами от сопутствующих деталей.

Радиатор и цоколь потребуется разъединить деликатными вращательными движениями и разложить все составные части лампы на столе перед собой. После этого можно приступать непосредственно к ремонту.

Способ #2 — нагревание феном

Второй вариант наиболее подходит для изделий с толстым стеклом, не годящихся для непосредственного контакта с инструментом типа отвертки. Здесь придется воспользоваться строительным феном и с его помощью разогреть корпус лампы.

Только так удастся вынуть из цилиндрической основы приклеенный специальным составом стеклянный фрагмент.

Интенсивное воздействие горячего воздуха заставит обрабатываемые объекты расшириться, а клеевой слой, удерживающий стекло, приобретет эластичность.

После этих манипуляций лампа распадется на составные части, даже если мастер не приложит к этому никаких усилий.

Если фена под рукой нет, можно пойти другим путем. Для этого потребуется взять растворитель, шило и медицинский шприц с иглой. Сначала шилом аккуратно и без нажима провести вдоль кромки купольного рассеивателя.

Затем шприцем ввести растворитель и немного подождать. Пройдет буквально пара минут, герметик приобретет податливость, и купол удастся открутить без всяких физических усилий. Все дальнейшие действия ничем не отличаются от метода, описанного выше.

У вас никак не получается разобрать лампу? У нас на сайте есть другие инструкции по разборке различных типов лампочек. Рекомендуем вам ознакомиться с ними.

Самостоятельная замена светодиодов

Сгоревшие светодиоды часто становятся причиной, по которой лампочка выходит из строя. Обычно после разборки сразу видно, какие элементы испорчены и требуют замены. Но нередки случаи, когда на первый взгляд все диоды выглядят нормально.

В этом случае придется воспользоваться мультиметром и прозвонить каждый элемент отдельно, чтобы выявить неисправный. Либо снять с платы элементы, вызывающие сомнения, и протестировать их с помощью проводов, подключенных к 12-вольтовому источнику питания.

Когда испорчен только один диод, можно просто замкнуть его выходы. Если в светильнике применено цепочное соединение, этот момент никак не повлияет на потерю функций всех остальных элементов.

Старые, неисправные диоды придется выпаять, затем перевернуть плату и припаять к видимым контактным дорожкам новые чипы.

В некоторых случаях заменить светодиод можно без использования паяльника. Для этого плату потребуется хорошо прогреть строительным феном. Область пропайки станет мягкой и податливой, а диод удастся спокойно снять с помощью обычного пинцета.

На еще не остывшее место понадобится вмонтировать рабочий источник света. Когда плата хорошо остынет, он прочно зафиксируется и уже никуда не сдвинется.

Главное, четко запомнить расположение элемента относительно меньшего и большего контактов и разместить исправный с соблюдением полюсности.

Решение проблем с драйвером

Неполадки в драйвере – довольно распространенная проблема светодиодных ламп. Чаще всего в драйвере горят резистор или конденсатор.

Имеющимися под рукой домашнего мастера измерительными приборами выявить уровень работоспособности этого элемента довольно проблематично. Поэтому рекомендуется его просто заменить на исправный с аналогичными параметрами.

Найти подходящую деталь в магазинах светотехники получается не всегда. Лучше сразу отправиться на радиорынок или в место продажи радиоэлектроники и там попытаться отыскать нужную вещь.

Когда она будет куплена, потребуется демонтировать неисправный узел, а на его место поставить рабочий элемент.

Для корректного проведения разборки и ремонта лампочек светодиодного типа не понадобится сложное, дорогостоящее оборудование. Устранить возникшие неполадки поможет минимальный набор простых инструментов.

Мультиметр позволит проверить наличие напряжения в цепи, даст возможность обнаружить наличие обрывов и покажет, насколько работоспособны остальные детали схемы.

Паяльный прибор с канифолью и припоем потребуется для восстановления обрывов, найденных в цепи, и последующей замены поврежденных деталей и элементов.

Отверткой небольших размеров удастся аккуратно отделить от корпуса лампы управляющие элементы, а тонким, прочным канцелярским ножиком получится деликатно отсоединить детали от монтажной печатной платы.

Также часто пользователи сталкиваются с такими проблемами, как моргание лампочек и горение ламп при выключенном выключателе. Что служит причиной этих неисправностей и как их устранить мы говорили в других наших статьях:

Выводы и полезное видео по теме

Как устранить характерные поломки светодиодной лампочки с цоколем E27. Подробная инструкция по разборке изделия, интересные практические советы по использованию подручных инструментов.

Подсказки, как корректно снять с прибора колбу, не повредив ее в процессе.

Простой способ отремонтировать лампочку лед-типа без использования паяльника. Вместо припаивания применяется специальная электропроводящая паста.

Полное описание работы на изделиях торговой марки «Космос», которой владеет KOSMOS Group, контролирующая около 25% отечественного рынка прогрессивной и экономной продукции для создания качественного освещения.

Как починить Led-лампочку типа «кукуруза». Особенности процесса разборки, конструкционные нюансы и прочие познавательные моменты. Существенное увеличение срока службы изделия после проведения всех работ.

Светодиодная лампочка – практичный источник освещения. Единственный минус этого изделия – высокая по сравнению с другими модулями цена. Правда, LED-приборы надежны и обычно полностью отрабатывают свой срок.

А если вдруг в процессе эксплуатации возникнут поломки, большую часть из них можно будет устранить своими руками. Нужные инструменты найдутся у любого домашнего мастера, а выкроить время на ремонтные работы тоже не составит никакого труда.

Вы умеете самостоятельно чинить светодиодные лампы и можете дополнить изложенный нами материал ценными рекомендациями? Пишите советы в комментариях к статье, добавляйте уникальные фото – многие новички, не имеющие опыта ремонта светотехнической продукции будут вам благодарны.

Время чтения: 5 минут Нет времени?

Отправим материал вам на e-mail

Современные экономичные светодиодные лампы стоят недешево. Но они и служат дольше обычных, а электричества потребляют в разы меньше. Обидно, когда такой прибор выходит из строя. Мы привыкли к тому, что лампы – одноразовый товар, который приходится выбрасывать после перегорания. Тема этой статьи – как можно вернуть такую лампу к жизни своими руками. Ремонт светодиодных ламп возможен! Причем задача эта по плечу даже человеку, не особо сведущему в электрике.

Светодиодная лампа значительно экономит ваши расходы на электричество

Устройство и принцип работы светодиодной лампы на 220 вольт

Светодиодные устройства значительно экономят электроэнергию, и при этом дают полноценное освещение. 10-ваттная лампочка с диодами дает такой же мощный поток света, как стоваттная лампа накаливания. Выходит, что этот вид осветительных приборов сокращает ваши расходы в десять раз. При этом такие приборы отличаются долговечностью, если конечно они не произведены в Поднебесной.

Чтобы разобраться с возможным ремонтом, нужно представлять себе принцип работы устройства. Здесь все немного сложнее, чем в традиционных лампах Эдисона. Каждый источник света, диод, состоит из двух полупроводников разного материала. Один содержит преимущественно электроны, второй – ионы.

При пропускании электрического тока между полупроводниками возникает выделение энергии со световым излучением

Такие полупроводники называют светодиодами. На заре этой технологии устройства могли испускать только зеленый, желтый и красный свет. По этой причине их использовали в индикаторах. Современные технологии позволяют охватить весь спектр и использовать теплые и холодные оттенки, в которых преобладают синий или желто-красный цвет.

Теперь непосредственно об устройстве лампы. Внешне она мало чем отличается от традиционной лампочки. Она имеет такой же цоколь с резьбой и подходит для всех видов светильников. Но внутри изделие имеет сложную структуру.

Схема светодиодной лампы на 220 В

Под прозрачной оболочкой колпака скрываются контактный цоколь, корпус, драйвер и плата с полупроводниками. Задача драйвера – понижение стандартного для наших сетей тока 220 вольт до необходимой для работы полупроводников величины. Эта плата питания и управления может быть устроена по-разному в зависимости от решения производителя. Для снижения собственных затрат некоторые не очень порядочные производители не устанавливают на платы необходимые для наших сетей стабилизаторы. В итоге лампочка светит очень ярко, но недолго. Один диод светит недостаточно ярко, поэтом в лампочках их группируют по несколько штук на плате, объединяя в одну цепь. Если один их полупроводников вышел из строя, вся лампа не будет гореть.

Прозрачный колпак лампы на качественных изделиях покрыт изнутри люминофором – веществом, усиливающим свечение. Такие лампочки снаружи выглядят матовыми, непрозрачными. Подобные изделия не раздражают глаза, их свечение схоже с естественным солнечным освещением.

К сведению! В светодиодных приборах мощность и светоотдача напрямую не связаны между собой. Подбирая подходящую лампу, нужно изучить данные на упаковке по уровню светового излучения. Оно измеряется в Люменах.

Схема-чертеж драйвера светодиодной лампы

Схема платы питания светодиодной лампы не отличается особой сложностью. Деталей не много: пара резисторов и встречно-параллельное подключение диодов. Такой тип подключения позволяет защититься от обратного напряжения и увеличить частоту мерцания до 100 Гц. В некоторых лампах может быть установлен всего один резистор.

Схема драйвера светодиодной лампы 220 В

Для сети 220 вольт в устройстве установлен конденсатор ограничения на выпрямляющем мосте.

К сведению! В принципе, один из полупроводников можно поменять на простой выпрямительный, но такое изменение уменьшает частоту мерцания до 25, а это отрицательно сказывается на зрительных ощущениях.

Почему может потребоваться ремонт светодиодной лампы, устройство и электрические схемы

К сожалению, наука пока не изобрела вечных материалов и двигателей, так что рано или поздно каждое устройство выходит из строя. И LED-лампы не исключение.

В среднем такой прибор способен прослужит 10 лет. Сократить продолжительность жизни лампочки могут особые условия эксплуатации и перепады напряжения. В первом случае понятно, что если светильник установлен на улице и работает в жару и мороз или в помещении с повышенной влажностью, прослужит он гораздо меньше обычного. А с перепадами напряжения можно в принципе бороться, устанавливая выпрямители тока в доме или квартире. Устройства эти не из дешевых, и на практике используется немногими, а напрасно, ведь на кону не только жизнь лампочек, но и сохранность более дорогостоящей бытовой техники. Состояние электрических сетей в нашем отечестве оставляет желать лучшего и вряд ли что-то изменится в ближайшем будущем.

К сведению! В процессе эксплуатации неизбежно снижается мощность полупроводников, они постепенно теряют свои способности.

Основные причины выхода LED-ламп из строя:

ПричинаОписание
Нарушение кристаллической структуры полупроводниковМатериал диодов может по-разному реагировать на увеличение плотности инжектированного тока. Какие-то полупроводники разрушаются быстрее, какие-то – медленнее. Дольше всего «держатся» системы InGaN/GaN.
ЭлектромиграцияМеталл электродов в процессе эксплуатации проникает на внутреннюю часть, это вызывает разрушительные процессы. Чтобы замедлить диффузию, на электроды наносят барьерный слой.
Перегрев диодаВ местах соединения светодиода с подложкой могут остаться каверны. Чаще всего причина в некачественном припое. В результате отвод тепла происходит недостаточно интенсивно и полупроводник перегревается.
Перегрузка и короткое замыканиеЭлектростатические разряды, резкое повышение напряжения и короткое замыкание – все это может привести к разрушению полупроводников

Основы ремонта светодиодной лампы на 220 В своими руками

Прежде чем заниматься ремонтом ЛЕД-лампы, убедитесь, что проблема заключается именно в ней, а не в люстре или проводке.

Сделать это не сложно: нужно проверить наличие напряжения специальным инструментом или просто вкрутить другую лампу. Если и она не загорелась – ищите обрыв провода или нарушение контакта в светильнике.

Если другая лампочка дает свет – значит проблема именно в осветительном приборе

Совет! Приступая к разборке, фотографируйте каждый этап. Так вам потом будет легче сориентироваться в обратном процессе. Мелкие детали выкладывайте в коробочку или блюдце, чтобы они не укатились по столу.

Чтобы найти причины поломки, придется протестировать каждую составную часть светодиодной лампы. В этом деле не обойтись без мультиметра.

Для ремонтных работ потребуется паяльник, набор отверток, медицинский скальпель или тонкий нож.

Как аккуратно разобрать светодиодную лампу и выявить причину поломки

Итак, как починить светодиодную лампу на 220 V? Не всегда причину проблемы можно найти при простом визуальном осмотре. В любом случае, придется потратить время и силы на поиск скрытого недуга. Как правильно разобрать светодиодную лампочку? Главное в этом деле – предельная осторожность и аккуратность. Не прикладывайте чрезмерных усилий, не используйте острые инструменты там, где можно обойтись руками.

ФотоОписание работ
Первый этап – снятие купола. Он крепится на радиаторе с помощью тонкого слоя клея. Возьмитесь за обе части руками и вращательными движениями освободите купол. Постарайтесь сильно не сжимать хрупкий пластик, он может лопнуть.
После освобождения купола перед вами встает самая сложная задача – отделение пластины со светодиодами.
Сначала придется выкрутить крепежные болты. Головки у них очень маленькие, так что потребуется набор так называемых претензионных отверток.
После удаления болтов алюминиевую пластину со светодиодами нужно отделить от радиатора. Она закреплена клеем, так что нужно подцепить ее острым предметом и аккуратно оторвать.
Радиатор нужно отсоединить от цоколя. Это делается легко все теми же вращательными движениями.
Для окончательного отделения пластины с полупроводниками придется распаять места крепления питающего провода.
После снятия платы со светодиодами и радиатора вы обнаружите блок питания лампы.
Для проверки работы светодиодной платы потребуется источник питания на 12 вольт и два щупа. Их прикладывают к местам пайки провода. Если плата не загорелась – проблема в ней. Иногда сгоревшие светодиоды видно невооруженным глазом.
Проверка работы блока питания требует предельной осторожности! Цоколь лампы следует вкрутить в патрон и подключить. После мультиметром замеряется напряжение на концах распаянного провода. Процедура опасная!

Процедура замены светодиодов

Если проблема заключается в неисправном светодиоде, лампочка просто перестает работать. Если она мигает – то дело в плате питания.

После обнаружения погасшего диода нужно его удалить. Определить исправность полупроводника можно тремя способами:

ФотоОписание работ
Перегоревшие диоды имеют на поверхности точки или пятнышки. Кроме того, можно обнаружить вокруг них следы перегорания.
Можно попробовать прозвонить диоды мультиметром.
Можно снять сомнительные диоды и проверить работоспособность проводами, подключенными к источнику питания на 12 вольт.

Для ремонта лампы хорошо иметь аналогичную лампу – донор. С нее и снимают полупроводники для замены. Как заменить светодиод:

ФотоОписание работ
Плату с полупроводниками снизу нагревают строительным феном. Пайка размягчается и диод легко снимается обычным пинцетом. После на ту же разогретую плату ставится новый источник света. После остывания он прочно фиксируется на месте. Обратите внимание: диоды имеют полюса, так что снимая полупроводник, запомните, как он был расположен относительно большего и меньшего контакта. Типоразмер диода указан мелким шрифтом на самой плате, например как в этом случае – 2835.

Для закрепления пройденного видеоурок на эту тему:

Статья по теме:

Зная основные характеристики светодиодов, можно подобрать оптимальный вариант с точки зрения освещенности помещении и эксплуатационных затрат. Предлагаем ознакомить с основными видами диодов, их отличительными особенностями и порядком монтажа.

Ремонт драйвера светодиодной лампы

Мы рассмотрели, как отремонтировать светодиодную лампу своими руками, если перегорел один из полупроводников. Как видите, задача довольно простая. Теперь рассмотрим ситуацию, если из строя вышел блок управления, драйвер лампы.

Мост и микросхему для ремонта, как и другие запасные части можно купить в самом большом китайском интернет-магазине.

ФотоОписание работ
Для ремонта драйвера могут пригодиться платы-доноры. Не спешите выбрасывать старые лампы.
Мост и микросхема снимаются с платы тем же способом, что и светодиоды. Строительным феном разогревается поверхность платы и пинцетом легко снимаются детали.
После того, как детали сняты, места их крепления обрабатываются паяльной пастой BGA.
Остается только поставить сменные детали на освободившиеся места и закрепить их тем же строительным феном или паяльником с игольчатым жалом.

Задача эта для тех, у кого руки растут из нужного места. Если не уверены в своих силах или у вас проблема со зрением – просто закажите несколько готовых драйверов и меняйте их по мере необходимости.

Видео, как заменить драйвер:

Замена блока питания

Одна из распространенных причин поломки светодиодной лампы – выход из строя резистора или конденсатора. Проверить состояние этой детали не просто, придется подключить лампу к сети.

ФотоОписание работ
Неисправность конденсатора можно определить визуально – он вздувается, как в этом случае.
Вздувшийся конденсатор нужно отпаять от платы с помощью паяльника.
Новый конденсатор соответствующей мощности закрепляется на плате с соблюдением полярности.

Для того, чтобы заменить резистор на лампе, нужно знать основные данные светодиодов.

Видео: инструкция по подбору резистора

Статья по теме:

Немногие знают как рассчитать и подключить блок питания для светодиодной ленты 12В. В этом обзоре мы расскажем о критериях выбора, правилах подключения и ценах.

Причины моргания LED-лампочек

Необходимость ремонта светодиодных прожекторов может быть вызвана частым морганием. Этот режим очень напрягает зрение. У человека может болеть голова и глаза, если частота мигания осветительного прибора выходит за допустимые рамки. Дело может дойти до проблем с психикой.

Такая неисправность может быть вызвана заводским браком лампы или неправильным подключением прибора. Не исключено, что придется заняться ремонтом все светодиодной люстры. Но в большинстве случаев достаточно просто перекрутить лампочку, то есть выкрутить и вкрутить снова. Если проблема кроется в проводе, питающем светильник, следует заменить проводку.

Совет! Попробуйте в один из рожков люстры вкрутить обычную лампу накаливания. Она разгрузит конденсаторы и мигание прекратится.

Подводим итоги: ремонт светодиодных ламп своими руками

Как видите, ремонт светодиодных светильников сделать не сложно. Нужно обладать хорошим зрением и скромным набором инструментов. Выгода от такого занятия очевидна: восстановить лампу можно за копейки. Мультиметр и паяльник вам в помощь! Если у вас остались вопросы или вы готовы поделиться своим опытом, пишите!

Экономьте время: отборные статьи каждую неделю по почте

Ремонт светодиодных ламп своими руками – как разобрать и починить

Стоимость светодиодного освещения постепенно снижается, но пока еще не достигла приемлемых параметров. В таком случае актуальным является ремонт светодиодных ламп своими руками. Этот процесс необходим для тех случаев, если приобретали товар по почте или на рынке, где не всегда продавец может установить какую-то гарантию на свой товар.

Современные LED лампы способны работать от 220В, что обеспечивается особой конструкцией внутри светового прибора. Также они имеют преимущества перед другими световыми приборами по таким характеристикам:

  • длительный срок службы;
  • экологичность;
  • экономность;
  • низкое энергопотребление.

Чтобы не тратить средства на новую лампу, желательно знать, как отремонтировать светодиодную лампу, которая быстро вышла из строя.

Предварительная проверка

Перед тем, как починить led устройство, необходимо провести измерения линейного и фазного напряжения в электроцепи. При отсутствии параметра, потребуется устранить данные неисправности. Когда напряжение прозванивается спецприборами, то вероятнее всего она просто перегорела.

Необходимо учесть, что потеря напряжения может случиться не только в конкретном электроприборе, но и в подходящей к нему скрытой проводке.

Вывинчиваем цоколь из патрона. И определяем методику разборки, так как вся конструкция изначально может предполагать неразборный механизм. Можно заранее сфотографировать лампу в процессе разборки, чтобы впоследствии было проще восстановить ее конструкцию.

Основными элементами данного электроприбора являются:

  • жесткий корпус;
  • резьбовой цоколь;
  • световой куполообразный рассеиватель, обеспечивающий матовое свечение;
  • плата со встроенными кристаллами;
  • драйвера электропитания.

В более дешевых вариантах зачастую выходят из строя безтрансформаторные выпрямители. Их наличие снижает срок службы осветителей. Основной задачей мастера является мониторинг каждого узла на работоспособность. В более сложных случаях могут повредиться одновременно несколько узлов.

Для работы понадобятся приборы:

  • комбинированная отвертка с плоским и фигурным концом;
  • мультиметр, с помощью которого контролируем подачу напряжения, силу тока или имеющееся сопротивление;
  • паяльник для пайки отдельных элементов к печатной плате;
  • строительный нож или скальпель с тонким лезвием.

ВИДЕО: Как быстро починить светодиодную лампочку

Устройство лампы

Внутри практически каждой лампы имеются электрические схемы. На печатных платах располагается несколько электродеталей, которые вместе образуют драйвер. Он конструктивно скрывается в цоколе под кристаллами.

Подобное устройство конструкции

Питающее напряжение, подающееся на контакты патрона, поступает к цоколю. От последнего выходит пара проводков, которые сопрягаются с драйвером. Благодаря нему лед устройства получают необходимые параметры тока, ведь драйвер выступает в роли генератора тока. От него происходит питание напрямую светодиодов в лампе.

Что наиболее часто выходит из строя

Основная проблема, характерная для таких устройств, касается работы конденсатора. Для того, чтобы его можно было проверить, придется выпаять его из платы и измерить напряжение. К слову, мультиметром также удобно проверять работоспособность самих диодов.

Тестирование производится посредством мультиметра или пробника

Нередко встречаются перебои в работе токоограничивающего конденсатора – это легко определить по мерцанию кристаллов. Причина кроется в перегорании излучателя. При этом далеко не каждый кристалл будет мерцать, поэтому приходится проверять всю цепочку. Для этого понадобится тестер.

Если в конструкции изначально не были предусмотрены токоограничивающий конденсатор и выпрямитель, их можно впаять паяльником.

Для проверки исправности кристаллов удобно пользоваться пробным элементом или тестером.

Совет! Если перегорели один-два светодиод, просто замкните их контакты – на работу цепи это никакого влияния не окажет.

Популярный алгоритм ремонта

Перед тем, как разобрать конструкцию, обязательно отсоединяем ее от источников питания в целях собственной безопасности.

Электрическая схема

Далее процедуру можно разделить на несколько процессов:

  • с помощь тонкой отвертки или шила поддеваем матовый купол для разделения корпуса на составные части, операция достаточно деликатная, поэтому не стоит применять излишнее усилие, чтобы не повредить стекло;
  • на плате откроются шурупы, которые необходимо будет выкрутить из посадочных гнезд;
  • тонким краем отвертки или ножом поддеваем плату с посадочного места для открытия доступа к тыльной стороне;
  • цоколь отделяется просто, его удерживают на корпусе вдавленные персональные зазубрины;
  • каждую сторону цоколя деликатно отгибаем по всему периметру фиксации;
  • прикладываем небольшое усилие для вынимания цоколя;
  • чтобы итог работы был успешным, при помощи ножа отсекаем соединительную проводку от светодиодной платы;
  • извлекаем блок питания.

Теперь перед нами оказывается полностью подготовленная к дальнейшим работам разобранная конструкция.

На следующем этапе проводится визуальный контроль состояния прибора. Стадия зачастую позволяет выявить оплавленные или перегоревшие участки в цепи. Именно они и являются причиной поломок. Наиболее популярным является выход из строя элементов питания. Проблемы на плате требую вмешательства мастера с паяльником.

Для извлечения неисправных элементов нужно демонтировать всю конструкцию

Если отсутствует опыт пайки таких приборов, то допускается элементарная замена целых блоков. Их можно вынимать из других поломанных конструкциий, предусмотрительно отложенных в места хранения. Такое сведение из нескольких элементов обойдется дешевле, чем покупка новых светодиодов.

Продемонстрировать проблемы могут такие элементы:

  • токоограничивающий конденсатор;
  • его диоды;
  • расположенный рядом резистор.

В этом случае ремонт драйвера лед-устройства предусматривает предварительный обязательный прозвон элементов с помощью мультиметра. Метод обязательно выявит поломку узла.

Так выглядит плата светодиода

Виновниками неисправности могут оказаться и сами кристаллы. Они будут окружены темным пятном гари, а также будет слышаться характерный запах. Для верности их работоспособность прозванивают мультиметром. Если он отсутствует, то достаточно использовать пальчиковую батарейку для подачи питания.

Вышедшие из строя светодиоды не будут гореть. Выпаиваем их с места посадки. Важно подобрать новые такие же по мощности, оттенку и силе свечения.

Мерцание также свидетельствует о том, что электроприбор вышел из строя. Он нуждается в замене.

Если перед тем как сгореть, раздавался хлопок, то вероятнее всего нужно будет начинать с замены конденсатора. Он имеет свойство не только вздуваться, но и лопаться. Придется купить на радиорынке аналогичную замену, а затем впаять на место в электросхеме.

Особенности моделей MR-16

В последнее время для экономии пространства устанавливают модель MR-16. Такую светодиодную лампочку также можно ремонтировать, хотя она не имеет цоколя. Внутри нее размещается два с половиной десятка светодиодов, которые также горят. Контакт с проводкой производит через два штыревых выхода на тыльной стороне прибора.

Основной задачей является снятие защитного стекла. Оно крепится в нескольких точках к корпусу. Начинают работу с отсоединения стекла от корпуса. Для этого тонкой отверткой в промежуток между алюминиевыми ребрами пропускаем отвертку. Ею и выдавливаем стекло изнутри.

Далее печатную плату также поддеваем отверткой. Она легко отходит со своего места. Замена диодов или ремонт драйвера проводится по стандартной методике с предварительным прозвоном мультиметром.

Замена каждого светодиода является достаточно кропотливой операцией. Предварительно требуется выпаять неработоспособные лед-элементы, не повредив платы. Выполнить операцию простым паяльником практически невозможно. Для этого необходимо выбрать прибор со специальным жалом или использовать специальную тонкую медную насадку.

Ставим новый кристалл на свое место и прогреваем контактные площадки и торцы. Паяльник прогревается до мощности 10-15 Вт. Предварительно зачищаем место от возможной гари, чтобы обеспечить лучший контакт.

ВИДЕО: Как проверить светодиоды в лампочке

Разборка: светодиодная лампа превратилась в крошечный ИБП

Иногда вы сталкиваетесь с продуктом, который, как вы знаете, слишком хорош, чтобы быть правдой. Возможно, вы не знаете  , почему , но у вас есть предчувствие, что напыщенная формулировка на упаковке просто не совсем соответствует действительности. Именно такое чувство я испытал недавно, когда заметил лампочку «LED intellibulb Battery Backup» от Feit Electric. Приблизительно за 12 долларов США в Home Depot коробка обещает покупателю «никогда больше не оставаться в темноте» и что лампочка будет продолжать нормально работать до 3,5 часов при отключении питания. Если бы я мог перепрофилировать это, чтобы сделать крошечный ИБП для собственного проекта микроконтроллера, это могло бы быть еще более полезным.

Теперь светодиодная лампочка с батарейкой в ​​цоколе — это не совсем ракетостроение, мы можем понять продукт концептуально с первого взгляда. Но, как говорится, дьявол кроется в деталях. На коробке указано, что лампочка потребляет 8,5 Вт, но батарея с достаточной емкостью для работы с такой нагрузкой в ​​течение 3,5 часов будет слишком большой, чтобы поместиться внутри лампочки. Очевидно, что в этой истории есть еще что-то.

На боковой стороне коробки самым мелким шрифтом, используемым на всей упаковке, мы получаем нашу подсказку. Лампа падает до 200 люмен в режиме резервного питания или примерно такая же яркая, как у дешевого светодиодного фонарика. Теперь вещи начинают складываться. Даже не открывая устройство, мы можем быть уверены, что оно будет содержать два отдельных массива светодиодов: один с низкой яркостью для батареи и более яркий для работы, когда лампочка питается от сети переменного тока.

Тем не менее, я склоняюсь к мнению, что все, что меньше 20 долларов или около того, стоит взломать, чтобы посмотреть, как оно работает. Даже если сам продукт не впечатляет, есть вероятность, что внутренние компоненты могут быть полезными или интересными. Имея это в виду, давайте посмотрим, что находится внутри лампочки резервного аккумулятора и что мы можем с этим сделать.

Разборка

Я ожидал, что придется разрезать лампочку, но был приятно удивлен, что ее можно разобрать без разрушения. Не то чтобы это было намерением во время производства, конечно, но это приятный побочный эффект того факта, что какой-то бедняга, вероятно, должен был собрать эти вещи вручную.

Если вы сожмете матовый пластиковый купол, в конце концов клей, которым он крепился, лопнет, и оттуда потребуется лишь немного поддеть его, чтобы освободить. Как только купол выключится, вы увидите светодиодную матрицу. Три винта снаружи светодиодов позволят вам вытащить всю электронику из лампы. Два провода спускаются в основание, которое, к сожалению, постоянно вдавлено в пластик. Таким образом, чтобы извлечь электронику, вам нужно либо отрезать провода, либо отпаять их от платы.

Светодиодная матрица

Как и ожидалось, в матрице есть два концентрических кольца светодиодов, которые включаются или выключаются в зависимости от того, работает ли лампа на переменном или постоянном токе. Внутреннее кольцо светодиодов, а также пять в центре загораются при питании от постоянного тока, а при наличии переменного тока загораются внешние светодиоды. Стоит отметить, что центральные светодиоды не становятся ярче на переменном токе по сравнению с постоянным, но внешние светодиоды на намного ярче внутренних на .

Это имеет смысл, учитывая информацию на коробке: если общая мощность лампы составляет 600 люмен, но только 200 люмен при питании от батареи, мы знаем, что внешнее светодиодное кольцо должно излучать примерно 400 люмен самостоятельно.

Массив выглядит достаточно хорошо сделанным и прикреплен к довольно красивому круглому алюминиевому радиатору. Хотя провода не помечены, нетрудно понять, что центральный провод отрицательный, а два внешних провода соответствуют двум светодиодным кольцам. Этот модуль было бы очень легко повторно использовать в проекте, где вам может понадобиться переменная яркость без необходимости возиться с ШИМ.

Источник питания

Плата должна выглядеть довольно знакомо, если вы когда-либо видели внутреннюю часть светодиодной лампы. Это двухсторонняя печатная плата с довольно простой компоновкой: трансформатор и конденсаторы на верхней стороне для преобразования переменного тока в постоянный, а на обратной стороне изображены мозги операции. Белый разъем на верхней стороне платы подключается к аккумулятору 3,7 В 2000 мАч, который, кстати, занимает большую часть внутреннего объема лампочки.

Принцип действия

Об этой лампочке следует помнить, что она не похожа на аварийное освещение; он не просто автоматически включается при отключении питания. В конце концов, это лампочка, и она должна гаснуть, когда вы щелкаете выключателем или откручиваете его.

Вместо этого лампа определяет потерю питания в цепи, к которой она подключена. Он делает это, проверяя сопротивление между своими клеммами переменного тока, когда он теряет питание. Если есть «бесконечное» сопротивление, он знает, что он был выключен или отключен.

Интересно, что схема в лампочке достаточно чувствительна, поэтому, если вы возьмете лампочку голой рукой, она обнаружит, что она обесточена, и загорится. В зависимости от вашего чувства юмора, это может стоить только 12 долларов.

Я хотел уточнить, как работает лампочка, потому что я думаю, что это открывает некоторые интересные возможности для повторного использования оборудования. Если светодиоды работают при напряжении 3 В, а схема лампы способна поддерживать это напряжение независимо от того, подключена она к сети переменного тока или нет, то, по сути, у нас есть низковольтный источник бесперебойного питания (ИБП).

Подтверждение концепции

Питание, вероятно, довольно «грязное», и вероятны всплески при включении и выключении переменного тока. По крайней мере, у вас должен быть большой конденсатор на стороне постоянного тока этой платы. Но в качестве быстрой демонстрации я смог взять светодиодные провода и воткнуть их прямо в сторону 3,3 В Wemos D1. Опять же, это не очень хорошая идея, но показывает, что основная предпосылка работоспособна.

Если предположить, что D1 потребляет 250 мА, этот маленький взломанный ИБП должен работать не менее 5 часов или около того. Учитывая заявленное время работы 3,5 часа, а также указанную на аккумуляторе емкость 2000 мА·ч, эта плата должна обеспечивать не менее 400 мА при напряжении 3 В. С повышающим преобразователем вы можете получить от нее 5 В, но вероятно, не с достаточным током, чтобы много работать.

Многие люди не решаются возиться со схемой переменного тока, поэтому тот факт, что это предлагает готовое решение и позволяет вам сосредоточиться на стороне постоянного тока, является большим плюсом. С добавлением корпуса и шнура лампы для стороны переменного тока это может стать интересным «ИБП для бедных» для проектов микроконтроллеров, полностью собранных из деталей, доступных в Home Depot. Есть определенный элемент MacGyver в возможности установить что-то подобное, не выходя из местного крупного магазина.

Стоит ли?

В лампочке есть приличное оборудование, которое может стоить входной платы, особенно когда эти лампочки неизменно попадают в раздел с допуском за 6 долларов или около того. Для начала можно легко переназначить массив светодиодов двойной яркости и относительно мощную батарею. Это не лучшая сделка по утилизации, которую мы видели в Home Depot, но вы могли бы сделать и хуже.

Но лично меня больше всего привлекла идея использовать эти лампочки в качестве дешевого ИБП постоянного тока. Это, безусловно, требует дальнейшего изучения, и было бы интересно посмотреть, что сообщество может придумать с точки зрения соответствующих нагрузок для замены массива светодиодов. Я еще поработаю с этой концепцией, так что следите за будущим постом на эту тему.

Разборка: Простой подход характеризует современные светодиодные лампы

Светодиодные лампы, которые мы исследовали, часто проще, чем те, которые были изготовлены четыре года назад, иногда в них используются дискретные транзисторы для выполнения задач, которые когда-то выполнялись с помощью микросхем.

Леланд Тешлер, Ответственный редактор
Еще в 2015 году мы исследовали светодиодные лампы, мощность которых эквивалентна 60-ваттным лампам накаливания. Недавно мы приобрели несколько новых светодиодных ламп, чтобы посмотреть, как все изменилось. Результаты интересные. В целом, новые лампы, которые мы разобрали, имеют гораздо более простую механическую конструкцию и более простую электронику, чем те, что были четыре года назад. Кроме того, кажется, что производители меньше беспокоятся о тепловых проблемах или создании электромагнитных помех. Лампы, которые мы анализировали, имеют гораздо меньше теплоотвода или экранирования от электромагнитных помех, чем их старые аналоги.

Наши разборные лампочки; Вверху, Philips SlimStyle, в центре другая лампа Philips со снятой резьбой и пластиковым колпаком; внизу ручная граната, Sylvania UltraLED A19.

Наш подход к этому новому раунду демонтажа ламп повторяет подход 2015 года: мы выбрали лампы с самым высоким рейтингом из Consumer Reports . К счастью, одна из лампочек, которые мы рассмотрели, попала в список CR как в 2015 году, так и сегодня, что позволило нам провести сравнение яблок с яблоками. Это мягкая белая диммируемая лампа SlimStyle A19 от Philips Lighting. Эта лампа отличается от большинства других тем, что ее светодиодные пластины светят в стороны, а не вверх. Это придает ей тонкий профиль — она больше похожа на диск, чем на лампочку — и схему излучения света, которая, вероятно, лучше всего работает в лампе с абажуром, помогающим равномерно рассеивать свет по комнате (хотя на упаковке лампочки заявлена ​​схема освещения на 360°). ).

Как в 2015 году, так и сейчас лампы Philips справляются с проблемами перегрева без дополнительного теплоотвода. Единственным компонентом, который рассеивает тепло, является металлический диск диаметром 2,5 дюйма, на котором установлены 26 светодиодов, по 13 с каждой стороны. Кроме того, вы можете ожидать, что светодиоды будут расположены на диске в шахматном порядке, так что они не будут установлены прямо друг напротив друга — такое расположение крепления также поможет рассеивать тепло. Но светодиоды с обеих сторон диска расположены прямо друг напротив друга.

Обе версии этой лампы имеют на пластине светодиода то, что кажется чувствительным к температуре резистором, что, вероятно, помогает снизить потребность в дополнительном радиаторе. Кроме того, схемы на старой и новой лампах очень похожи, за исключением единственной микросхемы, которая была в старой версии. Этот чип не имел идентифицируемой маркировки, и мы предположили, что он участвовал в диммировании и управлении одним силовым полевым транзистором на плате.

В новой версии этот чип убран. Вместо него на печатной плате два небольших дискретных транзистора. Это наводит нас на мысль, что ИС обеспечила ШИМ-управление для силового полевого транзистора, а два транзистора, которые заменяют его, соответствуют схеме, которая может генерировать управляющий сигнал прямоугольной формы.

Так же на плате есть габаритный трансформатор. Это тип трансформатора, который можно использовать для обратного или прямого преобразователя. (В качестве краткого обзора, прямой преобразователь использует трансформатор для увеличения или уменьшения выходного напряжения и обеспечения гальванической развязки нагрузки. Трансформатор не накапливает энергию в течение времени проводимости переключающего элемента — трансформаторы не могут накапливать значительное количество энергии. Вместо этого энергия передается непосредственно на выход прямого преобразователя за счет действия трансформатора во время фазы переключения.)

Упрощенный прямой преобразователь, который можно найти в лампочке SlimStyle. Мы многое упустили. Например, реальный генератор прямоугольных импульсов будет включать средства изменения времени включения/выключения. И выход будет синтезировать источник тока для питания светодиодов.

Таким образом, мы можем предположить, что и версия 2015 года, и самая последняя версия лампы Philips управляют 26 светодиодами с прямым преобразователем, который также реализует источник тока, необходимый для управления светодиодом. В современной версии используются два транзистора для создания привода затвора полевого транзистора с широтно-импульсной модуляцией. В версии 2015 года для этой задачи использовалась специальная микросхема.

Плата SlimStyle 2015 года (слева) и 2019 года. Самым большим отличием, которое мы заметили, была замена двух небольших транзисторов на микросхему, которая, по-видимому, генерировала ШИМ для мощного полевого транзистора.

Последнее замечание о лампах SlimStyle заключается в том, что ни старые, ни новые лампы не имеют металлического экрана для защиты от электромагнитных помех. Казалось бы, это указывает на то, что задействованные частоты ШИМ должны быть довольно низкими.

Мы исследовали вторую светодиодную лампу Philips, получившую высокие оценки от Отчеты потребителей . Эта также диммируемая и называется просто лампочкой мягкого белого света с эффектом теплого свечения. Если лампочка SlimStyle стоила около 8 долларов, то эта стоила чуть больше 6 долларов и поставлялась в упаковке по две штуки. Но хотя его светоотдача аналогична светоотдаче устройства SlimStyle, электроника совершенно другая. Мы обнаружили 12 светодиодов обычного размера и три светодиода меньшего размера, примерно в два раза меньше остальных, и все они были установлены на металлической пластине светодиодов. Также на этой пластине была восьмиконтактная микросхема с маркировкой, которую мы не смогли идентифицировать, а также (как ни странно, по крайней мере для нас) 14 резисторов и один конденсатор.

Светодиодная пластина на 2-й лампочке Philips.

Необычно видеть, что в светодиодной лампе используются светодиоды двух разных размеров. Также необычно видеть такое количество резисторов в цепи импульсного источника питания, особенно в той ее части, которая находится на выходе светодиода.

Но микросхема, расположенная на светодиодной пластине, тоже немного загадка. Мощный полевой транзистор, управляющий светодиодами, находится на печатной плате. Таким образом, маловероятно, что микросхема, расположенная на пластине светодиода, имеет какое-либо отношение к ШИМ полевого транзистора, что является типичной ролью микросхем, используемых в светодиодных лампах. Это предположение подкрепляется еще и тем фактом, что между печатной платой, удерживающей электронику лампы, и пластиной светодиода имеется всего два соединения. Они выполнены через один двухштырьковый разъем на светодиодной пластине. (Примечательно использование разъема. Светодиодные лампы, исследованные в 2015 году, обычно соединялись от печатной платы к светодиодной пластине с помощью отдельных проводов, припаянных к пластине, а не с помощью разъема.)

В разобранной лампе Philips виден металлизированный участок внутри пластикового корпуса. Светодиодная пластина крепится на металлическом колпачке, прикрепленном к пластиковому корпусу.

Размещение ИС на плате со светодиодами подвергает ее воздействию повышения температуры, вызванного светодиодами, поэтому она может играть некоторую роль в температурной компенсации и, возможно, в формировании источника тока, необходимого для питания светодиодов. То же самое для всех резисторов на пластине. Но поскольку мы не можем идентифицировать ИС, мы можем только догадываться о том, что она делает.

Схема управления светодиодом, похоже, представляет собой прямоходовой преобразователь, судя по наличию трансформатора на печатной плате и одной большой катушки индуктивности. Также там находятся два дискретных транзистора, что соответствует схеме, генерирующей прямоугольные волны для использования в схеме ШИМ.

Следует также отметить, что эта лампа Philips имеет металлизированную внутреннюю часть пластикового корпуса, удерживающего печатную плату. Можно предположить, что металлизация служит защитой от электромагнитных помех.

Еще одна лампа, которую мы рассмотрели, — это диммируемая Sylvania 72637 12 Вт A19.Ультра-светодиодная лампочка, которая сравнительно дорогая — 22 доллара за штуку на Amazon. Мы назвали эту ручную гранату из-за ее формы. Он несет шесть светодиодных пластин, одна сверху, остальные пять расположены вокруг большой литой металлической конструкции с отдельной полупрозрачной крышкой для каждой светодиодной пластины. Каждая светодиодная пластина содержит шесть светодиодов. Дискретные провода соединяют светодиодные пластины вместе и образуют соединения с печатной платой лампы.

Эта лампа впервые появилась в продаже в 2014 году, что делает ее одной из первых относительно доступных светодиодных ламп на рынке. Его дизайн, похоже, не обновлялся, и тот факт, что он по-прежнему занимает место в списке лучших светодиодных ламп Consumer Reports, вероятно, является свидетельством его качества. Тем не менее, методы строительства, которые он использует, подчеркивают

Другая сторона второй лампы Philips содержала силовой полевой транзистор, диодный мост и, по-видимому, схему ШИМ.

изменения в дизайне светодиодных ламп за эти годы. Например, вы не найдете современных ламп с большими литыми металлическими конструкциями, а современные лампы, скорее всего, используют разъемы для подключения светодиодной пластины к печатной плате.

Электроника этой лампы Sylvania также относится к предыдущему поколению. На плате есть одна 10-контактная микросхема с неопознаваемой маркировкой, которая, скорее всего, реализует привод ШИМ для двух найденных нами силовых полевых транзисторов. На печатной плате также есть два небольших дискретных транзистора, но они не кажутся хорошими кандидатами для генерации необходимой последовательности импульсов ШИМ. Наличие трансформатора также указывает на вероятную топологию прямого преобразователя.

Еще один момент, на который стоит обратить внимание, это наличие двух мощных (хотя и разных) катушек индуктивности. Мы предполагаем, что первая катушка индуктивности может играть роль в коррекции коэффициента мощности, судя по ее положению на плате. Второй почти наверняка является частью схемы преобразователя.

Но непонятно, почему разработчики решили, что им нужно два полевых транзистора для питания 36 светодиодов. Тем не менее, это дизайн предыдущего поколения — в 2014 году все сделали по-другому. Это также объясняет, почему вы вряд ли увидите современные светодиодные лампы, похожие на ручные гранаты.

Ручная граната Sylvania, сверху, со снятыми полупрозрачными крышками. В центре: печатная плата удалена из пластикового корпуса лампы. Внизу крупные планы печатной платы, на которых видны два силовых полевых транзистора, микросхема, которая, вероятно, управляет ШИМ, и индуктор, который может быть задействован в PFC.

Что внутри и светодиодная лампа

by ЛЕЛАНД ТЕШЛЕР, ответственный редактор

Сюрприз: заглянув внутрь пяти светодиодных ламп, предназначенных для замены 60-ваттных ламп накаливания, можно увидеть конструктивные решения, варьирующиеся от предельно простых до поразительно сложных.

Средний потребитель может подумать, что когда дело доходит до лампочек, одна похожа на другую. Это представление могло быть точным в те времена, когда в каждой розетке была лампа накаливания. Это, конечно, не верно для светодиодных ламп, предназначенных для замены ламп накаливания.

Мы пришли к такому выводу после того, как разобрали пять светодиодных ламп, продаваемых как эквиваленты 60-ваттных ламп накаливания. Все пять лампочек, которые мы выбрали, получили высокие оценки журнала Consumer Reports. Но на этом общность кончилась. Оказавшись внутри, мы обнаружили совершенно разные подходы к строительным технологиям, управлению температурным режимом и проектированию электроники.

Начнем с лампы под названием E27 A19 LED от Home EVER Inc. в Лас-Вегасе. Механика лампочки и ее электроника предельно проста. Двусторонняя печатная плата, похоже, припаяна оплавлением. Два провода соединяют плату с металлической пластиной, содержащей 30 светодиодов. Еще два провода идут к проводникам световой розетки. Все четыре провода выглядят так, как будто они были припаяны вручную.

Пластиковый корпус преобразователя переменного/постоянного тока Home EVER выскользнул из нижней части радиатора. Плата преобразователя (справа) находится в пластиковом корпусе.

Лампа построена вокруг радиатора высотой 2 дюйма, который весит 2 унции и выглядит как металлическая отливка. Основание лампы содержит пластиковый корпус, в котором находится преобразователь переменного тока в постоянный. Электрические соединения с патроном лампы находятся на одном конце корпуса. Другой конец крепится к радиатору двумя маленькими винтами.

Теплоотвод лампы Home EVER и пластиковое основание, удерживающее преобразователь переменного тока в постоянный, с удаленной металлической резьбой. >Здесь соединение базовой ножки все еще подключено к конвертеру.

Дополнительными приспособлениями к радиатору являются колба из матового поликарбоната, закрывающая светодиоды, и металлическая пластина диаметром 2 дюйма, содержащая светодиоды. Пластиковая лампочка, по-видимому, защелкивается в радиаторе, а светодиодная пластина крепится тремя винтами. Между светодиодной пластиной и радиатором нанесено несколько пятен компаунда для теплопроводности.

Конструкция преобразователя переменного/постоянного тока проста. Единственными компонентами, не являющимися SMD, являются два больших конденсатора, импульсный резистор на входе и трансформатор. Соединения платы с винтовым цоколем и платой со светодиодами осуществляются дискретными проводами, а вот соединение с ножным контактом лампы было сделано машинным способом. Однако электрическое соединение с металлической резьбой представляет собой просто кусок оголенного провода, зажатого между пластиковым корпусом и внутренней поверхностью резьбы.

Электроника преобразователя переменного тока в постоянный представляет собой голые кости. Диодный мост на входе — четыре дискретных диода. На плате одна микросхема. Это блок питания с понижающей топологией, предназначенный для обеспечения постоянного тока, и производится компанией Bright Power Semiconductor (BPS) в Китае. Чип, получивший название BP2812, включает в себя полевой МОП-транзистор на 600 В. В спецификации указан рабочий ток чипа при 200 мкА.

На плате Home EVER видны четыре диода, составляющие выпрямительный мост, и микросхема BP2812 (внизу). На другой стороне платы (сверху) находятся компоненты управления энергией и предохранитель на входе.

«Типичная прикладная схема», указанная в спецификации BP2812, очень близка к фактической схеме, которую мы нашли на печатной плате светодиода. Семь резисторов входят в простые цепи, которые управляют напряжением Vcc, измеряют пиковый ток дросселя и регулируют входное напряжение ИС. Пять конденсаторов выполняют рутинную работу по фильтрации линии переменного тока, обходу переменного тока для вывода Vcc и выводов контроля линии, а также по топологии buck. Встроенный предохранитель отключает питание всей цепи в случае слишком высокого потребления тока.

Судя по графике на веб-сайте BPS, похоже, что BPS сама собрала плату. Там есть изображения примеров плат для нескольких других светодиодных приложений, которые очень похожи на это.

Чип, питающий светодиодную лампу Home EVER, представляет собой источник постоянного тока, питающий встроенный полевой МОП-транзистор. Эталонная схема от производителя чипов Bright Power Semiconductor близка к той, что мы нашли на печатной плате.

Следует отметить, что влияние температуры на работу светодиодов не учитывается в преобразователе переменного тока в постоянный. Светодиоды излучают меньше света по мере повышения их температуры. Как правило, это не проблема для небольших изменений температуры. Чувствительность глаза к свету логарифмическая, и глаз не особенно чувствителен к небольшим изменениям яркости. Нет ничего необычного в том, что световой поток светодиода падает на 10 % при повышении температуры перехода от комнатной до 150 °C.

Но ток светодиода также можно уменьшить при более высоких температурах, чтобы уменьшить потребность в теплоотводе. Тем не менее, нет датчика температуры, который мы могли бы видеть в преобразователе переменного / постоянного тока лампы Home EVER. И схемы диммирования нет.

Но в целом светодиодная лампа, вероятно, хорошо работает в тех случаях, когда не требуется диммируемый свет.

Osram
Эквивалентная 60-ваттная светодиодная лампа Osram Sylvania отличается относительно небольшим радиатором, состоящим из двух частей. Одна часть представляет собой башню в форме пятиугольника высотой 1 дюйм, которая служит основой для шести светодиодных плат, пять из которых ориентированы в форме пятиугольника, а шестая находится на вершине пятиугольной башни. Другой представляет собой цилиндрический литой радиатор длиной 0,75 дюйма, который, по-видимому, защелкивается в верхней части пластикового купола, в котором размещены светодиоды. Цилиндрический литой радиатор и башня вместе весят 1,3 унции.

Вид на светодиодную лампу Osram со срезанным пластиковым колпаком, открывающим пятиугольную башню со светодиодами. Видно, что провода от платы преобразователя переменного/постоянного тока припаяны к верхней пластине.

Основание устройства представляет собой цельный пластиковый корпус, в котором находится печатная плата преобразователя переменного тока в постоянный. Два провода соединяют его с пятиугольной башней, содержащей 18 светодиодов, по три на каждой грани. Соединения между платами, похоже, были припаяны оплавлением. Но отдельные провода между печатной платой и светодиодной сборкой, по-видимому, были припаяны вручную. Точно так же соединения с цоколем лампы представляют собой отдельные провода, один из которых зажат между металлической резьбой, а другой — механизм, прикрепленный к основанию лампы.

Заливочный материал, окружающий плату преобразователя переменного/постоянного тока лампы Osram, и пластиковый корпус, из которого она была извлечена.

По не совсем понятным причинам разработчики лампы Osram решили залить плату преобразователя переменного тока в постоянный. Относительно небольшой радиатор на этой плате по сравнению с другими конструкциями, которые мы видели, может указывать на то, что заливка предназначена для улучшения рассеивания тепла, хотя материал заливки не полностью заполняет пустое пространство между электронными компонентами и внешней оболочкой. Однако заливка усложнила процесс расшифровки схемы.

Эталонная схема SSL21082AT кажется близкой к той, что мы нашли на печатной плате Osram. На микросхеме есть вход для резистора NTC, но мы не обнаружили его ни на плате, ни на металлических пластинах, к которым крепятся светодиоды.

Основная плата для светодиодной лампы Osram двухсторонняя. Он содержит две ИС, одна представляет собой диодный мост для входа переменного тока, а другая — ИС драйвера SSL21082AT от NXP Semiconductors. Функции, реализованные в чипе NXP, включают затемнение, защиту от перегрева и контроль перегрева светодиодов, защиту от короткого замыкания на выходе и режим перезапуска в случае отключения питания. Эта микросхема имеет встроенный внутренний переключатель высокого напряжения и работает как понижающий преобразователь в режиме граничной проводимости (BCM).

Основной радиатор светодиодной лампы Osram представляет собой цилиндрическую отливку, показанную здесь состоящей из четырех частей после извлечения из корпуса лампы. Металлическая резьба крепится к пластиковому корпусу, удерживающему плату преобразователя переменного/постоянного тока, которая видна здесь.

BCM — это квазирезонансный метод, используемый для повышения энергоэффективности. Основная идея BCM заключается в том, что ток дросселя начинается с нуля в каждом периоде переключения. Когда силовой транзистор повышающего преобразователя включен на фиксированное время, пиковый ток дросселя пропорционален входному напряжению. Текущая форма волны треугольная; поэтому среднее значение в каждом периоде переключения пропорционально входному напряжению.

После того, как герметик был удален с печатной платы лампы Osram, на печатной плате стала видна микросхема драйвера SSL21082AT от NXP Semiconductors. Другая микросхема на плате представляет собой мостовой выпрямитель. Конденсаторы и катушки индуктивности для обработки энергии установлены на другой стороне платы.

Энергия накапливается в катушке индуктивности, пока переключатель включен. Ток дросселя равен нулю, когда МОП-транзистор включен. Амплитуда нарастания тока в катушке индуктивности пропорциональна падению напряжения на катушке индуктивности и времени, в течение которого переключатель MOSFET находится во включенном состоянии. Когда МОП-транзистор выключен, энергия в катушке индуктивности высвобождается на выходе. Ток светодиода зависит от пикового тока через катушку индуктивности и от угла диммера. Новый цикл начинается, когда ток дросселя становится равным нулю.

3M
Светодиод 3M имеет характерный внешний вид благодаря белой цилиндрической колонне высотой 2 дюйма, видимой под полупрозрачным пластиковым куполом. Колонка представляет собой просто металлический радиатор; это, по-видимому, не имеет ничего общего с дисперсией света.

Светодиодная лампа 3M со снятым пластиковым колпаком. Белая колонна является теплоотводом и мало влияет на светоотдачу. Светодиоды расположены по краю пластиковой колбы в металлическом радиаторе.

Светодиоды расположены на гибкой печатной плате, прикрепленной к другому радиатору высотой 2 дюйма, который также служит опорой для основания лампы. Пластиковая втулка идет в нижней части радиатора, чтобы удерживать металлическую резьбу и поддерживать контакт ноги в нижней части основания. Радиатор и колонка вместе весят 2,4 унции.

Цоколь лампы 3M состоит из пластиковой втулки вокруг радиатора, к которой крепятся металлические резьбы и ножной контакт. Электрические соединения находятся на гибкой цепи, удерживающей светодиоды и преобразователь переменного/постоянного тока. Здесь виден контакт, который изгибается сбоку пластиковой втулки, чтобы соприкоснуться с металлической резьбой, и второй контакт, который касается штифта на ножном контакте (справа).

Гибкая печатная плата со светодиодами также содержит схему драйвера переменного/постоянного тока. Это CL8800 от Microchip Technology. Эталонный проект состоит из CL8800, шести резисторов и мостового выпрямителя (устройство Fairchild). От двух до четырех дополнительных компонентов являются необязательными для различных уровней защиты от переходных процессов. Эталонный дизайн Microchip довольно близок к тому, что мы нашли в лампочке 3M.

Эталонная схема для Microchip CL8800 близка к схеме, найденной на светодиодной лампе 3M, хотя лампа 3M включает дополнительную RC-цепь (здесь не показана) для фазового затемнения.

Схема драйвера делит цепочку из 25 светодиодов на два набора по пять, один набор из четырех и один набор из шести. Мы не уверены, почему 3M разделила количество цепочек светодиодов таким образом. Однако интересна их ориентация. Они сидят на выступе, образованном радиатором, и ориентированы строго вверх. Прозрачный карбонатный шар крепится к тому же выступу, поэтому световой поток светодиода фактически направлен вверх, на край самого пластикового шара, а не светит сквозь шар изнутри корпуса. 9Рис. . Согласно техническому паспорту Microchip, шесть линейных регуляторов тока потребляют ток на каждом отводе и последовательно включаются и выключаются, отслеживая входное синусоидальное напряжение. Микросхема минимизирует напряжение на каждом регуляторе при проводке, обеспечивая высокую эффективность.

Выходной ток на каждом ответвлении индивидуально устанавливается резистором. Резистивно-емкостная цепь, состоящая из резистора и трех параллельно соединенных конденсаторов, на входе мостового выпрямителя обеспечивает фазовое затемнение. Два других компонента обеспечивают защиту от переходных процессов при подключении к линии переменного тока. Всего в гибкой схеме имеется 13 дискретных компонентов, которые обеспечивают защиту от переходных процессов, фазовое затемнение и устанавливают токи в цепочках светодиодов.

Фейт Электрик Ко
Лампа от Feit Electric имела самую странную ориентацию для светодиодов из всех, что мы исследовали. Пластина диаметром 1 7/8 дюйма, на которую крепятся 36 светодиодов, частично скрыта в собранной колбе круглой пластиковой деталью с отверстием диаметром 1 дюйм посередине. Этот элемент крепится поверх светодиодной пластины. Итак, взгляд на собранную лампочку дает вид на пластиковую деталь и сразу пять светодиодов, видимых в центре пластины под отверстием в ее середине.

Герметизирующий материал на печатной плате лампы Feit, видимый здесь у основания радиатора, служит структурным элементом, удерживающим опору на месте. Три винта крепят пластину светодиода к радиатору светодиодной лампы Feit. На обратной стороне светодиодной пластины, видимой здесь, между поверхностями радиатора и светодиодной пластины была нанесена термопаста.

Мы не можем понять, почему Фейт установил пластиковую деталь поверх большинства своих светодиодов. Кусок блокирует большую часть света, который они излучают. (У нас нет способа количественно определить количество света, проходящего через пластик. Но неофициальные тесты здесь показывают, что мало его проникает.) Таким образом, подавляющее большинство излучаемых люменов исходит от пяти светодиодов в центре пластины.

Светодиодная лампа Feit располагала пластиковым диском над всеми, кроме пяти, из 36 светодиодов. Мы не знаем, почему.

Остальная часть механической конструкции лампочки менее загадочна. Светодиодная пластина крепится к верхней части массивного литого металлического радиатора весом 3,8 унции с помощью трех винтов. Радиатор служит основным корпусом лампы. Схема преобразователя переменного тока в постоянный помещается в пластиковый цилиндр, который вставляется в основание радиатора и крепится к нему двумя винтами.

После вырезания герметика на печатной плате светодиодной лампы Feit обнаружилась микросхема диодного моста и драйвер светодиода SSL2103T от NXP Semiconductors с одной стороны, большие элементы накопления энергии и силовые МОП-транзисторы с другой.

Электроника залита в пластиковый цилиндр, служащий ее корпусом. Заливочный материал обширен, заполняя цилиндр. Он также служит конструктивным элементом, поддерживающим винтовое основание лампы и опорную ножку. Печатная плата, содержащая электронику, двусторонняя и проходит почти до основания цоколя лампы. Минусовой провод к плате крепится к металлической резьбе герметиком. Два провода идут от платы к плате светодиодов и вроде как припаяны вручную. Сама плата припаяна оплавлением.

Заливочный материал скрыл некоторые детали на печатной плате, но на плате находятся два силовых МОП-транзистора, микросхема диодного моста, пять больших конденсаторов, трансформатор и не менее 22 дискретных компонентов, состоящих из резисторов, маленьких конденсаторов и диодов. Входной мостовой выпрямитель вроде бы защищен предохранителем.

Основным чипом является драйвер светодиодов SSL2103T от NXP Semiconductors. SSL2103 представляет собой обратноходовой преобразователь, который работает в сочетании со схемой диммера с отсечкой фазы непосредственно от выпрямленной сети. Он реализует диммирование с помощью интегральной схемы, оптимизирующей кривую диммирования. Выходы привода доступны для коммутации резистивного сброса.

Несмотря на то, что материал заливки скрывает некоторые детали соединения, схема кажется близкой к эталонной схеме микросхемы NXP. Сетевое напряжение выпрямляется, буферизуется и фильтруется во входной части и подключается к первичной обмотке трансформатора. Передаваемая энергия хранится в конденсаторе и фильтруется перед включением цепи светодиодов.

Печатная плата также содержит два силовых полевых МОП-транзистора. Один, по-видимому, является частью схемы диммирования, которая разделяет и фильтрует выпрямленное напряжение сети, чтобы обеспечить вход для генерации кривой диммирования. Выход продувки микросхемы NXP управляет полевым МОП-транзистором для переключения продувочных резисторов, которые задействованы в таймере функции диммирования. Другой полевой МОП-транзистор является главным переключателем обратноходового трансформатора.

Схема преобразователя переменного/постоянного тока Feit была близка к эталонной схеме, которую NXP Semiconductors предоставляет для своего преобразователя SSL2103.

Также имеется буферная схема, состоящая из двух конденсаторов и катушки индуктивности. Схема накапливает энергию, чтобы преобразователь мог непрерывно передавать мощность на цепочку светодиодов, несмотря на любые колебания напряжения в сети. Он также фильтрует пульсации тока, генерируемые преобразователем, чтобы снизить любые помехи от сети.

Наконец, другая часть схемы состоит из конденсатора, выпрямительного диода, резистора, ограничивающего пиковый ток, и защитного стабилитрона и используется для создания внешнего источника питания VCC для ИС.

Philips Lighting Co.
Один примечательный момент в отношении лампы Philips относится к теплоотводу. Другие лампы, которые мы исследовали, имели металлические радиаторы весом от 1,3 до 3,8 унций. Лампа Philips справляется с проблемами перегрева без дополнительного отвода тепла. Единственным компонентом, который рассеивает тепло, является диск диаметром 2,5 дюйма, на котором установлены 26 светодиодов, по 13 с каждой стороны. Кроме того, можно было бы ожидать, что дизайнеры будут располагать светодиоды на диске в шахматном порядке, чтобы они не устанавливались прямо друг напротив друга — такое расположение крепления также способствовало бы рассеиванию тепла. Но светодиоды с обеих сторон диска расположены прямо друг напротив друга. Похоже, что тепло светодиодов просто не было проблемой в этой конструкции.

Одной из причин этого является наличие термистора с отрицательным температурным коэффициентом (NTC) на плате светодиодов. Но точно проследить сеть температурной компенсации оказалось невозможно, потому что плата драйвера имеет три слоя, один из которых скрытый. Еще больше усложняет анализ схемы тот факт, что две шестиконтактные микросхемы, похоже, управляют преобразованием переменного тока в постоянный, и ни одна из них не отмечена ни логотипом производителя, ни номером детали.

Поскольку основные микросхемы не могут быть идентифицированы, мы можем только строить предположения о том, как работает драйвер светодиодов. Наличие трансформатора, двух больших конденсаторов и силового npn-транзистора (от STMicroelectronics) на печатной плате, казалось бы, указывает на то, что преобразователь имеет обратноходовую конструкцию. Мы предполагаем, что цепь температурной компенсации находится в смещении переключателя, подающего ток на светодиоды от обратноходового трансформатора. Два транзистора управляют током светодиода. Всего мы насчитали 32 небольших дискретных компонента, состоящих из резисторов, диодов и конденсаторов. Завершают компоненты платы микросхема мостового выпрямителя и три других силовых конденсатора.

Светодиодная лампа Philips не имела радиатора, кроме двухсторонней пластины, удерживающей светодиоды. Одна причина: температурная компенсация. Резистор NTC виден на этом снимке светодиодной пластины.

Оказывается, механическая конструкция светодиодной лампы без радиатора может быть довольно простой (а некоторые могут назвать ее элегантной). Лампа Philips в основном представляет собой пластиковый корпус, который покрывает светодиодную пластину и печатную плату драйвера, а также поддерживает металлическую резьбу и опорную ножку.

Диодный мост и силовой транзистор npn видны на одной стороне печатной платы светодиодной лампы Philips. На другой стороне находятся компоненты накопления энергии и две неопознанные микросхемы, обеспечивающие температурную компенсацию, диммирование и преобразование энергии.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *