Принцип работы регулятора давления воды
Регуляторы давления воды используются повсеместно для управления и контроля потока в сетях снабжения. Серия 300 предназначена для использования в крупных системах водоснабжения, где контроль за гидравлическими показателями должен производиться с большой ответственностью.
Принцип действия регулятора давления воды зависит в первую очередь от его конструктивных особенностей. Так, в серии 300 представлены регулирующие клапана с незначительными различиями, что существенно расширяет их сферу применения и возможности при комбинированном использовании.
Состав деталей регулирующих клапанов серии 300: крышка, диафрагма, ось, кольцо, корпус.
Принцип работы регулятора давления воды в общих чертах строится на вертикальном движении оси штока. Сверху ось крепко зафиксирована в латунной втулке, а снизу крепление к регулирующей насадке осуществляется посредством четырех небольших лапок, которые обеспечивают очень прочную фиксацию.
Подобная конструкция практически полностью исключает возможность быстрого износа модели. В серии 300 представлен широкий модельный ряд регулирующих клапанов и знание их конструктивных особенностей поможет понять, как работает регулятор давления воды.
Клапан «до себя» помогает регулировать давление воды перед клапаном, в соответствии с предварительными настройками.
Принцип работы 300 PS
Такой регулятор рассчитан на автоматическое управление, после того как заданы настройки на определенное рабочее давление. Причем, если давление воды увеличивается, клапан автоматически плавно приоткрывается и выравнивает давление до нужных величин, при снижении давления происходит обратный процесс — клапан немного закрывается. Благодаря этому давление воды остается всегда на заданном уровне. Работу регулятора давления воды можно настроить и таким образом, чтобы он полностью закрывался, если давление упадет ниже заданной границы.
Принцип действия регулятора давления воды «После себя» отличается от предыдущей модели тем, что регулировка происходит после клапана, по направлению потока. Таким образом, при повышении давления воды ось штока опускается (в зависимости от настроек) и давление снижается. В условиях понижения давления воды происходит обратный процесс: клапан приоткрывается — давление увеличивается.
Принцип работы 300 PR
Из той же серии 300, регулятор перепада давления воды действует несколько иначе. При увеличении давления, клапан приоткрывается, чтобы уровнять разницу между входным и выходным потоком, соответственно, при уменьшении давления — он начинает закрываться.
Такой регулятор давления используется преимущественно для насосов и разнообразных конструкций систем климатического контроля помещения (отопление и охлаждение).
Подобные конструктивные отличия регуляторов давления воды обеспечивают высокую надежность конструкции и долговечность использования, а вертикальный ход оси клапана — низкие потери
Еще по теме:
Редуктор понижения давления воды Dorot
Регулятор перепада давления
Устройство регулятора давления воды
Регулировка редуктора давления воды
Рекомендации по установки и монтажу регулирующих клапанов
Использование регуляторов давления для уменьшения потерь воды
Сравнение регулирующих клапанов
Автоматические регуляторы давления воды
Принцип работы регулятора давления воды
Устройство, принцип работы и установка редуктора давления воды
Доброго времени суток всем, кто читает этот пост! В нем я расскажу о редукторах понижения давления. Начинаем, как обычно, с определения.
Для чего нужен редуктор давления воды
Редуктор понижения давления — устройство, которое позволяет локально снизить давление в системе водоснабжения квартиры или частного дома.
Предназначен редуктор для защиты водопроводного оборудования от действия высокого давления.
Редукторы понижения давления бывают следующих основных видов:
Поршневой редуктор давления воды: принцип работы и устройство
Поршневые редукторы — внутри таких редукторов находится поршень, который держится пружиной.
Изнутри такой редуктор делится на две камеры — входную и выходную.
Вода во входной камере давит на поршень и приоткрывает створ, через который попадает в выходную камеру.
Таким образом, из-за узкого створа давление в выходной камере получается меньше, чем во входной.
По температуре такие редукторы ограничиваются верхним пределом в 80° Цельсия (если иное не оговорено в паспорте).
Это позволяет применять для горячего и холодного водоснабжения.
Устройство поршневого редуктора давления водыУстройство поршневого редуктора показано на нижнем рисунке:
- Крышка.
- Верхняя часть корпуса.
- Нижняя часть корпуса.
- Диск корпуса.
- Регулировочная гайка.
- Пружина.
- Кольцевые уплотнения
- Стержень.
- Уплотнение клапана.
- Клапан.
Мембранный редуктор давления воды: принцип работы и устройство
Мембранные редукторы — более дорогой и совершенный вид редукторов понижения давления.
Мембранный редуктор имеет больший диапазон регулирования давления и менее чувствителен к качеству воды.
Отсутствие в конструкции трущихся частей обеспечивает больший, чем у поршневых редукторов срок службы.
По температурным характеристикам мембранные редукторы не отличаются от поршневых, но могут применяться на более высоких давлениях (до 25 атмосфер).
Принцип работы такого редуктора поясню при помощи рисунка.
Устройство мембранного редуктора давления воды- Латунный корпус.
- Крышка корпуса.
- Пробка корпуса.
- Регулирующая втулка.
- Гайка.
- Верхняя часть штока.
- Пружина.
- Цилиндрическая часть штока.
- Мембрана.
- Распределительное кольцо.
- Винт золотника.
- Прокладка.
- Нижняя часть штока.
- Уплотнитель.
- Седло.
Как видно из верхнего рисунка, вода, попадающая на вход редуктора, своим давлением давит на прикрепленный к штоку золотник.
Вода стремится вдавить золотник в седло с одной стороны, а с другой его стремится удержать на месте пружина.
После чего вода через небольшую щель попадает на выход редуктора.
Таким образом, давление на выходе из редуктора будет меньше, чем на его входе.
Если давление на входе будет меньше чем то, на которое настроен редуктор, то проток через редуктор не блокируется.
Установка редуктора давления воды своими руками
Требования по монтажу зависят от производителя редукторов и обязательно указываются в инструкции, которая идет в комплекте с редуктором.
Для всех редукторов важно соблюдать направление протока (оно указывается на корпусе при помощи стрелки).
Для некоторых важно положение в пространстве. Связано это с особенностями конструкции или с наличием встроенного грязевика.
Обычный поршневой редуктор не чувствителен к изменению положения в пространстве.
Кроме того, для возможности снятия и обслуживания необходимо ставить шаровые краны до и после редуктора.
Устанавливается редуктор понижения давления на вводе в дом или квартиру до приборов учета, но после фильтров грубой очистки.
При установке редуктора перед водонагревателем, производитель рекомендует выдерживать расстояние и не ставить его прямо на вводе.
Иначе излишние давление, которое появляется при нагреве воды нарушит работу редуктора и от него не будет никакого толку.
На этом рекомендации по монтажу редукторов заканчиваются.
Выбираем редуктор давления воды
Редуктор, при правильной эксплуатации должен прослужить вам много лет.
При выборе прибора в магазине, я рекомендую не покупать совсем дешевые поршневые модели.
Они скорее всего сделаны из дешевых материалов и срок их службы будет меньше, чем у качественных европейских моделей.
На этом все, пишите вопросы в комментариях.
Как работает редукционный клапан? Пошаговая анимация
Как работает редукционный клапан?
Редукционный клапан поддерживает постоянную уставку после клапана.
Для снижения давления в условиях высокого давления можно использовать комплект регулирующего клапана высокого давления, предназначенный для применения в условиях снижения давления.
В этом видеоролике мы рассмотрим производственный поток через этот блок редукционного клапана высокого давления, оснащенный управляемым диафрагмой пилотным клапаном высокого давления.
Как работает пилотный клапан высокого давления 30 HPG с мембранным управлением
- Начиная с регулирующего клапана в закрытом положении и регулировочного винта, еще не откалиброванного до желаемой уставки, давление на входе начинает течь — в этом примере вверх до давления 400 фунтов на квадратный дюйм.
- Давление на входе поступает в капельницу , которая удаляет жидкость из подаваемого газа, которая может повредить другие приборы.
- Регулятор подачи газа снижает давление на входе до 30 фунтов на квадратный дюйм, чтобы обеспечить давление подачи на пилот после прохождения через фильтр.
- Это давление подачи поступает в пилот, где поток встречается и блокируется заглушкой пилота.
- Когда регулировочный винт не навинчен, давление вниз на узел мембраны пилотного клапана отсутствует. Как только регулировочный винт ввинчивается дальше в крышку, пружина оказывает давление на узел, который позиционирует пилотную заглушку, чтобы открыть поток давления подачи в привод регулирующего клапана.
- Это давление питания давит на диафрагму регулирующего клапана, работая против натяжения пружины. Это открывает клапан и позволяет давлению вверх по потоку перемещаться вниз по потоку.
- Далее газ, расположенный ниже по потоку, проходит через предохранитель измерительной линии . Это устройство блокирует давление на пилот, когда оно превышает рабочее давление этого пилота.
- Давление на выходе пилотного клапана сообщает клапану, что делать дальше. При заданном значении 100 фунтов на квадратный дюйм этот пилот будет держать клапан открытым до тех пор, пока не будет достигнуто значение 100 фунтов на квадратный дюйм.
- Когда давление приближается к заданному значению, имеется достаточное усилие, толкающее вверх узел мембраны пилотного клапана, чтобы поднять его и переместить пробку пилотного клапана.
- Теперь блокируется подача давления питания в привод регулирующего клапана, и вместо этого давление на мембрану перенаправляется через пилот и сбрасывается.
- Это позволяет регулирующему клапану перейти в положение отказа, которое в данном случае закрыто.
- После сброса давления и силы, достаточной для преодоления пружины пилота, узел мембраны пилота опустится.
- Это зафиксирует верхнюю часть заглушки пилотного клапана и удалит нижнюю часть, что позволит подать давление обратно в привод регулирующего клапана.
- Если условия потока стабильны, клапан будет открываться и закрываться лишь на небольшой процент для поддержания уставки.
В этом примере давление на выходе будет колебаться от 99 фунтов на квадратный дюйм, когда клапан едва открыт, до 100 фунтов на квадратный дюйм, когда клапан закрыт.
Это также можно увидеть на индикаторе хода, поскольку он перемещается только между двумя нижними отметками.
По мере повторения этого цикла жидкости продолжают попадать из подающего газа в капельницу, откуда их необходимо будет регулярно сливать, в зависимости от условий.
Принцип работы пилотного клапана высокого давления на 150 PG с сильфонным управлением
В этом видеоролике мы рассмотрим производственный поток, проходящий через этот блок редукционного клапана, оснащенный пилотным клапаном высокого давления с сильфонным управлением.
- Начиная с регулирующего клапана в закрытом положении и регулировочного винта, еще не откалиброванного до желаемого заданного значения, начинает поступать давление на входе – в этом примере до давления 400 фунтов на квадратный дюйм.
- В настоящее время еще недостаточно давления подачи, чтобы открыть клапан.
- Давление на входе поступает в капельницу, которая удаляет жидкость из подаваемого газа, что может повредить другие инструменты.
- Регулятор подачи газа снижает давление на входе до 30 фунтов на квадратный дюйм, чтобы обеспечить давление подачи на пилот.
- Это давление подачи поступает в пилотный клапан, где поток блокируется пробкой пилотного клапана.
- Когда регулировочный винт не навинчен, давление на узел мембраны пилотного клапана отсутствует. После завинчивания регулировочного винта пружина оказывает давление на узел, который позиционирует пилотную заглушку, чтобы открыть поток давления подачи в привод регулирующего клапана.
- Это давление питания давит на диафрагму регулирующего клапана, работая против натяжения пружины.
- Это открывает клапан и позволяет давлению вверх по потоку перемещаться вниз по потоку.
- Далее газ, расположенный ниже по потоку, проходит через защитное устройство измерительной линии. Это устройство защищает пилота от избыточного давления. Он блокирует выходное давление, когда оно превышает регулируемый предел, и снова открывается, когда входное давление падает ниже предела.
- Давление на выходе пилотного клапана сообщает клапану, что делать дальше. При заданном значении 150 фунтов на квадратный дюйм этот пилот будет держать клапан открытым до тех пор, пока не будет достигнуто значение 150 фунтов на квадратный дюйм.
- Когда чувствительное давление приближается к заданному значению, оно заставляет сильфон сжиматься, заставляя шток сильфона перемещаться вверх к узлу диафрагмы.
- Это сжимает пружину пилота и перекрывает подачу давления на привод регулирующего клапана.
- Это также снимает верхнюю часть пробки пилота, что позволяет сбросить давление.
- Это позволяет регулирующему клапану перейти в положение отказа, которое в данном случае закрыто.
- После сброса давления и давления, недостаточного для преодоления пружины пилотного клапана, узел мембраны пилотного клапана опустится.
- Это зафиксирует верхнюю часть заглушки пилотного клапана и удалит нижнюю часть, что позволит подать давление обратно в привод регулирующего клапана.
Быстрое, но стабильное изменение положения плунжера пилотного клапана вызывает дросселирование, и клапан будет открываться и закрываться лишь на небольшой процент для поддержания заданного значения.
По мере повторения этого цикла жидкости продолжают выпадать из подающего газа в капельницу, откуда их необходимо будет регулярно сливать, в зависимости от условий.
Чтобы поговорить со специалистом о том, как работает редукционный клапан высокого давления, обратитесь в местный магазин Kimray или к авторизованному дистрибьютору.
Кайл Эндрюс
Кайл Эндрюс работает тренером по продуктам и приложениям в Kimray. Он проводит обучение продуктам и приложениям для отдела продаж и клиентов Kimray.
Еще от Kyle
Основы регуляторов давления
В нашем онлайн-каталоге вы можете найти доступные регуляторы давления Beswick: Щелкните здесь для получения информации о регуляторах давления
Регуляторы давления используются во многих бытовых и промышленных устройствах. Например, регуляторы давления используются в газовых грилях для регулирования пропана, в бытовых отопительных печах для регулирования природного газа, в медицинском и стоматологическом оборудовании для регулирования кислорода и наркозных газов, в системах пневматической автоматики для регулирования сжатого воздуха, в двигателях для регулирования топлива и в топливных элементах для регулирования водорода. Как видно из этого неполного списка, существует множество приложений для регуляторов, но в каждом из них регулятор давления выполняет одну и ту же функцию. Регуляторы давления снижают давление подачи (или впуска) до более низкого давления на выходе и поддерживают это давление на выходе, несмотря на колебания давления на входе. Снижение входного давления до более низкого выходного давления является ключевой характеристикой регуляторов давления.
При выборе регулятора давления необходимо учитывать множество факторов. Важные соображения включают в себя: диапазоны рабочего давления на входе и выходе, требования к расходу, жидкость (газ, жидкость, токсичность или горючесть?), ожидаемый диапазон рабочих температур, выбор материалов для компонентов регулятора, включая уплотнения, а также как ограничения по размеру и весу.
Материалы, используемые в регуляторах давления
Доступен широкий спектр материалов для работы с различными жидкостями и рабочими средами. Общие материалы компонентов регулятора включают латунь, пластик и алюминий. Также доступны различные марки нержавеющей стали (например, 303, 304 и 316). Пружины, используемые внутри регулятора, обычно изготавливаются из музыкальной проволоки (углеродистой стали) или нержавеющей стали.
Латунь подходит для большинства распространенных применений и обычно экономична. Алюминий часто указывается, когда учитывается вес. Пластик рассматривается, когда в первую очередь важна низкая стоимость или требуется одноразовый предмет. Нержавеющие стали часто выбирают для использования с коррозионно-активными жидкостями, в коррозионно-активных средах, когда важна чистота жидкости или когда рабочие температуры будут высокими.
Не менее важна совместимость материала уплотнения с жидкостью и диапазоном рабочих температур. Буна-н является типичным уплотнительным материалом. Некоторые производители предлагают дополнительные уплотнения, в том числе: фторуглерод, EPDM, силикон и перфторэластомер.
Используемая жидкость (газ, жидкость, токсичные или легковоспламеняющиеся)
Прежде чем выбирать наилучшие материалы для вашего применения, следует учитывать химические свойства жидкости. Каждая жидкость будет иметь свои уникальные характеристики, поэтому необходимо тщательно выбирать соответствующие материалы корпуса и уплотнения, которые будут вступать в контакт с жидкостью. Части регулятора, находящиеся в контакте с жидкостью, известны как «смачиваемые» компоненты.
Также важно определить, является ли жидкость легковоспламеняющейся, токсичной, взрывоопасной или опасной по своей природе. Регулятор без сброса предпочтительнее для использования с опасными, взрывоопасными или дорогими газами, поскольку конструкция не сбрасывает избыточное давление на выходе в атмосферу. В отличие от неразгрузочного регулятора, разгрузочный (также известный как саморазгружающийся) регулятор предназначен для сброса избыточного давления на выходе в атмосферу. Обычно для этой цели сбоку корпуса регулятора имеется вентиляционное отверстие. В некоторых специальных конструкциях вентиляционное отверстие может иметь резьбу, и любое избыточное давление может быть сброшено из корпуса регулятора через трубку и сброшено в безопасное место. Если выбран этот тип конструкции, избыточная жидкость должна удаляться соответствующим образом и в соответствии со всеми правилами техники безопасности.
Температура
Материалы, выбранные для регулятора давления, должны быть не только совместимы с жидкостью, но и должны обеспечивать надлежащее функционирование при ожидаемой рабочей температуре. Основная проблема заключается в том, будет ли выбранный эластомер правильно функционировать в ожидаемом диапазоне температур. Кроме того, рабочая температура может повлиять на пропускную способность и/или жесткость пружины в экстремальных условиях.
Рабочее давление
Давление на входе и выходе являются важными факторами, которые следует учитывать при выборе наилучшего регулятора. Важные вопросы, на которые необходимо ответить: Каков диапазон колебаний входного давления? Какое требуемое давление на выходе? Каково допустимое изменение выходного давления?
Требования к потоку
Какова максимальная скорость потока, которая требуется приложению? Насколько сильно меняется скорость потока? Требования к переносу также являются важным фактором.
Размер и вес
Во многих высокотехнологичных приложениях пространство ограничено, и важным фактором является вес. Некоторые производители специализируются на миниатюрных компонентах, и с ними следует проконсультироваться. Выбор материала, особенно компонентов корпуса регулятора, будет влиять на вес. Также внимательно рассмотрите размеры порта (резьбы), стили регулировки и варианты монтажа, так как они будут влиять на размер и вес.
Регуляторы давления в работеРегулятор давления состоит из трех функциональных элементов
- ) Редукционный или ограничительный элемент. Часто это подпружиненный тарельчатый клапан.
- ) Чувствительный элемент. Обычно диафрагма или поршень.
- ) Эталонный силовой элемент. Чаще всего пружина.
Во время работы эталонная сила, создаваемая пружиной, открывает клапан. Открытие клапана оказывает давление на чувствительный элемент, который, в свою очередь, закрывает клапан до тех пор, пока он не откроется настолько, чтобы поддерживать заданное давление. Упрощенная схема «Схема регулятора давления» иллюстрирует эту схему баланса сил. (см. ниже)
(1) Редукционный элемент (тарельчатый клапан)
Чаще всего в качестве ограничительного элемента в регуляторах используется подпружиненный «тарельчатый» клапан. Тарелка включает эластомерное уплотнение или, в некоторых конструкциях для высокого давления, уплотнение из термопласта, которое выполнено с возможностью уплотнения на седле клапана. Когда сила пружины отодвигает уплотнение от седла клапана, жидкость может течь от входа регулятора к выходу. Когда давление на выходе повышается, сила, создаваемая чувствительным элементом, противодействует силе пружины, и клапан закрывается. Эти две силы достигают точки баланса в точке уставки регулятора давления. Когда давление на выходе падает ниже заданного значения, пружина отталкивает тарелку от седла клапана, и дополнительная жидкость может течь от входа к выходу до тех пор, пока не восстановится баланс сил.
(2) Чувствительный элемент (поршень или диафрагма)
Конструкции поршневого типа часто используются, когда требуется более высокое давление на выходе, когда важна прочность или когда давление на выходе не должно поддерживаться в жестких пределах допуска. Поршневые конструкции имеют тенденцию быть более медленными по сравнению с конструкциями с диафрагмами из-за трения между уплотнением поршня и корпусом регулятора.
При низком давлении или когда требуется высокая точность, предпочтительнее мембранный тип. Мембранные регуляторы используют тонкий элемент в форме диска, который используется для определения изменений давления. Обычно они изготавливаются из эластомера, однако в особых случаях используется тонкий гофрированный металл. Диафрагмы практически устраняют трение, присущее поршневым конструкциям. Кроме того, для конкретного размера регулятора часто можно обеспечить большую площадь чувствительности с помощью диафрагменной конструкции, чем это было бы возможно, если бы использовалась конструкция поршневого типа.
(3) Элемент эталонной силы (пружина)
Опорным силовым элементом обычно является механическая пружина. Эта пружина воздействует на чувствительный элемент и открывает клапан. Большинство регуляторов имеют регулировку, которая позволяет пользователю регулировать заданное значение выходного давления путем изменения усилия эталонной пружины.
Точность и пропускная способность регулятора
Точность регулятора давления определяется путем построения графика зависимости выходного давления от расхода. Полученный график показывает падение выходного давления по мере увеличения расхода. Это явление известно как дроп. Точность регулятора давления определяется тем, насколько сильно устройство падает в диапазоне потоков; меньший спад означает большую точность. Кривые зависимости давления от расхода, представленные на графике «Рабочая карта регулятора давления прямого действия», показывают полезную регулирующую способность регулятора. При выборе регулятора инженеры должны изучить кривые зависимости давления от расхода, чтобы убедиться, что регулятор соответствует требованиям к производительности, необходимым для предлагаемого применения.
Определение спада
Термин «падение» используется для описания падения выходного давления ниже исходного заданного значения по мере увеличения расхода. Падение также может быть вызвано значительными изменениями входного давления (по сравнению со значением, когда был установлен выход регулятора). По мере того, как давление на входе увеличивается по сравнению с начальным значением, давление на выходе падает. И наоборот, когда давление на входе падает, давление на выходе растет. Как видно на графике «Рабочая карта регулятора давления прямого действия», этот эффект важен для пользователя, поскольку он показывает полезную регулирующую способность регулятора.
Размер отверстия
Увеличение проходного сечения клапана может увеличить пропускную способность регулятора. Это может быть полезно, если ваша конструкция может вместить более крупный регулятор, однако будьте осторожны, чтобы не указать слишком много. Регулятор с клапаном увеличенного размера для условий предполагаемого применения приведет к большей чувствительности к колебаниям давления на входе и может вызвать чрезмерный спад.
Давление блокировки
«Давление блокировки» — это давление выше заданного значения, которое требуется для полного закрытия регулирующего клапана и обеспечения отсутствия потока.
Гистерезис
Гистерезис может возникнуть в механических системах, таких как регуляторы давления, из-за сил трения, вызванных пружинами и уплотнениями. Взгляните на график, и вы заметите, что для заданного расхода выходное давление будет выше при уменьшении расхода, чем при увеличении расхода.
Одноступенчатый регулятор
Одноступенчатые регуляторы являются отличным выбором для относительно небольшого снижения давления. Например, воздушные компрессоры, используемые на большинстве заводов, создают максимальное давление в диапазоне от 100 до 150 фунтов на квадратный дюйм. Это давление подается на заводе, но часто снижается с помощью одноступенчатого регулятора до более низкого давления (10 фунтов на квадратный дюйм, 50 фунтов на квадратный дюйм, 80 фунтов на квадратный дюйм и т. д.) для работы автоматизированного оборудования, испытательных стендов, станков, оборудования для проверки герметичности, линейных приводов, и другие устройства. Одноступенчатые регуляторы давления обычно плохо работают при больших колебаниях входного давления и/или скорости потока.
Двухступенчатый (двухступенчатый) регулятор
Двухступенчатый регулятор давления идеально подходит для приложений с большими колебаниями расхода, значительными колебаниями давления на входе или снижением давления на входе, например, при подаче газа из небольшого резервуара для хранения или газового баллона.
В большинстве одноступенчатых регуляторов-регуляторов, за исключением тех, в которых используется конструкция с компенсацией давления, большое падение входного давления вызовет незначительное увеличение выходного давления. Это происходит из-за того, что силы, действующие на клапан, изменяются из-за большого падения давления по сравнению с начальной установкой выходного давления. В двухступенчатой конструкции вторая ступень не будет подвергаться таким большим изменениям давления на входе, а только незначительному изменению давления на выходе первой ступени. Такое расположение обеспечивает стабильное давление на выходе из второй ступени, несмотря на значительные изменения давления, подаваемого на первую ступень.
Трехступенчатый регулятор
Трехступенчатый регулятор обеспечивает стабильное давление на выходе аналогично двухступенчатому регулятору, но с дополнительной способностью выдерживать значительно более высокое максимальное давление на входе. Например, трехступенчатый регулятор Beswick серии PRD3HP рассчитан на работу с давлением на входе до 3000 фунтов на квадратный дюйм и обеспечивает стабильное давление на выходе (в диапазоне от 0 до 30 фунтов на квадратный дюйм), несмотря на изменения давления подачи. Небольшой и легкий регулятор давления, который может поддерживать стабильно низкое давление на выходе, несмотря на давление на входе, которое со временем будет уменьшаться из-за высокого давления, является важным компонентом во многих конструкциях. Примеры включают портативные аналитические приборы, водородные топливные элементы, БПЛА и медицинские устройства, работающие на газе под высоким давлением, подаваемом из газового баллончика или баллона для хранения.
Теперь, когда вы выбрали регулятор, который лучше всего подходит для вашего применения, важно, чтобы регулятор был правильно установлен и отрегулирован, чтобы обеспечить его надлежащее функционирование.
Большинство производителей рекомендуют устанавливать фильтр перед регулятором (некоторые регуляторы имеют встроенный фильтр) для предотвращения загрязнения седла клапана грязью и твердыми частицами. Эксплуатация регулятора без фильтра может привести к утечке через выпускное отверстие, если седло клапана загрязнено грязью или посторонним материалом. Регулируемые газы не должны содержать масел, смазок и других загрязняющих веществ, которые могут загрязнить или повредить компоненты клапана или повредить уплотнения регулятора. Многие пользователи не знают, что газы, поставляемые в баллонах и небольших газовых баллончиках, могут содержать следы масел, образующихся в процессе производства. Присутствие масла в газе часто незаметно для пользователя, поэтому этот вопрос следует обсудить с поставщиком газа до того, как вы выберете материалы уплотнения для вашего регулятора. Кроме того, газы не должны содержать чрезмерной влаги. В приложениях с высоким расходом может произойти обледенение регулятора, если присутствует влага.
Если регулятор давления будет использоваться с кислородом, имейте в виду, что этот кислород требует специальных знаний для безопасного проектирования системы. Должны быть указаны смазочные материалы, совместимые с кислородом, и обычно указывается дополнительная очистка для удаления следов смазочно-охлаждающих масел на нефтяной основе. Убедитесь, что вы проинформировали своего поставщика регулятора о том, что планируете использовать регулятор в кислородном приложении.
Не подключайте регуляторы к источнику питания с максимальным давлением, превышающим номинальное входное давление регулятора. Регуляторы давления не предназначены для использования в качестве запорных устройств. Когда регулятор не используется, давление подачи должно быть отключено.
Установка ШАГ 1
Начните с подключения источника давления к впускному порту и линии регулируемого давления к выпускному порту. Если порты не помечены, уточните у производителя, чтобы избежать неправильного подключения. В некоторых конструкциях внутренние компоненты могут быть повреждены, если давление подачи по ошибке подается на выпускной порт.
ЭТАП 2
Перед включением подачи давления на регулятор отпустите ручку управления регулировкой, чтобы ограничить поток через регулятор. Постепенно включайте давление подачи, чтобы не «шокировать» регулятор резким выбросом жидкости под давлением. ПРИМЕЧАНИЕ. Избегайте полного закручивания регулировочного винта в регуляторе, поскольку в некоторых конструкциях регулятора полное давление подачи будет подаваться к выходному отверстию.
ШАГ 3
Установите регулятор давления на желаемое давление на выходе. Если регулятор не сбрасывает давление, будет легче отрегулировать выходное давление, если жидкость течет, а не «тупиковая» (нет потока). Если измеренное выходное давление превышает требуемое выходное давление, стравите жидкость с выходной стороны регулятора и уменьшите выходное давление, повернув регулировочную ручку. Никогда не выпускайте жидкость, ослабляя фитинги, так как это может привести к травме.
При использовании регулятора сбросного типа избыточное давление будет автоматически стравливаться в атмосферу с выходной стороны регулятора, когда ручка поворачивается для уменьшения уставки выхода. По этой причине не используйте регуляторы сбросного типа с легковоспламеняющимися или опасными жидкостями. Убедитесь, что избыточная жидкость удалена безопасно и в соответствии со всеми местными, государственными и федеральными нормами.
ЭТАП 4
Чтобы получить желаемое давление на выходе, выполните окончательные настройки, медленно увеличивая давление ниже требуемой уставки. Установка давления ниже желаемого значения предпочтительнее, чем установка его выше желаемого значения. Если вы превысите заданное значение при настройке регулятора давления, снизьте заданное давление до точки ниже заданного значения. Затем снова постепенно увеличивайте давление до нужного заданного значения.
ШАГ 5
Включите и выключите давление подачи несколько раз, контролируя давление на выходе, чтобы убедиться, что регулятор постоянно возвращается к заданному значению. Кроме того, давление на выходе также должно периодически включаться и выключаться, чтобы регулятор давления возвращался к желаемому заданному значению.