Разное

Регулятор тепла на батарее: Регулятор температуры на батарею купить – Регулятор батареи отопления купить, терморегулятор для батарей отопления цена

Регулятор тепла на батарее: Регулятор температуры на батарею купить – Регулятор батареи отопления купить, терморегулятор для батарей отопления цена

Содержание

Терморегулятор на батарею: принцип работы, настройка, установка

Главной задачей отопительной системы является поддержание комфортной температуры воздуха в здании. Эта температура может быть различной, в зависимости от назначения помещения, но обязательным условием является ее неизменность на протяжении всего дня.

В помещение тепловая энергия поступает от системы отопления через радиаторы. Объем тепловой энергии, отдаваемый нагревательными приборами, регулируется количеством теплоносителя.

Устройством, осуществляющим регулирование поток жидкости, поступающей в радиатор, является клапан или вентиль, который может быть автоматическим или ручным.

В помещении всегда происходит теплообмен с окружающим пространством. Это приводит к оттоку или притоку из помещения тепла, и, следовательно, к понижению или повышению в нем температуры воздуха.

Для восстановления в помещении теплового баланса необходимо увеличить или уменьшить количество тепла, поступающего от нагревательных приборов. С этой задачей прекрасно справится терморегулятор на батарею, установленный на подводящих трубопроводах.

Механический терморегулятор

Данное устройство состоит из клапана и чувствительного элемента (термической головки). Они функционируют слаженно без посторонней внешней энергии. Термическая головка комплектуется приводом, регулятором и жидкостным элементом, который может заменяться упругим или газовым.

Выбирать терморегулятор на батарею необходимо с учетом всех факторов, которые в дальнейшем смогут оказать влияние на его работу. Важно произвести специальный расчет — только в этом случае данный прибор будет функционировать максимально эффективно.

Составные элементы

Механический терморегулятор на батарею состоит из следующих элементов:

  • Компенсационный механизм.
  • Шток.
  • Разъемное соединение.
  • Золотник.
  • Чувствительный элемент.
  • Термостатический элемент.
  • Клапан термостатический.
  • Шкала настройки.
  • Накидная гайка.
  • Кольцо, которое фиксирует заданный температурный режим.

Факторы воздействия

На температуру в помещении, а значит, и на работу механического терморегулятора способны воздействовать следующие факторы:

  • Наружная температура.
  • Проветривание или сквозняк.
  • Солнечный свет.
  • Дополнительные источники холода или тепла (холодильник, трубопровод с горячей водой, электрические нагревательные приборы и т. д.).

При изменении в обогреваемом помещении температуры воздуха происходит изменение количества теплоносителя. Одновременно с этим изменяется объем сильфона, что приводит в действие регулирующий золотник. Перемещение золотника напрямую связано с изменением в комнате температуры воздуха. При изменении температуры чувствительный элемент реагирует и приводит в действие шток клапана регулятора. В результате изменение хода осуществляет регулирование подачи теплоносителя в нагревательный прибор.

Монтаж

Терморегулятор на батарею механического типа необходимо устанавливать на подающем трубопроводе. При этом головка терморегулятора должна располагаться горизонтально, не должна подвергаться влиянию прямых солнечных лучей и тепла. Если клапан закрыт занавеской или заставлен мебелью, то образуется нечувствительная зона, другими словами, термостат не контактирует с температурой окружающей среды, и по этой причине он не выполняет свои функции эффективно.

Если же иное размещение данного устройства не представляется возможным, применяются специальные датчики с накладным чувствительным элементом, предназначенные для дистанционного регулирования.

Электронные терморегуляторы

Электронный регулятор температуры отопления представляет собой автоматическое устройство регулирования, обеспечивающее поддержание заданного температурного режима в различном тепловом оборудовании.

В отопительной системе он осуществляет автоматическое управление котлом и остальными исполнительными механизмами (клапанами, насосами, смесителями и т. д.). Основная цель электронного терморегулятора – создание в помещении температурного режима, который был заранее определен пользователем.

Принцип работы

Регулятор температуры отопления электронного типа укомплектован термодатчиком, который устанавливается в месте, свободном от прямого воздействия нагревательных электроприборов, он обеспечивает прибор информацией о термическом состоянии помещения. На основании полученных данных электронный прибор управляет элементами отопительной системы.

Различают цифровые и аналоговые термореле с регулировкой температуры. Первые получили наибольшее распространение благодаря своей функциональности. Терморегуляторы электронного типа бывают:

  • С закрытой логикой.
  • С открытой логикой.

Закрытая логика – это постоянный алгоритм работы во времени и жесткая внутренняя структура, не зависящая от изменения факторов окружающей среды. Можно изменять лишь определенные программируемые параметры.

Терморегулятор с открытой логикой – это свободно программируемое устройство, характеризующееся большим диапазоном функций и настроек, его можно настроить на любую работу и условия окружающей среды.

В отличие от приборов с закрытой логикой, данные устройства не получили столь широкого распространения. Обосновано это тем, что их управление требует определенной квалификационной степени. Поэтому далеко не каждому рядовому гражданину под силу разобраться в режимах и настройках электронных терморегуляторов. Широкое применение получила открытая логика в индустриальном сегменте, однако со временем она может стать неотъемлемым элементом быта любого человека.

Установка терморегулятора на батарею

В процессе монтажа очень важно придерживаться инструкции и не размещать устройства данного типа в нишах, за декоративными решетками и шторами. Если же по какой-либо причине это не представляется возможным, устанавливается дистанционный датчик.

Неэффективно устанавливать терморегулятор для чугунных батарей, так как они очень долго нагреваются и остывают.

Прежде чем перейти к монтажу терморегуляторов необходимо отключить стояк и слить теплоноситель из отопительной системы.

Только после этого можно перейти к работам по установке данного прибора, их рекомендуется выполнять в следующей последовательности:

  • Горизонтальные подводки трубопроводов отрезаются на определенном расстоянии от нагревательного прибора.
  • Отсоединяется отрезанный трубопровод и запорное устройство.
  • Отсоединяются гайки и хвостовики совместно с гайками клапана или крана.
  • В пробки радиатора заворачиваются хвостовики.
  • На выбранное место устанавливается трубная обвязка.
  • Обвязка соединяется с горизонтальными трубопроводами.

Настройка

Настройка термореле с регулировкой температуры производится следующим образом:

  • В помещении плотно закрываются все окна и двери, чтобы утечку тепла свести к минимуму.
  • В помещении, где требуется поддержание определенного значения температуры, необходимо установить комнатный термометр.
  • Клапан полностью открывается, для чего головка терморегулятора поворачивается до упора влево, в таком случае радиатор будет функционировать с максимальной теплоотдачей, в помещении начнет повышаться температура.
  • Как только температура станет выше первоначальной на 5-6 °C, нужно закрыть клапан, для этого его головка поворачивается до упора вправо, после чего в помещении начнет постепенно остывать воздух.
  • После того как температура достигнет желаемой величины, клапан медленно открывается посредством вращения головки регулятора в левую сторону. При этом необходимо внимательно прислушаться, как только услышите шум воды и ощутите резкое нагревание корпуса терморегулятора, прекратите вращение головки и запомните ее положение.
  • Настройка полностью завершена. Температура в помещении будет держаться с точностью до 1 °C.

Терморегуляторы на электрических радиаторах

В условиях современной работы коммунальных предприятий, когда в холодный период года в квартирах далеко не всегда температура имеет необходимую для комфортного ощущения величину, многие переходят на электрические нагревательные приборы. Они могут выполнять как функцию дополнительного, так и основного источника тепла.

Как правило, сегодня многие производители выпускают электрические батареи с терморегулятором, что позволяет устанавливать индивидуальную температуру в каждой комнате. Электрические радиаторы – это удобная альтернатива и отличное дополнение центральному отоплению.

Что такое автоматический радиаторный терморегулятор?

Содержание статьи:

  • Устройство и принцип работы радиаторного терморегулятора

  • Термоголовка

  • Регулирующий клапан

Отопительный прибор (например, радиатор) системы водяного отопления должен подавать в помещение тепло в строгом соответствии с текущей потребностью.

Зимой требуемый уровень тепла выше, весной – ниже, поэтому температура теплоносителя в системе отопления должна меняться.

Регулирование температуры должна осуществлять автоматика индивидуального генератора тепла (котла), который является источником тепловой энергии в доме.

Однако не все котлы оснащаются подобными устройствами: часто автоматика лишь поддерживает температуру воды на постоянном уровне, либо отсутствует вовсе. В результате в помещениях становится то жарко, то холодно. Даже если регулирование на котле все-таки есть, нередко бывает сложно добиться баланса: теневая сторона дома холоднее, солнечная – теплее, поэтому приходится открывать форточки и выпускать уже оплаченное потребителем тепло наружу. Как лучше поступить в данной ситуации?

На радиаторах можно установить вентили или шаровые краны. С их помощью легко уменьшается подача горячей воды в приборы отопления. Сложно представить, чтобы у радиатора постоянно будет дежурить человек и закрывать кран, когда выйдет солнце, затопят камин или придут гости, а потом вновь открывать его, когда станет холоднее.

Такую работу берет на себя автоматический радиаторный терморегулятор. Устройство не только помогает поддерживать постоянную  комфортную температуру в помещении без участия  человека, но и экономит тепло и деньги на его оплату: счета становятся на 20% ниже. Для отопления используется «бесплатное» солнечное тепло, теплопоступления от людей, электроприборов и т.д. Кроме того, воздух вокруг вашего дома станет чище за счет сокращения выбросов дымовых газов от сжигания лишнего топлива.

Строительные нормы не случайно предписывают установку регулирующих устройств перед отопительными приборами, а в жилых зданиях – именно автоматических радиаторных терморегуляторов.

Устройство и принцип работы радиаторного терморегулятора

Радиаторный терморегулятор состоит из двух основных частей: термостатической головки (термоголовки) и регулирующего клапана.

Регулирующий клапан устанавливается на входе теплоносителя в радиатор. Под воздействием термоголовки он изменяет количество горячей воды, проходящей через прибор.

Термоголовка

– главный элемент автоматического регулирования. С помощью соединительной гайки она закрепляется на регулирующем клапане и, реагируя на отклонения температуры воздуха в помещении от заданного значения, перемещает затвор регулирующего клапана.

Внутри термоголовки находится гофрированная, заполненная термочувствительной жидкостью емкость (сильфон), иногда в сочетании с ее парами. Через настроечную пружину сильфон связан с нажимным штоком, а тот в свою очередь – со штоком и затвором регулирующего клапана.

 

Когда температура воздуха в помещении становится выше заданного значения, жидкость в сильфоне расширяется, он сжимается и перемещает шток и затвор клапана в сторону уменьшения протока воды. Радиатор остывает, температура в помещении снижается. При падении температуры на улице происходит обратный процесс: жидкость уменьшается в объеме, сильфон растягивается, высвобождая шток клапана, который под воздействием возвратной пружины поднимается. Проток воды через радиатор увеличивается и, вслед за этим, температура в помещении восстанавливается.

Изменяя силу сжатия настроечной пружины простым поворотом рукоятки термоголовки, можно установить любую желаемую температуру. Терморегулятор будет поддерживать ее без вашего участия. Для этого на корпусе термоголовки нанесена шкала, цифры которой соответствуют температуре настройки.

 

Как видно, диапазон настройки температуры широк и, в зависимости от типа термоголовки, составляет от 2 до 29оС. Однако следует помнить, что если радиатор изначально рассчитан на поддержание 22 оС, то терморегулятор в любом случае не сможет обеспечить более высокую температуру. Для этого радиатор должен иметь определенный запас.

При необходимости диапазон настройки может быть ограничен с обеих сторон – для этого в комплекте поставляются специальные штифты.

Термоголовки бывают трех разновидностей: со встроенным температурным датчиком, с выносным датчиком и головка дистанционного управления.

  • Первый тип применяется, когда радиатор располагается открыто под окном, и воздух помещения свободно омывает термочувствительный элемент термоголовки.
  • Если радиатор завешен глухими шторами или заставлен мебелью, температура вокруг обычной термоголовки будет выше, чем в помещении – регулятор может работать некорректно. В этом случае используется термоголовка с выносным датчиком, который должен располагаться на свободной стене примерно на высоте 1,5 м от пола, а сама головка – на клапане терморегулятора.
  • Термоголовка дистанционного управления представляет собой обычную головку, размещаемую на стене по тому же принципу, что и выносной датчик. Она связана с клапаном терморегулятора через капиллярную трубку гидропривода. Такая термоголовка применяется для удаленного управления температурой в помещении, когда доступа к радиатору и клапану терморегулятора нет вовсе.

Регулирующий клапан

– исполнительное устройство терморегулятора, которое устанавливается на входе теплоносителя в радиатор и изменяет количество горячей воды, проходящей через отопительный прибор.

Клапан терморегулятора нормально открытый нажимного действия (закрывается  под воздействием термоголовки, открывается за счет возвратной пружины).

Правильный выбор радиатора и терморегулятора поможет поддерживать в вашем доме комфортную температуру и сделает жизнь удобней и проще. 


Система управления температурой батареи — MATLAB & Simulink

Система управления температурой батареи поддерживает безопасную и эффективную работу батарей, регулируя их температурные условия. Высокие температуры аккумуляторов могут ускорить их старение и создать угрозу безопасности, в то время как низкие температуры могут привести к снижению емкости аккумуляторов и ухудшению характеристик зарядки/разрядки.

Система управления температурным режимом батареи регулирует рабочую температуру батареи, либо рассеивая тепло, когда оно слишком горячее, либо выделяя тепло, когда оно слишком холодно. Инженеры используют активные, пассивные или гибридные решения для теплопередачи для регулирования температуры батареи в этих системах.

Активные решения обычно имеют вентилятор или насос, подающий рабочую жидкость, например воздух, воду или какую-либо другую жидкость, для снижения или повышения температуры батареи. В пассивном решении либо радиаторы, либо трубы с теплопроводными материалами отводят тепло от батареи. Гибридное решение сочетает в себе ключевые конструктивные особенности как активных, так и пассивных решений.

Создание программных тепловых моделей аккумуляторов, имитирующих процесс теплопередачи, может помочь инженерам анализировать компромиссы в проектных параметрах, оценивать производительность и реализовывать алгоритмы управления. Инженеры могут использовать MATLAB ® и Simulink

® для разработки систем управления тепловым режимом батареи, которые обеспечивают оптимальную производительность аккумуляторной батареи в различных условиях эксплуатации.

Проведение теплового анализа в Simulink новой и устаревшей модели литий-ионного аккумуляторного блока для проектирования аккумуляторных блоков, которые соответствуют критериям гарантии по истечении срока службы (EOL) с точки зрения мощности, производительности и упаковки.

С помощью MATLAB и Simulink вы можете:

  • Детально моделировать тепловое поведение батареи
  • Создание моделей систем охлаждения/обогрева с использованием различных рабочих сред, включая газы, жидкости и хладагенты, изменяющие фазу
  • Выполнение выбора компонентов и размеров компонентов с помощью моделирования и симуляции
  • Исследуйте пространство проектирования с различными параметрами компонентов и оптимизируйте производительность системы управления температурным режимом батареи
  • Моделирование экстремальных температурных условий для разработки сценариев «что, если»
  • Разработка логики диспетчерского управления и стратегий управления с обратной связью для модуляции температуры
  • Проведение сценарных исследований для оценки теплового воздействия различных вариантов конструкции
  • Сокращение затрат за счет проведения меньшего количества дорогостоящих и трудоемких тестов с серийным аккумуляторным оборудованием
  • Автоматически генерировать готовый к производству встроенный код для управления температурным режимом батареи и соответствовать отраслевым стандартам

Захват температурного режима батареи

Используя Simscape™ и Simscape Battery™, вы можете создавать модели, начиная с уровня элемента батареи, а затем добавлять эффекты температуры окружающей среды, материалы теплового интерфейса и соединения охлаждающей пластины, чтобы создать более репрезентативную модель.

Теплопередачу можно рассматривать с точки зрения от ячейки к ячейке, от ячейки к пластине и от ячейки к окружающей среде путем определения тепловых путей к окружающей среде, хладагенту и расположению охлаждающей пластины. Simscape Battery предоставляет готовые блоки охлаждающих пластин, которые поддерживают различные конфигурации потока, включая параллельные каналы, U-образные прямоугольные каналы и краевое охлаждение.

Блок параллельных каналов в Simscape Battery

Блок U-образных каналов в Simscape Battery

Блок Edge Cooling в Simscape Battery

Разброс температур, возникающий в результате динамического взаимодействия между аккумулятором и потоком хладагента, может быть точно зафиксирован путем дискретизации этих охлаждающих пластин в элементы.

Тепловая модель на уровне пакета может быть построена путем сборки ячеек в модули с тепловыми эффектами и размещения модулей внутри пакета. Модели аккумуляторных батарей, созданные в Simscape, используют электрические и тепловые сети, которые отражают реальную систему и масштабируются по мере увеличения количества ячеек. Вы можете выполнить анализ тепловых характеристик аккумуляторных батарей с разным уровнем старения, чтобы соответствовать критериям гарантии по истечении срока службы (EOL).

Подробное 1D тепловое моделирование одного элемента батареи с помощью Simscape с использованием библиотеки Thermal Elements

Определение теплового пути охлаждающей жидкости для модуля батареи с помощью Simscape Battery

Подключение охлаждающей пластины к аккумуляторному модулю и параллельной сборке

Моделирование систем охлаждения/обогрева

Блоки Simscape и Simscape Fluids™ можно использовать в газовой, жидкостной и тепловой областях для моделирования активных, пассивных или гибридных решений для охлаждения/обогрева. . Вы также можете изучить архитектуру систем охлаждения/обогрева, нарисовав схемы для размещения труб, клапанов, теплообменников и резервуаров. В случае системы жидкостного контура вы можете смоделировать расширительный бак, в котором хранится резервная жидкость; охлаждающие пластины, которые направляют рабочую жидкость вблизи аккумуляторных элементов; система циркуляции с приводом от двигателя с насосом, проточным трактом и клапанами; и различные типы теплообменников, такие как проводные нагреватели или радиаторы. После того, как вы создали модель системы охлаждения/обогрева, вы можете запустить моделирование, уточнить конструкцию, изучив размеры компонентов и параметры системы, а также удовлетворить такие требования, как рассеивание тепла и энергопотребление.

Модель активной жидкостной системы охлаждения/обогрева аккумуляторов в электромобиле (EV), созданная с использованием Simulink и Simscape

Средства управления проектированием для управления Методы PID для управления системой циркуляции, такие как управление потоком сырья (клапан), управление массовым расходом (насосом) и управление выбором пути теплообмена. С Simscape Battery вы можете использовать предварительно созданные блоки, такие как управление охлаждающей жидкостью батареи и управление нагревателем батареи, для создания алгоритмов управления температурным режимом батареи. С помощью Stateflow вы также можете разработать логику диспетчерского управления для переключения между различными режимами работы, такими как нагрев или охлаждение, в зависимости от температуры окружающей среды и температуры батареи.

Simulink-модель системы управления охлаждающей жидкостью, которая вычисляет скорость потока на основе температур между элементами батареи, а также температуры окружающей среды

Создание кода и выполнение аппаратного тестирования в контуре (HIL) Embedded Coder

® и HDL Coder™ позволяют автоматически генерировать удобочитаемый, оптимизированный код C/C++ или HDL для развертывания программного обеспечения системы управления температурой батареи на встроенных микроконтроллерах или целевых устройствах FPGA/SOC. Вы также можете сгенерировать код для модели объекта и выполнить аппаратное тестирование в контуре (HIL). Simscape Battery включает в себя блоки, которые действуют как интерфейсы между батареей и схемой контроля ячейки. Используя эти блоки с аппаратным обеспечением в реальном времени, вы можете подключить симуляцию батареи к реальному оборудованию для балансировки батареи. HIL-тестирование аккумуляторных систем (22:57) позволяет заменить трудоемкие и дорогостоящие аппаратные тесты машиной в режиме реального времени для тестирования системы управления температурным режимом аккумулятора. Это снижает риск повреждения оборудования батареи в потенциально опасных условиях тестирования, позволяя тестировать систему управления температурным режимом батареи в широком диапазоне условий эксплуатации, включая экстремальные температуры, ухудшение работы и неисправности.

См. также: модели аккумуляторов, система управления батареями, состояние заряда аккумулятора, программное обеспечение для моделирования, моделирование и симуляция, Simulink для электрификации, настройка ПИД, дизайн аккумуляторной батареи

Температура батареи: вы ее контролируете?

Ваша батарея больше не черный ящик — стоимость приобретения может составлять от 6 до 9 тысяч долларов. Итак, что после этих огромных инвестиций? Вы даже следите за температурой, уровнем воды и состоянием заряда (SoC) своих аккумуляторов?

Повышение температуры – самая большая угроза для аккумулятора. Опасность представляет не только высокая температура внутри батареи, но и нагревание окружающего воздуха снаружи батареи. Таким образом, мониторинг температуры внутри батареи необходим владельцам и менеджерам автопарков, чтобы получить от них максимальную отдачу.

Как тепло влияет на температуру батареи

Было проведено множество исследований влияния тепла на батареи. Эти исследования показали, что высокие температуры ставят под угрозу производительность и срок службы батареи.

Исследования показали, что при повышении температуры на каждые 8°C герметичный свинцово-кислотный аккумулятор теряет половину своего жизненного цикла. Более того, после того, как тепло повредило аккумулятор, его емкость не может быть восстановлена.

Как уже упоминалось, проблемы с высокой температурой в аккумуляторе возникают не только внутри; они также происходят снаружи. Если температура батареи выше, чем температура окружающей среды вокруг нее, она может терять тепло из-за проводимости, конвекции и излучения. Если температура окружающей среды выше, чем внутренняя температура батареи, то батарея становится более горячей.

Последующие усовершенствования

В результате производители со временем улучшили свои аккумуляторы, сделав их более устойчивыми к нагреву. Исследование, проведенное Международным советом по батареям (BCI) в 2000 году, показывает, что повышение температуры всего на 7°C может неблагоприятно сказаться на сроке службы батареи на один год. К 2010 году улучшения показали, что повышение температуры на 12 ° C приводит к тому, что батарея теряет один год своего срока службы.

Улучшения в батареях привели к тому, что срок службы батареи увеличился до 21 месяца. В 1962, стартерная батарея проработала 34 месяца; в 2000 году он длился 41 месяц, а в 2010 году исследования показали, что он длился в среднем 55 месяцев.

Производители аккумуляторов быстро определили, что аккумуляторы нуждаются в системе терморегулирования, и разработали такую ​​систему, которая помогает защитить весь аккумуляторный блок. Одна ячейка обычно прекрасно работает сама по себе. Но при совместной работе со всеми элементами батареи аккумуляторная батарея может испытывать резкое повышение температуры.

Еще одной угрозой для здоровья батареи является уровень воды в ней. Узнайте о лучших методах управления правильным количеством воды внутри каждой батареи.

Теплоотвод

Производители используют системы управления батареями для рассеивания тепла. Эти системы включают:

1. Защита от перегрева, которая отслеживает температуру и прерывает ток, когда температура внутри батареи становится слишком высокой.

2. Рассеивание выделяемого тепла, приводящее к отводу тепла от батареи во избежание температур, которые могут ее повредить. Тепло рассеивается за счет конвекции, теплопроводности и излучения.

3. Равномерное распределение тепла, помогающее рассеивать тепло, а также локализовать и управлять горячими точками.

4. Принудительное охлаждение аккумуляторов, используемых в устройствах большой мощности, включая электромобили и гибридные электромобили.

В настоящее время проводятся дополнительные исследования для повышения защиты батарей. Например, исследователи из Стэнфордского университета экспериментировали с «умными» батареями, которые автоматически отключаются при достижении температуры выше 71°C. Они возобновляются только после остывания.

Защита зарядного устройства

Температура также может влиять на зарядку аккумулятора. Например, зарядка аккумулятора при средней температуре увеличивает срок службы аккумулятора, а аккумулятор более эффективно принимает заряд при более высоких температурах. Однако батарея потребляет меньше тока при более низких температурах.

Батарея лучше всего работает при температуре от 18°C ​​до 25°C. При повышении температуры в аккумуляторе химическая реакция протекает быстрее. Это позволяет улучшить выходную мощность батареи. Хотя, если химическая реакция будет слишком быстрой, то химические вещества могут быть потеряны, а это снижает срок службы батареи. Если температура поднимается еще выше, возникает тепловой разгон, который может отрицательно сказаться на сроке службы батареи.

Внутреннее сопротивление батареи увеличивается при более низких температурах, а выходная мощность батареи уменьшается. При еще более низких температурах электролит может замерзнуть, в результате чего батарея перестанет работать. Из-за этого многие зарядные устройства оснащены датчиками, измеряющими температуру.

Необходимость в датчиках температуры

Датчики температуры также необходимы в батареях, поскольку тепло выделяется всякий раз, когда батарея заряжается, что увеличивает тепло окружающей среды и внутреннее тепло батареи. Таким образом, датчик температуры необходим на зарядном устройстве батареи, потому что температура батареи высока; зарядное устройство снижает напряжение питания, чтобы обеспечить пиковую зарядку и предотвратить перегрев аккумулятора. Зарядное устройство использует более высокое напряжение для аккумулятора при более низких температурах, чтобы компенсировать повышенное сопротивление, вызванное низкой температурой.

Не уверены, какой аккумулятор подходит для вашей работы? Ознакомьтесь с полным сравнением поломок свинцово-кислотных и литий-ионных аккумуляторов.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *