виды запорной арматуры, как отрегулировать обогрев частного дома
Правильно проведенная регулировка батарей отопления в квартире позволит уменьшить расходы на коммунальные услуги, обеспечив при этом комфортный температурный режим в доме. Управляют работой радиаторов специальные автоматические клапаны и другая запорная аппаратура. Монтаж терморегуляторов не представляет сложности, поэтому такую работу вполне по силам выполнить самостоятельно каждому домовладельцу.
Содержание
- Для чего нужно регулировать батареи
- Принцип работы радиаторов
- Способы увеличения теплоотдачи
- Арматура и электронные приспособления
- Запорные краны
- Ручные вентили
- Автоматические терморегуляторы
- Трёхходовые клапаны
- Рекомендации домовладельцам
Для чего нужно регулировать батареи
Использование соответствующих клапанов и механической запорной арматуры позволяет отрегулировать батареи отопления в частном доме и поддерживать оптимальную температуру в отдельных комнатах.
Например, на кухне или в гостиной можно установить термоклапан на уровне 20 градусов Цельсия, а в спальне или детской комнате отрегулировать радиаторы на большую эффективность, поддерживая температуру на уровне 22−24 градусов.
Сегодня многие квартиры в многоэтажках оснащены индивидуальными счетчиками тепловой энергии, соответственно, правильно настроив батареи, можно уменьшить свои расходы на обогрев помещения. В отдельных случаях только при установке простейших клапанов на радиаторы отопления экономия может достигать 30−40% от средних ежемесячных затрат.
Принцип работы радиаторов
Сегодня в наших домах используются различные типы радиаторов, отличающиеся своей конструкцией и материалом, из которого они изготовлены. Чугунные батареи постепенно вытесняются эффективными биметаллическими и алюминиевыми радиаторами, которые позволяют быстро обогревать помещение, сокращая при этом расходы на коммунальные нужды.
Конструкция стандартного радиатора представляет собой лабиринт из труб, имеющий многочисленные рёбра, которые увеличивают теплоотдачу. Через входной патрубок в батарею поступает горячая вода, она нагревает металлические элементы, что позволяет обеспечить интенсивный обогрев помещения.
Регулировка эффективности обогрева батареи заключается в изменении количества теплоносителя, попадающего внутрь радиатора. Соответственно, уменьшив или увеличив его объем, можно оперативно варьировать температуру в помещении. Для такой регулировки используются всевозможные вентили и терморегуляторы, которые отличаются надежной конструкцией, они долговечны и просты в эксплуатации.
Необходимо лишь понимать, что использование вентилей, терморегуляторов и другой запорной арматуры не сможет повысить теплоотдачу имеющейся системы отопления.
Основное назначение таких клапанов — это уменьшение интенсивности обогрева помещения, что позволяет регулировать температуру в батареях, создавать в доме оптимальный микроклимат и экономить на коммунальных расходах.
youtube.com/embed/UiDVDJzGHxE?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Способы увеличения теплоотдачи
Если домовладельцу необходимо увеличить теплоотдачу системы обогрева, то нужно будет поменять старые неэффективные радиаторы на новые установки или же выполнить соответствующее обслуживание батареи.
Для увеличения теплоотдачи рекомендуется выполнить следующее:
- Проверяют трубы и фильтры на предмет засорения. Такая работа выполняется летом, что позволяет провести сервис без отключения от обогрева всего стояка.
- При автономном обогреве можно увеличить температуру теплоносителя. Однако в квартирах при централизованном отоплении сделать это будет невозможно.
- Изменение типа подключения батарей также может положительно сказаться на их эффективности. Например, боковой способ монтажа радиаторов уменьшает мощность обогрева на 25%.
- Имеется возможность установки дополнительных батарей или же увеличения количества секций. Такая работа выполняется исключительно после согласования с коммунальными службами.
Проще всего повысить эффективность системы отопления, установив новые современные батареи. Такие радиаторы отличаются компактными габаритами, они просты в эксплуатации, а благодаря своей уникальной конструкции позволяют быстро нагревать помещение, одновременно уменьшая коммунальные платежи.
Арматура и электронные приспособления
Для регулировки батареи в квартирах могут использоваться различные приспособления, которые отличаются надежностью, простотой в эксплуатации и предлагаются по доступным ценам. Вся запорная аппаратура может быть разделена на несколько основных групп.
Запорные краны
Это простейшие приспособления, позволяющие уменьшать объем теплоносителя, поступающего в установленные радиаторы. Запорная арматура выполняется в виде шаровых кранов, имеющих два положения:
- «Открыто» — в радиатор поступает максимально возможный объем теплоносителя и батарея греет на полную мощность.
- «Закрыто» — ток теплоносителя остановлен, а радиатор отопления быстро остывает.
Оставлять шаровые краны в промежуточном положении не рекомендуется, так как клапан быстро повреждается твердыми частицами, содержащимися в теплоносителе отопительной системы. Недостатком использования запорных кранов для регулировки батареи является необходимость частых манипуляций, когда домовладельцу вручную требуется открывать и закрывать вентили. С помощью таких устройств будет невозможно создать оптимальный и устойчивый температурный режим в помещении.
Ручные вентили
Краны с ручной регулировкой позволяют убавить батарею отопления, сокращая объем теплоносителя, поступающего в радиаторы. Такая корректировка выполняется за счёт уменьшения или увеличения диаметра проходного отверстия.
Ручной вентиль имеет запорную головку, положение которой изменяется в зависимости от расположения рукоятки. Для упрощения регулировки объёма поступающего в батарею теплоносителя на корпусе крана может быть нанесена шкала с делениями, чтобы выставлять нужную температуру батареи.
Автоматические терморегуляторы
Автоматические терморегуляторы позволяют в полностью автономном режиме поддерживать оптимальный микроклимат в помещении. Такая запорная аппаратура способна реагировать на показатели температуры воздуха в комнате, автоматически изменяя степень нагрева радиатора. Рабочим элементом у таких терморегуляторов является игольчатый клапан, который дозирует объем поступления жидкости в батарее.
Используемые сегодня автоматические регуляторы можно разделить на две основных категорий:
- 1. Электронные.
- 2. Термостатические.
Термостатические регуляторы по своей конструкции отдаленно напоминают ручной вентиль. Внутри клапана находится термодатчик, который способен определять температуру воздуха в помещении, а также механизм регулировки со шкалой настройки и управляющей рукояткой. Домовладельцу необходимо установить на терморегуляторе оптимальную температуру, и в последующем арматура будет работать в полностью автономном режиме, оперативно изменяя объем поступающего в радиаторы теплоносителя в зависимости от температуры воздуха в помещении.
Электронные терморегуляторы обладают расширенным функционалом, могут оснащаться выносными термодатчиками, а имеющийся блок управления может включать различные дополнительные настройки, в том числе способен обеспечить всю работу отопления в полностью автономном режиме. Наличие функции программирования запорной аппаратуры позволяет оптимальным образом настраивать всю систему, существенно сокращая расходы на коммунальные нужды.
Благодаря функции программирования можно настроить обогрев таким образом, чтобы днем в будни, когда жильцы находятся на работе, в батареи поступало минимальное количество теплоносителя, а вечером, когда требуется максимально интенсивный обогрев, регулируемый клапан открывал трубы на максимум. Отопление быстро нагреет помещение, обеспечивая комфорт проживания в квартире и в частном доме.
Трёхходовые клапаны
Для регулировки температуры батареи может использоваться трехходовой клапан, который устанавливается на соединение подающей трубы и байпаса. Это устройство стабилизирует работу радиатора, уменьшает или увеличивает интенсивность нагрева помещения. Трёхходовой клапан оснащается терморегулирующей головкой, которая упрощает регулировку батарей. Такая запорная аппаратура станет оптимальным выбором для однотрубных систем обогрева, имеющих вертикальную разводку.
К преимуществам запорной аппаратуры этого типа можно отнести ее универсальность использования, отличную надежность, долговечность и доступную стоимость. Однако по своему функционалу она уступает автоматическим электронным терморегуляторам, что несколько ограничивает ее использование.
Рекомендации домовладельцам
Ручные вентили имеют доступную стоимость, что положительно сказывается на их популярности у отечественных домовладельцев. Это надежная и простая в использовании запорная аппаратура, которая позволит упростить регулировку радиаторов отопления.
В многоквартирных домах, где имеется централизованное отопление, теплоноситель может содержать крупнодисперсную взвесь и посторонние частицы, способные засорять термостаты. Поэтому при использовании автоматических регуляторов перед ними обязательно устанавливаются фильтры, которые очищаются с частотой раз в месяц.
Сегодня в продаже можно найти десятки различных видов запорной арматуры для радиаторов отопления. Предпочтение следует отдавать немецким и итальянским клапанам и регуляторам, которые будут отличаться надежностью, долговечностью и великолепным качеством сборки. А вот недорогие вентили от отечественных или китайских производителей имеют посредственное качество и прослужат от силы один-два отопительных сезона, после чего потребуют замены.
При установке запорной арматуры рекомендуется на выходе из радиатора врезать дополнительный кран, что позволит выполнять самостоятельный слив теплоносителя. Это упрощает прочистку батареи и фильтрующих элементов. Домовладелец будет избавлен от необходимости постоянно вызывать сантехников и обесточивать стояк для обслуживания радиаторов отопления.
Регулирующие краны устанавливаются с использованием обжимных фитингов. Резьбовой вид соединения с трубами позволит гарантировать отсутствие протечек, а при необходимости можно с легкостью выполнить замену и обслуживание термостата. Для уплотнения фитингов используют лен или фум-ленту.
Регулировка тепла в батареях отопления в квартире и в частном доме позволяет не только обеспечить максимально возможный комфорт проживания, но и экономит расходы домовладельца на оплату коммунальных услуг. Для управления работой радиаторов могут использоваться ручные, механические и электронные клапаны.
Необходимо правильно подобрать запорную арматуру, а в последующем грамотно смонтировать ее, что позволит обеспечить беспроблемность эксплуатации терморегуляторов, которые будут работать в полностью автономном режиме.
Термоголовки для радиаторов отопления | +7(495)665-29-20
Устройство, позволяющее регулировать температуру радиаторов отопления называется термоголовка. Это не единственное название этого устройства, встречаются также: терморегулятор на батарею, термостатическая головка, регулятор температуры на батарею, радиаторный термостат, радиаторный терморегулятор и другие. Поговорим же более подробно о этом устройстве.
Различные виды термоголовок для радиатора отопления.
- Принцип действия.
- Классификация.
- Варианты установки.
- Настройки.
- Заключение.
1. Устройство и принцип действия термоголовки для радиатора отопления.
Термостатическая головка может использоваться только совместно с термостатическим вентилем. Термостатический вентиль относится к запорно-регулирующей арматуре и с помощью термоголовки может регулировать или перекрывать потоки жидкости в системе.
Устройство термостатической головки отопления и термостатического вентиля.
Температура окружающего воздуха рядом с термоголовкой влияет на состояние вещества в сильфоне. Уменьшаясь или увеличиваясь в объеме, вещество воздействует на положение нажимного штока и тем самым регулирует объем поступающего в радиатор теплоносителя. Когда температура воздуха в помещении повышается, вещество в сильфоне начинает расширяться, выдавливая шток, который в свою очередь уменьшает сечение канала, и объем поступающего в радиатор теплоносителя сокращается. При понижении температуры происходит процесс наоборот: вещество в сильфоне сжимается, благодаря чему шток поднимается, увеличивая сечение канала, и объем поступающего теплоносителя повышается.
Открытию и закрытию штока способствуют две нержавеющие стальные пружины: одна возвращает шток после закрытия клапана, другая после открытия.
ВАЖНО помнить, что для правильного функционирования термоголовки, её периодически необходимо очищать от пыли и грязи. При этом следует помнить, что для очистки не следует использовать чистящие средства и абразивные материалы!!!
Термоголовка и клапан в разрезе.
2. Классификация радиаторных термоголовок.
Все радиаторные термоголовки можно разделить на два типа:
механические — регулировка осуществляется вручную;
электронные – процесс регулировки происходит в автоматическом режиме.
Механические модели представляют собой головку различных размеров с поворотной ручкой. Температурный диапазон можно контролировать. В различных моделях он начинается с показателя +5 °С и доходит до +28 °С. Термостатическая головка предусматривает несколько режимов работы, делением температурной шкалы. Каждое деление приравнивается к 2-5 °С.
Механическая термоголовка на батарею отопления.
Электронные термоголовки для управления радиаторами отопления – это многофункциональные терморегуляторы, позволяющие сократить потребление теплоэнергии за счёт возможности программирования. Рассмотрим различные функции, которыми обладают электронные регуляторы для батарей.
Возможность точной настройки температуры на 0,5 °C;
Возможность временного программирования температуры;
Моментальное регулирование температуры помещения, обеспечивающее комфорт и экономию Ваших денежных средств за отопление;
Возможность программирования температуры комфорта и температуры снижения на каждый день недели;
Возможность дополнительной настройки различных заводских режимов, а также индивидуальных режимов работы терморегулятора батареи;
Дополнительные функции: отпуск/вечеринка, защита от детей/внешнего воздействия;
Большой дисплей с подсветкой, предназначенный для удобства эксплуатации;
Автоматическая калибровка и регулярное самотестирование электронной термоголовки, предотвращающее заеданиe вентилей и отложениe извести;
Безопасность: защита от замерзания, автоматическая защита против засорения клапанов путем самостоятельных действий без участия человека;
Электронная беспроводная термоголовка радиатора отопления.
3. Варианты установки радиаторных термоголовок.
Подключение каждой конкретной модели термоголовки должно осуществляться согласно рекомендациям производителя, которые указаны в инструкциях по эксплуатации. Однако можно выделить общие требования к монтажу, характерные для большинства моделей:
Горизонтальное размещение на клапане. Чтобы регулятор батареи не торчал в бок, не мешал хождению возле батареи, влажной уборке и так далее, его монтируют вертикально, забывая или не зная, что при этом, происходит нагрев сильфона тепловыми потоками, поднимающимися от клапана! Поэтому следует размещать головку термостатическую горизонтально наружу.
Не устанавливать термоголовку для радиатора в нишах. Ниша является замкнутым пространством, в котором конвекция сильно снижается, тепло аккумулируется за шторами, под подоконниками, температура срабатывания термоголовки отражается не корректно.
Монтаж в нисходящих потоках у подоконника. В данном случае сильфон интенсивно охлаждается сквозняком из окна, форточки и перестает срабатывать.
Исключить попадание прямых солнечных лучей. Прямые солнечные лучи не должны попадать на корпус, т.к. это приведет к некорректной работе устройства.
ВАЖНО. В однотрубных системах отопления термоголовка для радиатора отопления с клапаном может устанавливаться только с байпасом, так как при работе клапана поток жидкости перекрывается полностью. Из-за этого прекращается циркуляция в обогревательных контурах. Обводная труба байпаса полностью решает данную проблему.
Конструктивные различия однотрубной и двухтрубной систем.
4. Настройка радиаторных термостатов.
Настройка механических радиаторных термоголовок на батарею не представляет из себя ничего сложного. Необходимо просто вращением рукоятки относительно цифровой шкалы с метками регулировать температуру, в пределах того диапазона, который задан производителем. Обычно диапазон температуры в термостатических головках составляет +5 — +28 °С.
Настройка электронного терморегулятора для радиатора отопления процесс ненамного сложнее. Вам просто несколькими нажатиями кнопок будет необходимо настроить для себя индивидуальные показания температуры по временной шкале, чтобы создать наиболее оптимальный микроклимат. Например, в периоды времени с 6:00 до 9:00 и с 17:00 до 23:00 задать температуру +21 °С, а в остальные периоды времени +17 °С. Вот и всё. Дальше терморегулятор будет работать в автоматическом режиме.
5. Заключение.
Современными электронными беспроводными термоголовками можно дистанционно управлять с помощью электронных комнатных радио термостатов или дистанционных пультов управления, их можно программировать с помощью специальных USB-программаторов, а также ими можно управлять с помощью смартфона или планшета через сеть Интернет.
Применение термоголовок для радиаторов отопления позволяет создать максимально комфортный микроклимат в квартире, доме или любом другом помещении, а также позволяет ощутить экономию затрат на энергоресурсах.
Купить терморегулятор для радиатора отопления, а также любое другое оборудование для управления климатическими системами по выгодным ценам, возможно в интернет-магазинах Termogolovka-EC.ru и Salus-Controls24.ru.
Звоните нам по телефону +7 (495) 665-29-20 мы всегда ответим на все интересующие Вас вопросы и поможем подобрать необходимое оборудование для Вашей системы отопления.
Аккумулятор электромобиля зимой: Отопление, пожалуйста!
Батарея и топливный элемент >
15 марта 2022 г. — 12:50Аккумулятор электромобиля зимой: Отопление, пожалуйста!
Аккумуляторы, отоплениеP3P3 Автомобильные исследования, управление тепловым режимом
+ Премиум
Большинство водителей электромобилей замечают это каждую зиму: производительность на станциях быстрой зарядки падает с температурой. Кристоф М. Шварцер и аналитики P3 Automotive составили подробный отчет, чтобы увидеть, как холод влияет на элементы батареи и что означает эта чувствительность.
* * *
Автомобильная промышленность дала обещание: аккумуляторные электромобили, сокращенно BEV от Battery Electric Vehicle, должны заряжаться все быстрее и быстрее. Чем лучше это работает, тем менее критичным будет фактический диапазон. Вот как Hyundai Ioniq 5 вызвал у нас эйфорию, когда он вышел. Основываясь на 800-вольтовой платформе E-GMP, Hyundai заявила, что для заполнения батареи от 10 до 80 процентов SOC потребуется не более 18 минут. В пиковые моменты обещали более 200 киловатт зарядной мощности. Однако во время реальных испытаний в конце октября иногда удавалось вызвать только четверть идеальной кривой зарядки. Диагноз: переохлаждение. И Hyundai отнюдь не одинок с этим симптомом. На самом деле такое поведение можно наблюдать в той или иной степени почти у всех BEV.
Мы отправились на поиски фактов и нашли специалистов по аккумуляторам по адресу P3 Automotive .
В частности, P3 изучил данные о поведении и производительности аккумуляторных элементов, чтобы выяснить, как на них влияет холодная погода. Мало кто так хорошо знает химию. Мы хотели уточнить, что на самом деле происходит с аккумуляторными элементами при низких температурах? Какие эффекты имеет зарядка? И какие из этого следуют выводы – что нужно корректировать и компенсировать упомянутыми выше компонентами, если ячейки показывают плохие показатели работоспособности в условиях холода?
Предварительный нагрев до 20-30 градусов обязателен.
Вывод: согласно статье P3, крайне важно, чтобы аккумуляторные системы автоматически нагревались при низких температурах перед быстрой зарядкой. По словам P3, оптимальная начальная температура составляет от 20 до 30 градусов по Цельсию. Как только начинается процесс зарядки, элемент батареи нагревается. Если он ледяной, например, при температуре ноль градусов по Цельсию, он имеет очень высокое внутреннее сопротивление, и большая часть мощности зарядки уходит в виде тепла, необходимого для доведения элемента до температуры зарядки.
В электромобилях максимальная мощность зарядки зависит от идеального взаимодействия всех компонентов аккумуляторной системы: аккумуляторных элементов и их химического состава, системы контроля температуры для охлаждения и нагрева аккумуляторных элементов, корпуса аккумуляторной батареи для изоляции от жары и холода. , система управления батареями в качестве центрального блока управления для контроля производительности во время зарядки и разрядки, а также интерфейс автомобиля для оптимизации операционной стратегии для рекуперации, предварительного кондиционирования и других функций.
Если слишком холодно, это снижает начальную производительность зарядки — недостаток, который нельзя восполнить в процессе. И наоборот, батарея нагревается, когда поглощает электрическую энергию, поэтому система контроля температуры в автомобиле должна активно охлаждать батареи даже в жаркие дни, потому что батареи стареют быстрее при температуре выше 45 градусов Цельсия.
В обоих случаях за пределами идеального диапазона температур (20-30 градусов) мощность зарядки снижается, чтобы защитить аккумуляторную систему от старения и износа, что на техническом жаргоне называется снижением номинальных характеристик.
Эффективное управление температурным режимом и предварительное кондиционирование аккумуляторной системы при низких температурах является необходимым условием идеальной работы станции быстрой зарядки и, следовательно, хорошего самочувствия пользователей.
Предварительная подготовка имеет решающее значение для долговечности.
Не менее важным, и это второй элементарный результат исследований P3, является предварительный нагрев для циклической выносливости аккумулятора: незакаленный элемент стареет в четыре раза (!) быстрее во время циклов заряда и разряда при температуре ниже пяти градусов. Цельсия как тот, который заряжается и разряжается при высокой температуре. Это результат так называемого литиевого покрытия, то есть осаждения металлического лития на отрицательном электроде. В результате покрытия ионы лития больше не доступны для переноса заряда и разряда, что, по словам P3, может привести к «снижению емкости на 50 процентов или выше и экспоненциальному сокращению срока службы». Кроме того, по мере увеличения количества литиевого покрытия могут образовываться так называемые дендриты, что увеличивает риск короткого замыкания и пожароопасности.
Отличный аккумулятор сам о себе позаботится. Это понимание не ново. Тем не менее, становится все более очевидным, насколько важно при экстремальных температурах сочетать идеальное планирование маршрута с автоматическим предварительным кондиционированием и щадящим управлением батареями, с одной стороны, т. е. с программным обеспечением, а с другой — с необходимым оборудованием.
Вот несколько конкретных примеров: Первоначальным образцом для подражания для планировщика маршрута с предварительной обработкой была Tesla. Тем временем такие производители, как BMW, Mercedes и Porsche, последовали их примеру, а Hyundai также объявила о пересмотре Ioniq 5. Toyota, с другой стороны, сообщает, что внедорожник bZ4X (произносится как «bee zee Four Cross») будет иметь в стандартной комплектации тепловой насос для «доведения до температуры высоковольтной батареи», а не в первую очередь для снижения энергопотребления при обогреве салона. Судя по их опыту с гибридными автомобилями, Япония, вероятно, знает лучше, чем они хотели бы признаться внешнему миру, как надежно управлять аккумуляторными системами.
К сожалению, очевидно, что сложное программное и аппаратное обеспечение стоит денег, что приводит к сокращению предложения в более дешевых сегментах автомобилей. Другими словами, именно там, где стоимость батареи в любом случае страдает больше всего, и где невозможно построить щедрый валовой буфер сверх чистой емкости именно по этим причинам стоимости. Есть основания опасаться, что в этих сегментах пострадает практичность и долговечность.
Назад к статье P3 и основному научному выводу:
- Внутреннее сопротивление элементов увеличивается в холодных условиях . Подвижность ионов лития уменьшается, а отдаваемая мощность падает. Увеличение вязкости электролита на морозе усиливает этот эффект.
- В холодных условиях емкость накопителя энергии уменьшается на 30 процентов или более. Перенос заряда снижается при низких температурах, в том числе из-за свойств электролита. Клетки LFP особенно страдают от сильного холода.
- Литиевое покрытие, см. выше, губительно для циклической стойкости элементов . Следует избегать (быстрой) зарядки в холодных условиях. Следовательно, электромобили, которые постоянно двигаются, как такси, имеют более высокую ожидаемую продолжительность жизни, чем те, с которыми плохо обращаются. Производители могут дополнительно ограничивать мощность зарядки в холодных условиях.
- Элементы LFP заряжаются медленнее, чем элементы NCM или NCA . Ячейки NCA могут заряжаться до 90 процентов на 31 минуту быстрее, чем батареи с LFP на положительном электроде в случайном тесте. Однако причина не в самом материале катода. В качестве причины P3 называет одномерную, а не двумерную структуру и толщину слоя на электродах ячеек LFP. В принципе утверждается, что для всех клеточных химических свойств свойства электролит, а также отрицательный электрод (анод) являются решающим фактором поведения на холоде, а не материал катода.
Заключение : Чтобы не отпугивать водителей электромобилей, отрасль должна установить планировщик маршрута с автоматическим предварительным кондиционированием аккумуляторной системы даже в самых дешевых электромобилях. Это единственный способ комфортно преодолевать большие расстояния, не повреждая аккумулятор при низких температурах. Это означает больше, чем просто программное обеспечение, поскольку активный нагрев и охлаждение еще не являются стандартом для многих недорогих электромобилей. Это оборудование также является обязательным условием для обеспечения долговечности аккумуляторных элементов. Если все это не совместить, пострадает репутация самой электронной мобильности.
Репортаж Кристофа М. Шварцера, Германия.
p3-group.com (бумажный)
— РЕКЛАМА —
Предыдущая статья
Следующая статья
Нам необходимо ваше согласие, прежде чем вы сможете продолжить работу на нашем веб-сайте. Если вам еще не исполнилось 16 лет, и вы хотите дать согласие на дополнительные услуги, вы должны спросить разрешения у своих законных опекунов. Мы используем файлы cookie и другие технологии на нашем веб-сайте. Некоторые из них необходимы, в то время как другие помогают нам улучшить этот веб-сайт и ваш опыт. Персональные данные (например, IP-адреса) могут обрабатываться, например, для персонализированной рекламы и контента или измерения рекламы и контента. Более подробную информацию об использовании ваших данных вы можете найти в нашей политике конфиденциальности. Вы можете отменить или изменить свой выбор в любое время в настройках.
Сведения о файлах cookie политика конфиденциальности Выходные данные
Руководство пользователя носков с подогревом — HeatPerformance®
Потеряли руководство пользователя? Здесь вы можете найти всю информацию, касающуюся использования носков с подогревом.
Инструкции по первому использованию
Полностью зарядите батареи (около четырех часов) перед использованием. Вынимайте батареи из носков во время зарядки. Как только батареи будут заряжены, вставьте их в носок и поместите в предназначенные карманы. Закройте карманы, чтобы батарейки не выпали.
Когда заряжаются батареи?
Во время зарядки на аккумуляторе будет медленно мигать красный индикатор. Свет будет гореть постоянно, как только батареи будут заряжены. Теперь батарея готова к использованию.
Так работает терморегулятор
- Нажмите кнопку включения/выключения на носках на мин. 3 секунды, чтобы активировать аккумулятор. Загорится красный светодиод.
- Через 30 секунд вы почувствуете, как ваши замерзшие ноги начинают медленно согреваться.
- Вы можете отрегулировать мощность, нажав кнопку один, два или три раза.
- Повторное нажатие и удержание кнопки в течение 3 секунд отключит батарею в носке.
Срок службы батареи при различных настройках
- Батарея 3,7 В 3400: низкая настройка: 6 часов – средняя настройка: 4 часа – максимальная настройка: 1,5 часа
- Батарея 7,4 В 2200: низкая настройка: 8 часов – средняя настройка: 5 часов – максимальная настройка 2 часа
- Аккумулятор 7,4 В 2600: низкое значение: 10 часов – среднее значение: 6 часов – максимальное значение: 3 часа
Эти значения времени являются средними и зависят от внешних факторов, таких как внешняя температура.
Инструкции по сопряжению и использованию пульта дистанционного управления (при наличии).
Чтобы подключить пульт к батарейкам (пара), нажмите кнопку включения/выключения восемь раз подряд: синий и красный светодиоды начнут мигать. В течение трех секунд нажмите кнопку ON на пульте дистанционного управления, сопряжение будет завершено, и все светодиоды будут мигать в течение нескольких секунд.
Повторите процесс для второй батареи.
Нажмите кнопку ON на пульте дистанционного управления, индикатор на пульте дистанционного управления загорится один раз, а три светодиода на аккумуляторе загорятся на три секунды.
Нажимайте кнопки + и – на пульте дистанционного управления, чтобы установить желаемую степень нагрева.
Нажмите кнопку OFF на пульте дистанционного управления, индикатор загорится один раз, и нагрев прекратится.
Вы можете останавливать и снова запускать систему отопления с помощью пульта дистанционного управления, не прикасаясь к батарее (функция ожидания).
Меры предосторожности при использовании и обслуживании:
- Немедленно отсоедините батареи, если вы чувствуете боль или дискомфорт.
- Не используйте, если у вас проблемы со здоровьем или если вы уязвимы (проблемы с сердцем, кардиостимулятор и т. д.).
- Не оставляйте батареи заряжаться без присмотра, не заряжайте более пяти часов.
- Не используйте другие батареи.
- Мы рекомендуем стирать носки вручную в теплой воде (15-30°C), чтобы продлить срок службы носков и электрических цепей.