Разное

Проверка резистор: Страница не найдена — Сам электрик

Проверка резистор: Страница не найдена — Сам электрик

Содержание

Как проверить резисторы. Обучающее видео

Как проверить резисторы. Обучающее видео

Здравствуйте!

В новой серии видеороликов мы разберем все виды электронных компонентов, расскажем, что они из себя представляют, зачем нужны и как с ними работать. Изучение будет происходит от самых простых пассивных элементов — резисторов, конденсаторов и индуктивностей, до относительно сложных активных деталей: транзисторов, тиристоров и других заумных названий.

Начнем с самой популярной в мире радиоэлектроники штуки – резистора. Узнаем, какая бывает цветовая маркировка резисторов, какие существуют виды и как проверить резистор.

Резистор — наиболее универсальный и часто используемый компонент. Его можно найти в любой схеме, независимо от ее сложности. Принцип работы у него простой, а вот применений множество.

Резистор имеет определенное сопротивление — это его основная характеристика. Что первое приходит в голову при понимании «сопротивления»? Правильно, что-то чему-то сопротивляется.

Резистор дает сопротивление силе тока — он его ограничивает, контролирует, не дает стать слишком большим и неуправляемым. Это и есть самое частое применение — резистор ограничивает ток в цепи. Чем больше сопротивление резистора, тем сильнее он сопротивляется проходящему через него току, и тем меньше этот ток становится.

Все резисторы делятся на постоянные и переменные. Сначала пройдемся по постоянным.

Одной из главных характеристик резистора есть его максимальная рассеиваемая мощность. Этот параметр показывает, какую мощность резистор может «поглотить», рассеять на себе. Стандартные выводные резисторы существуют такой мощности: 0.125, 0.25, 0.5, 1, 2, и 3 Вт. Более мощные резисторы (5, 10 и больше ватт) обычно идут в керамическом (цементном) корпусе. Есть еще SMD-резисторы, которые имеют свою рассеиваемую мощность в зависимости от типоразмера. Самые большие, 2512, рассеивают до 1 Вт.

Определить сопротивление резистора можно несколькими способами. Самый очевидный — измерить его мультиметром.

Если прикоснуться щупами к двум сторонам резистора — мультиметр покажет точное значение его сопротивления. Но есть несколько уловок.

Например, на резисторах советского производства значение указано цифрами и буквами. Иногда оно написано целиком, как здесь — 10 Ом. Если стоит просто цифра — это тоже значение в омах. 300 — 300 Ом. Если после цифры стоит буква, это указание величины (размерности). Например, 2R, или 2R0 — это два ома, 2K — два килоома, 2М — два мегаома. Если сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой. 2R2 — 2.2 Ома, 10К5 — 10.5 килоом.

На современных резисторах нанесена цветовая маркировка, где каждый цвет отвечает за определенную цифру в номинале. Узнать сопротивление таких резисторов можно при помощи таблиц, которые можно найти в интернете, или с помощью специального приложения на телефон, что очень облегчает задачу. Попробуем на примере одного резистора. Выставляем нужные цвета в приложении, и нам показывается точное значение сопротивления.

Цветовая маркировка резисторов позволяет узнать номинал резистора прямо на плате без его выпаивания, с любого ракурса осмотра.

На мощных цементных резисторах обычно пишут мощность резистора и само значение сопротивления в явном виде.

Маркировка SMD-резисторов тоже довольно простая: все цифры, кроме последней — это значение сопротивления, а последняя цифра означает, сколько раз это число нужно умножить на 10. Например, 220 — 22 Ома.

Переменные резисторы, или потенциометры, позволяют изменять свое сопротивление при помощи поворота ручки. Они делятся на однооборотные, многооборотные и подстроечные, а также моно и стерео. Большинство переменных резисторов рассчитано на маленькую мощность, в пределах 0.1-0.2 Ватта. Многооборотистые резисторы следующего типа, как правило, могут рассеять 1-2 Ватта.

Также переменные резисторы различаются графиком изменения сопротивления:

  • A — логарифм, в них сопротивление изменяется по логарифмическому графику;
  • B — линейная, где сопротивление изменяется плавно, по прямой;
  • С — обратный логарифм, действует как обычный логарифм, только в обратную сторону.

Для того, чтобы проверить резистор можно просто измерить его сопротивление. Если мультиметр показывает результат, существенно отличающийся от номинала элемента, или не показывает вообще ничего (бесконечное сопротивление), значит резистор неисправен. И наоборот.

Небольшое задание. Давайте применим полученные знания на практике и попробуем решить простую задачку.

У нас есть светодиод. Максимальный ток, который стандартный светодиод выдерживает, равен 20 миллиамперам. Обычно этот ток достигается при напряжении около 3 вольт. Но у нас нет блока питания на 3 вольта! Что же делать?

Хотя светодиод – это полупроводник со сложным перечнем характеристик, но в данном примере мы задачу упростим и посчитаем его за простую пассивную нагрузку (резистор). Если при 3 вольтах через светодиод проходит 20 мА, по закону Ома его сопротивление (R = U / I, или 3 / 0.02) – 150 Ом. Что будет, если мы захотим включить его в розетку? Снова-таки, по закону Ома получается, что при 220 вольтах через сопротивление 150 Ом пройдет ток (I = U / R, или 220 / 150) целых 1. 46 Ампер! А наш светодиод выдерживает всего 20 миллампер — в 70 раз меньше. От такой большой силы тока он сразу же испортится.

А теперь посчитаем, при каком сопротивлении и напряжении 220 Вольт в цепи будет ток 20 мА. Используем закон Ома, (R = U / I, или 220 / 0.02). Вышло значение 11 кОм. Готово! Если мы подключим светодиод через резистор 11 кОм, наш ток ограничится до 20 мА, которые нужны светодиоду.

Рассчитать, какую мощность будет рассеивать резистор в этом случае, достаточно легко по тому же закону Ома. Через резистор номиналом 11 кОм течет сила тока, равная 0.02 Ампера. Мощность, которая на нем рассеивается, равна (P = I2R, или (0.02)2 х 11000) = 4.4 Вт. Значит, ближайший нужный нам резистор — мощностью 5 Вт.

Вот и все! Мы разобрались с основными видами резисторов, а заодно поняли, как можно узнать о его работоспособности.

В следующей части будем следовать дальше по перечню электронных компонентов, и на очереди у нас проверка конденсаторов.
А если вам необходимы резисторы, или вы нашли в видео то, что давно искали — просмотрите наш полный каталог резисторов.

Все актуальные ценовые предложения, акции и специальные цены вы можете первыми узнавать на канале Electronoff в Telegram

2021-08-3016:02

Как проверить резистор мультиметром на исправность

Содержание

Что такое мультиметр

Давайте перво наперво узнаем, что же можно померить с помощью данного чуда прибора и какая индикация наличествует на лицевой его панели. Итак, вы сможете увидеть такие обозначения:

OFF это положение говорит само за себя и обозначает, что тестер находится в выключенном состоянии.

ACV эта аббревиатура гласит нам о том, что здесь меряется переменка напряжения.

DCV а здесь мы смотрим постоянное напряжение.

DCA тут меряется постоянный ток.

а в данном отделе высчитывается сопротивление.

Для более простого восприятия вот наглядное изображение мультиметра с поясняющими надписями.

Обратите внимание на большую обведенную область с гнездами, тут вы можете наблюдать целых три разъема, а провода же два. А это означает, что для получения верных измеряемых данных нужно выбирать правильные гнезда. Но тут на самом деле все предельно просто. Черный провод всегда сажается в гнездо с обозначением COM. А вот перестроения между двумя остальными разъемами выполняется с применением щупа с красным окрасом.

Причем в подавляющем случае, для домашних целей подойдет гнездо «VΩmA». В таком положении можно произвести прозвонку, измерение напряжения и измерить силу тока до 200 мА включительно.

А вот если вам потребуется померить ток до 10 А то надо переставить красный щуп в разъем 10ACD. Эти положения крайне важны, если вы не соблюдите их, то цешка очень быстро прейдет в негодность. Так же может у кого то завалялась старая цешка еще со стрелочным циферблатом, так вот у нее точно такой же функционал как и у мультиметра с электронным табло, но с последним работать проще. Так как вы видите сразу точное значение измеряемого параметра, да и погрешность на стрелочном приборе несколько выше.

Мы с вами рассмотрели цешку внимательно и теперь знаем за что какое положение отвечает, теперь давайте перейдем к непосредственным измерениям.

Виды устройств для проведения замеров

Практически во всех многофункциональных приборах для замеров существует возможность измерить значение импеданса. По своему принципу работы и функциональности выпускаемые устройства могут быть цифровыми и аналоговыми. При этом важными их характеристиками являются погрешность и диапазон измерения.

Перед началом работы с тестером нужно убедиться в исправности его элементов питания. Если на цифровом типе прибора высвечивается индикация с мигающей батарейкой, это означает что батарейку необходимо заменить. Для стрелочного прибора сигналом о замене питающих элементов будет невозможность установить стрелку в нулевое положение.

Для правильного получения результата необходимо не только использовать настроенный прибор, но и проследить за окружающей температурой. Как известно из законов физики, при нагревании величина сопротивления у проводников увеличивается, а у полупроводников уменьшается. Оптимальной температурой считается 20 градусов по Цельсию.

Принцип работы

Работа любого омметра (включая и современные цифровые измерители) базируется на основном постулате электротехники – законе Ома. Согласно его условиям, чем больше сопротивление, тем меньше проходящий через него ток – при неизменном напряжении питания.

Омметру для работы необходим источник питания. Образуется запитанная электрическая цепь, в которой прибор, учитывая напряжение питания и ток, протекающий через замеряемый элемент, определяет сопротивление.

В современных цифровых мультиметрах используется батарейка на 9 вольт.

В Китае можно заказать никель-кадмиевую аккумуляторную батарейку на 8,4 В – 7 перезаряжаемых элементов по 1,2 В, упакованных в корпус такого же размера, ёмкостью до 200 миллиампер-часов – она даст близкое к 9 В питание, отчего прибор не выдаст существенную погрешность.

Такой способ – выход для тех, кто часто по работе замеряет сопротивление резисторов, спиралей и обмоток, «прозванивает» кабельные линии и т. д.: после примерно 1000 замеров обычная батарейка «села» бы.

Цифровой мультиметр

Главной особенностью цифрового мультиметра является наличие экрана, на нём наглядно отображается измеряемая величина. В основе принципа действия устройства лежит сравнение измеряемого сигнала с опорным, для этого используется аналого-цифровой преобразователь.

Для проведения измерения тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом контактный щуп. Порядок измерения сопротивления резистора электронным мультиметром можно представить в виде следующих действий:

  1. Нажтием на кнопку ON/OFF включается устройство.
  2. Подключаются щупы к двум концам резистора, обратные концы проводов к разъёмам Ω и СОМ.
  3. Переключателем устанавливается примерное сопротивление.
  4. В случае когда на индикаторе высвечивается единица, переключатель следует переставить на одну позицию вверх, т. е. увеличить предел измерения.
  5. Если при снятии показаний на экране отображаются цифры, отличные от единицы, это и будет значение сопротивления.

Таким же образом можно измерить и сопротивление p-n перехода полупроводника. Цифровым прибором удобно измерить постоянное сопротивление, но он бесполезен, когда понадобится узнать его переменную величину. Для таких измерений предпочтительно использовать стрелочный прибор.

Стрелочный прибор

Самые первые измерительные приборы снабжались стрелочным устройством. Это устройство представляло собой электромеханическую головку. Конструктивно она выполнена в виде рамки, находящейся в магнитном поле. На эту головку через различные сопротивления подаётся электрический сигнал. В зависимости от силы тока стрелка в рамке отклоняется, устанавливаясь в определённое положение. Диапазон отклонения стрелки проградуирован, согласно этим значениям и вычисляется требуемая величина.

Технические возможности аналогового тестера во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Главным его достоинством является инерционность и невосприимчивость к помехам во время измерения постоянного напряжения и величины сопротивления.

Стрелочные приборы идеально подходят для отображения динамики сигнала. Тестер мгновенно показывает его изменение. Вместе с тем такой прибор обладает большой погрешностью при измерениях в высокоомных цепях, и имеется некоторая сложность в интерпретации результатов измерения.

Включение прибора осуществляется согласно инструкции, указанной на обратной стороне крышки элементов питания. Кнопкой переключения выбирается режим работы для постоянной, переменной величины или сопротивления (соответственно «—», «~», «Ω»). Для пары измерения используется двойное нажатие. Галетный переключатель диапазонов вычисления устанавливается на фиксированное значение, соответствующее предполагаемому показателю измерения.

Перед измерением величины сопротивления тестер настраивается путём вращения ручки нуля до тех пор, пока стрелка не установится на значение «∞». При выборе диапазона измерения «Ω» значения сопротивления маркируются не максимальными числами в этом диапазоне, а имеют такой вид: х1, х10, х100. Это означает, что полученное значение будет измеряться в Ом, кОм, и МОм. Измерение активного сопротивления производится от установленного в устройстве источника постоянного тока (батарейки).

Включив и подготовив тестер, нужно приложить щупы к исследуемому объекту. Согласно показаниям стрелки на измерительной шкале появится результат, который затем умножается на множитель диапазона.

Использование мегомметра

Мегомметр является специализированным устройством для измерения. Перед началом измерений необходимо строго придерживаться требований ПУЭ (правила устройства электроустановок). К основным правилам относят:

  1. Измерения проводятся на пределе тестера, превышающего возможное наибольшее значение сопротивления. Если такое значение неизвестно, то начинают с максимально возможного предела, который для улучшения точности результата уменьшают до минимально возможного.
  2. Перед тем как проверить сопротивление тестером, потребуется убедиться в обесточивании проверяемого объекта.
  3. Все элементы с пониженной изоляцией, конденсаторы, полупроводники закорачиваются перед началом тестирования.
  4. На время проведения замеров испытуемый объект заземляется.
  5. После окончания измерений, особенно для устройств с большой ёмкостью (например, провода большой протяжённости), перед отсоединением щупов устройства необходимо снять остаточный заряд путём замыкания на заземление.
  6. Снятие показаний сопротивления изоляции силовых и осветительных проводок происходит при выключенных выключателях, снятых предохранителях, извлечённых лампах.
  7. Строго запрещается измерять изоляцию вблизи линий, находящихся под высоким напряжением и во время грозы.

Мегомметр является сложным устройством, состоящим из генератора тока и измерительной головки. Также в состав входят: токоограничивающие резисторы, клеммные колодки, корпус из диэлектрика и переключатель режимов.

Прибор имеет три клеммы для внешнего подключения проводов. К одной подключается земля, к другой линия, а к третьей экран. Куда подключается какой провод — указано в инструкции к прибору.

Клеммы земли и линии задействуются при любых операциях по снятию показаний изоляции относительно контура земли, а экранный контакт нужен для уменьшения влияния токов утечки. Такие токи появляются при замерах между двумя жилами провода, расположенными параллельно друг другу. Экранный контакт подключается специальным проводом, идущим в комплекте к устройству.

После подключения всех щупов на приборах старого образца понадобится покрутить ручку, что обеспечит работу внутреннего генератора и подачу напряжения на тестируемый объект. В современных устройствах вместо ручки используется кнопка, а питание берётся от устанавливаемых аккумуляторов или гальванических батарей. Величина напряжения генератора может лежать в диапазоне от 100 вольт до 2,5 кВ. Как только напряжение подано, для стрелочного прибора снимаются показания стрелки на шкале, соответствующей выбранному диапазону, а для цифрового типа прибора снимаются показания в виде цифр на индикаторе.

Настройки прибора перед измерениями

Итак, друзья давайте поближе познакомимся с самим прибором. В моем случает это цифровой мультиметр DT9208A. В стандартном комплекте идет одна пара щупов для силовых измерений и термопара для измерения температуры, которой я еще ни разу не пользовался.

На передней панели имеется круговой переключатель. Именно с помощью этого переключателя выполняется выбор рабочего режима и диапазона измерений. Переключатель работает как «трещетка» и фиксируется в каждом новом положении.

Вся круговая панель разбита не сектора и имеет разноцветную маркировку (это в моем случае). Иногда сектора обводят отдельными линиями, как бы отделяя необходимый параметр.

Сектор измерения сопротивлений расположен вверху и разбит на семь диапазонов: 200, 2k, 20k, 200k, 2M, 20M, 200M. Приставки «k» и «M» означают кило (10 в 3-й степени) и мега (10 в 6-й степени) соответственно.

Для работы необходимо переключатель установить на нужную позицию сектора. Нас интересует сопротивление, соответственно, перед тем как измерить сопротивление мультиметром нужно выставить переключатель в сектор обозначенный значком «Ω».

Для удобства работы с прибором щупы имеют разную расцветку. Разницы нет, куда вставлять какой щуп но общепринятым правилом считается что черный щуп вставляется в клемму обозначенную «com» (сокращенно от common — общий), а красный щуп вставляется в клемму обозначенную «VΩCX+».

Перед выполнением любых измерений необходимо проверить работоспособности самого прибора, так как может оказаться обрыв в измерительной цепи (например, плохой контакт щупов). Для этого концы щупов закорачивают между собой. Если прибор исправен и в цепи нет обрыва, то на дисплее появятся нулевые показания. Возможно, показания будут не нулевыми, а тысячные части Ом. Это связано с сопротивлением проводов измерительных проводов и переходным сопротивлением между щупами и их клеммами.

При разомкнутых щупах на дисплее будет отображаться «1» (единица) с отметкой диапазона измерений.

Такими несложными действиями выполняется подготовка мультиметра для измерения сопротивления.

Некоторые мультиметры оснащаются полезной опцией, называемой «прозвонкой». Если установить переключатель режимов работы на значок диода, при замыкании щупов звучит сигнал (зуммер). Это позволяет проверять исправность цепей и прямые переходы полупроводников сопротивлением до 50 Ом на слух, не отвлекаясь на дисплей.

Как определить исправность СМД-резисторов

SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.

Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.

Резистор поверхностного монтажа можно проверить мультиметром, путём его полного выпаивания из схемы, при этом оставив припаянным один из концов на плате и приподняв другой при помощи пинцета. После этого проводится измерение.

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.
Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Какие установить настройки

Прежде чем снимать показания мультиметромом, необходимо убедиться в том, что его аккумуляторы заряжены. Режим нужно выбрать соответствующий «прозвону» электропроводки, концы щупов мыкают (соприкасают) друг с другом. Прибор будет издавать звуки, по громкости которых можно определить, насколько пригодна его батарейка.

В зависимости от модификации прибора режим прозвона может обозначаться разными символами – встречается колокольчик, точка со скобками (радиоволны). При проверке электрических цепей или радиодеталей мультиметр издает определенные звуки, «звонит», отсюда и сленговое название данной операции.

Для того чтобы проверить резистор с помощью мультиметра, нужно поставить переключатель прибора в положение, соответствующее номинальному сопротивлению элемента, который вы собираетесь проверять. Значения нанесены на переднюю панель устройства, можно различить их градацию по диапазонам. Нужно правильно выбрать диапазон, иначе величина сопротивления не совпадет, и результат проверки не будет достоверным. Например, при сопротивлении 1 кОм прибор нужно ставить в режим Ω – 20 кОм.

Для того чтобы проверить радиодеталь, щупы прибора подносят к ее выводам вне зависимости от того, соблюдена полярность или нет.

Проверка на обрыв резистора

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».
    Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Прозвон резистора

Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:

  1. Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
  2. Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
  3. Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.

При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.


Выполнение прозвонки электрорезистора.

Полярность резистора

Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может. Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации. Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет.

Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.


Маркировка номиналов резисторов.

Методы проверки

В зависимости от того, что именно вы будете тестировать на пригодность, используется соответствующий метод и приёмы измерения.

Измерение номинала резистора (сопротивления)

Резисторы (сопротивления) широко применяются в электрических схемах. Поэтому при ремонте электронных устройств возникает необходимость проверки исправности резистора или определения его величины.

На электрических схемах резистор обозначается в виде прямоугольника, внутри которого иногда пишут римскими цифрами его мощность. I – один ватт, II – два ватта, IV – четыре ватта, V – пять ватт.

Проверить резистор (сопротивление) и определить его номинал можно с помощью мультиметра, включенного в режим измерения сопротивления. В секторе режима измерения сопротивления, предусмотрено несколько положений переключателя. Это сделано для того, чтобы повысить точность результатов измерений.

Например, положение 200 позволить измерять сопротивления величиной до 200 Ом. 2k – до 2000 Ом (до 2 кОм). 2M – до 2000000 Ом. (до 2 МОм). Буква k после цифр обозначает приставку кило – необходимость умножения числа на 1000, M обозначает Мега, и число нужно умножить на 1 000 000.

Если переключатель установить в положение 2k, то при измерении резистора номиналом 300 кОм прибор покажет перегрузку. Необходимо переключить его в положение 2М. В отличие, от измерения напряжения, в каком положении находится переключатель, не имеет значения, всегда можно в процессе измерений его переключить.

Проверка резистора в уже собранном устройстве

Если купленное или собранное устройство работает неверно или совсем не подаёт признаков жизни – радиоэлементы проверяются на исправность по очереди. Чтобы проверить резистор, один его конец выпаивают и прозванивают «на весу». Дело в том, что, будучи подключённым согласно принципиальной схеме устройства к какому-либо элементу, например, к выводам транзистора, он не выдаст то значение сопротивления, которое вы ожидаете.

Так, сопротивление одного из полупроводниковых переходов всё того же транзистора, равное стольким-то десяткам или сотням Ом, полностью перекроет сопротивление резистора, равное, к примеру, 62 кОм. В результате сработает формула расчёта общего сопротивления двух резисторов – реального и эквивалентного, которым является переход всё того же транзистора. Эта формула равна произведению сопротивлений, делённому на их же сумму – она известна из школьного курса физики.

Не замеряйте сопротивление на резисторах, не исключённых из схемы устройства.

Проверка лампочек и ТЭНов

Проверка спиральной лампочки накаливания так же проста, как и проверка резистора. Нить лампы накаливания имеет конечное сопротивление. Если при «прозвонке» высветится сопротивление порядка нескольких десятков Ом – лампочка цела. Аналогично проверяются на целостность спиральные ТЭНы и обычные нихромовые спирали.


Проверка светодиодов

Светодиоды также можно прозвонить – например, те, что стоят в светодиодных лентах, только у них признаком неисправности является состояние пробоя (короткое замыкание), а не обрыв, как у спиралей.

Если это простой светильник – самодельная гирлянда или простая фара, велосипедный или карманный фонарик, то признаком исправности является сопротивление в десятки Ом при прямом пропускании тока, выдаваемого омметром, и бесконечное при обратном.

Причём в режиме прямого включения светодиод слегка засветится. А вот когда светодиодная лампочка оснащена драйвером – внутренней пускорегулирующей платой, потребуется её разборка и «прозвон» всех деталей и светодиодов из светильной матрицы по отдельности.

Проверка люминесцентных ламп

Лампы дневного света, в т. ч. и спиральные, используют тлеющий разряд в сильно разрежённых парах ртути. Проверить «горелку», даже разобрав корпус и сняв драйвер, с помощью омметра не удастся. Такие лампы восстановлению не подлежат.

Проверка двигателей

В каждом двигателе есть обмотки. Вы можете по отдельности прозвонить обмотку ротора и/или статора. Обмотка с обрывом покажет бесконечное сопротивление. Исправная же обмотка выдаст значение от единиц до десятков Ом. Неисправные обмотки подлежат перемотке точно таким же эмальпроводом, что использовался до выхода из строя мотора.

Проверка проводки, кабелей и выключателей

Включите мультиметр в режим «прозвонки» и проверьте пару проводов в кабеле на одном конце линии, замкнув её на другом. Перебирайте разные провода из разных пар, пока не найдёте неисправные «жилы» в кабеле. В зависимости от протяжённости линии и сечения проводов («жил») сопротивление разнится. Так, при длине линии до сотен метров сопротивление исправной «жилы» может варьироваться от 10 до 200 Ом.

Если проверяется, к примеру, кабель связи на наличие обрывов – поделите полученное сопротивление надвое. Типичный пример – 25-парный кабель для разводки сигнализации в здании, протянутый между патчкордами в разных его частях.

Выключатели и рубильники проверяются аналогично. Перед проверкой обесточьте сеть, отключите «фазный» провод и проверьте, есть ли в рубильнике или выключателе контакт между токоведущими деталями в положении «включено». Чтобы прозвонить участок электропроводки от одной соединительной коробки до другой, обесточьте сеть и замкните провода на одном из концов проверяемого участка двухпроводной линии. Обрыв или перегорание провода соответствует бесконечному сопротивлению.

Если контакт есть, но сопротивление резко возросло (например, вместо 3 Ом стало 50) – то нарушилось соединение в клеммнике. У алюминиевых проводов резко повысившееся сопротивление может быть признаком надлома «жилы».

Такие места чрезвычайно опасны: при подключении к повреждённой линии, например, кондиционера или электроплитки может произойти самовозгорание и замыкание.

Причина – точечный нагрев надломленного проводника до нескольких сотен градусов, последующее расплавление в этом месте изоляции на проводе, послужившее источником начинающегося пожара.

Измеряем напряжение

Итак, давайте теперь с помощью нашей цешки померяем напряжение, например, в ближайшей розетке. Значит нам нужно чтобы щупы стояли в положениях как показано на картинке. А стрелочку переключателя совмещаем с точкой 750 находящейся в секторе ACV. Все теперь вставляем щупы в розетку и смотрим на табло и наблюдаем цифры указывающие напряжение.

Если вы видите параметр ниже 200 Вольт, то можно переключить указатель в положение 200, для точных результатов измерения.

Если же вам потребуется померить постоянку, то это делается так: щупы остаются на месте, указатель переключаем на нужное нам положение (например, для автомобиля подойдет положение в 20 Вольт) и производим путем присоединения к минусу черного провода а к плюсу красного — в этом случае мы увидим значение со знаком плюс. Если же увидим минус перед цифрами, значит ваш красный щуп сидит на минусе, а черный на плюсе.

Важно. Измерение напряжения осуществляется параллельным присоединением щупов. Самое главное не касайтесь оголенных частей прибора, если он подключен для измерений, голыми руками, так как вас может ударить током.

Измеряем ток

Здесь все немного сложнее, но и данный параметр в быту практически не нужен. Я просто расскажу, чтобы вы были в курсе как это делается.

Перво наперво нам с вами нужно узнать, какой ток нужно померить: постоянный или переменный. Затем так же прикидываем его величину, если она превышает показатель в 200 мА то вставляем красный конец в гнездо 10ADC.

Важно. Ток измеряется путем последовательного присоединения и так как токовую цепь разрывать нежелательно, то прежде чем измерить цешкой значение ее нужно включить цепь. Для этого один провод, питающий измеряемый прибор откручиваем и в образовавшийся разрыв подключаем цешку, причем концы должны быть хорошо зажаты.

После всех приготовлений включаем цешку и измеряемую нагрузку. Если все сделано верно, то мы наблюдаем, например горящую лампочку, а на циферблате, потребляемый ею ток. Отсоединять цешку нужно только после отключения нагрузки.

Общие сведения о сопротивлении

В науке понятие сопротивление обозначает физическую величину характеризующую способность проводника препятствовать прохождению электрического сигнала, протекающего в нём.

Сопротивление в цепи переменного тока называется импеданс, а в электромагнитном поле — волновым. Существует и элемент электрической сети — резистор, который часто называется сопротивлением. Единицей измерения физической величины является Ом. На схемах и в литературе обозначение сопротивления выполняется латинской буквой R.

Наиболее востребованной является проверка сопротивления мультиметром именно резистора или переходов полупроводниковых приборов, в то время как для измерения волнового параметра кабеля используются специальные приборы, например, осциллограф или LC-метр.

Значение импеданса резистора указывается на его корпусе способом нанесения цифр или полосок. Фактическое сопротивление резистора, даже исправного, может отличаться от номинального на значение допускаемого отклонения. Вся проверка сводится к измерению тестером величины сопротивления и сравнения результата с заявленным.

Полупроводники. Работа полупроводниковых элементов основана на свойствах p-n перехода беспрепятственно пропускать ток в одну сторону, а в другую оказывать сопротивление его прохождению.

При проверке электрических объектов особое значение имеет измерение сопротивления изоляции проводов. Обычно показания снимаются относительно фазового проводника и поверхности его изоляции. Применяемый для этого измерительный прибор называется мегомметр.

Меряем сопротивление

Это наиболее простая и пожалуй, самая востребованная в быту функция мультиметра. Для того чтобы померить сопротивление переводим стрелку в раздел Ω и выбираем необходимую нам уставку.

Важно. Перед тем как мерить сопротивление, обязательно просмотрите что на элементе нет никакого напряжения. Иначе функция измерения сопротивления мультиметра выйдет из строя.

После этого прислоняем концы к измеряемому элементу и смотрим какое сопротивление он дает. Если вы увидели надпись OVER то значит уставка крайне мала и требуется переместить стрелку на диапазон выше.

Метод измерения электрического сопротивления – как работает прибор

Принцип, по которому выполняется измерение электрического сопротивления мультиметром, основан на самом главном законе электротехники — законе Ома. Формула известна нам из школьного курса физики, говорит следующее: сила тока, протекающая по участку цепи прямо пропорциональна напряжению (ЭДС) и обратно пропорциональна сопротивлению на этом участке I (сила тока) = U (напряжение) / R (сопротивление).

Именно по этой связи работает прибор. Зная две из величин, можно легко вычислит третью. В качестве источника напряжения используется встроенный источник (DC) питания прибора, которым является штатная батарейка напряжением 9 В.

По сути измерения выполняются косвенным методом. Если приложить к щупам прибора измеряемое сопротивление, например Rх, ток протекающий в цепи будет зависеть только от него. Зная силу тока и напряжение можно легко вычислить сопротивление.

Проверка лампочек накаливания мультиметром

А теперь давайте рассмотрим практическое применение мультиметра в бытовых условиях. Часто дома возникают такие неприятные ситуации как неисправность освещения. Причем причина может быть самой неординарной от перегорания самой лампочки до неисправности светильника или выключателя освещения либо куда хуже повреждение в распределительной коробке.

Наиболее частые неисправности, конечно же, является перегорание лампочки, поэтому прежде чем ковырять распредкоробку, нужно проверить целостности лампочки. Визуально осмотром целостности нити не всегда удается выявить неисправность. Тем более, не обязательно может произойти перегорание нити. Реже случается короткое замыкание в цоколе и токовых вводах (электродах).

Поэтому с помощью обычного тестера можно легко проверить не только домашнюю лампу накаливания, но и фару автомобиля или мотоцикла.

Как измерить мультиметром сопротивление нити? Нужно установить минимальный предел измерения «Ω». Одним щупом надо прикоснуться к корпусу цоколя, другой кончик прижать к верхнему контакту цоколя. Как можно видеть сопротивление рабочей лампы накаливания мощностью 100 Вт составляет 36,7 Ом.

Если при измерениях на дисплее мультиметра будет отображаться «1», а для аналоговых (стрелочных) приборов показание «бесконечность» это будет свидетельствовать о внутреннем обрыве/перегорании нити в лампе.

На этом все дорогие друзья, надеюсь, в данной статье был полностью раскрыт вопрос как измерить сопротивление мультиметром. Если остались вопросы задавайте их в комментариях. Если статья была для вас интересной буду признателен за репост в соц.сетях.

Видео: как проверить резистор мультиметром

Источники

  • https://pochini.guru/sovety-mastera/proverka-soprotivleniya-multimetrom
  • https://stroy-podskazka.ru/multimetr/proverit-soprotivlenie/
  • https://electricvdome.ru/instrument-electrica/kak-izmerit-soprotivlenie-multimetrom.html
  • https://pochini.guru/sovety-mastera/kak-proverit-rezistor
  • https://rusenergetics.ru/instrumenty/kak-proverit-rezistor-multimetrom
  • https://YDoma.info/tehnologii-remonta/izmereniya/izmereniya-soprotivleniya.html
  • https://www.RadioElementy.ru/articles/kak-proverit-rezistor-multimetrom/

Резистор- как проверить

Резистор это один из самых простейших радиоэлементов и на первый взгляд проверить его особого труда в составляет. Он имеет всего лишь два основных параметра- сопротивление и мощность- сопротивление элементарно замеряется мультиметром, а мощность- это уже зависит от его размеров.
Однако (удивительно, но это факт…) встречались мне уже случаи когда с проверкой и заменой перегоревших резисторов у людей возникали трудности- или номинал определили не правильно, или не устранили причину из-за которой он сгорел, а иногда не учли тот факт при внутрисхемной проверке еще и другие тонкости надо учитывать. Впрочем, давайте обо всем по-порядку…

Маркировка резисторов

Итак, все мы знаем что основной параметр резистора- его сопротивление. Измеряется оно в Омах или кратных этому значениях- килоОмах, мегаОмах.
На корпусе и на схемах обычно это обозначается буквами:
R— Омы (иногда значком Ω)
K— килоОмы ( 1 кОм= 1000 Ом)
M— мегаОмы ( 1 мОм= 1000 кОм)
И вот тут-то и возникают некоторые приколы…
1. На схемах (да и на корпусах) эта самая буковка может играть роль запятой. Ну то есть, к примеру, резистор номиналом 4,7 кОм обычно всегда обозначается 4k7. Вроде все понятно, однако бывали в моей практике случаи когда человек вместо 4k7 устанавливал 47k и думал что это одно и тоже…
2. Примерно похожая ситуация выглядит и с резиками номиналом менее 1 Ома. Они могут применяться в токовых датчиках или просто в качестве предохранителей. На схемах они обозначаются в виде «R цифра». Например R47 означает 0,47 Ома, R22 означает 0,22 Ома и так далее…
Здесь от новичков мне встречались несколько видов типовых ошибок:
а. Конечно такое низкое сопротивление мультиком не определить, он просто покажет КЗ. Иногда люди начинают думать что он пробит и его надо менять (по примеру пробоя диода). Полнейший абсурд, так как резистор это не полупроводниковый прибор и электрический пробой у него не возможен.
б. Так как сопротивление очень низкое, то некоторые товарищи рассуждаю типа «нафиг он там вообще нужен» и просто замыкают его. Опять-же не совсем правильно… Здесь многое зависит от того где он установлен- если в качестве предохранителя, то надо искать причину его перегорания, а если это токовый датчик на импульсном источнике, то тогда вообще могут произойти печальные последствия…
в. Встречались мне случаи когда обозначение R47 воспринималось как 47R, резистор менялся, схема не заработала, и начинали дальше перепахивать весь аппарат…

Цветовая маркировка резисторов

Цветовой код резисторов стал обильно применяться еще где-то (дай бог памяти) в середине 1990-х и, сказать откровенно, поначалу особого восторга не вызвал…
Наверное просто это было не совсем привычно, да и, что греха таить, обычно всегда все новое тяжело воспринимается…
Однако потом оказалось что это очень даже удобно. Дело в том что во времена цифро-буквенной маркировки номинал резистора не всегда свободно читался- он мог просто оказаться снизу корпуса и чтобы его посмотреть необходимо было резик выпаивать. Ну вот, например- на приложенной картинке отметил пару резисторов, номинал которых не виден

Конечно это довольно сильно раздражало, однако куда было деваться… Ведь дело в том, что при поточном производстве, когда за смену собирается не одна сотня печатных плат, при формовке выводов никто сильно следить не будет чтобы номинал был вверху корпуса.

Даже более скажу— довелось мне работать на производстве в конце 1980-х годов…
Формовка выводов производилась вручную по шаблону. Это был очень нудный, однообразный и низкооплачиваемый труд. Занимались этим так называемые «легкотрудницы»- дамочки пред-декретного периода, студентки-практикантки, люди из общества слепых, да старшеклассники решившие подработать в период каникул.
В общем попробуйте представить себе ситуацию, когда за семичасовую смену нужно загнуть несколько тысяч выводов у радиодеталек под нужным углом!!! Ладно-бы если этот «обезьяний труд» был один раз в неделю, а то ведь нет… Это ежедневно и на долго…
Так что каких-то дополнительный требований насчет расположения маркировки, конечно-же, не предъявлялись.

С приходом цветовой маркировки ситуация изменилась в лучшую сторону- цветовое кольцо с маркировкой стало видно со всех сторон и процесс диагностики намного упростился.

Как читать цветовую маркировку на резисторах

Цветовая маркировка на резисторах обычно состоит из 4-5 разноцветных колец и каждому цвету соответствует определенная цифра, определяется она вот по такой таблице

Читается цветовая маркировка таким образом: первые два кольца это две цифры, третье кольцо- множитель, четвертое колечко- допуск. Причем скажу даже так: запоминать все эти циры и цвета совершенно не обязательно-  существует специальная программка, в которую достаточно просто подставить необходимые значения и она сама определит номинал резика. На моем сайте эта прога находится вот здесь, она бесплатна, а как ей пользоваться, я лучше покажу на следующем примере.

Нам нужно определить номинал резистора по цветовой маркировке (я его отметил на картинке)

Открываем программу, подставляем туда значения, жмем на кнопку R справа, и полжалуйста- вот вам номинал. Ничего сложного 😎

В общем скачивайте программу, пользуйтесь на здоровье, она бесплатная. Архив без вирусов, это я Вам обещаю.

Маркировка SMD резисторов

На SMD резиках маркировка выглядит таким образом: там места маловато и поэтому маркировка состоит из 3 символов. На низкоомных резисторах обычно всегда ставится буква R, и тут с маркировкой все понятно. На всех остальных резисторах ставятся 3 цифры- первые две цифры означают номинал, последняя- множитель. Лучше всего это посмотреть на примере: прикладываю картинку на которой я отметил 3 разных SMD резистора.

Определяем их номинал (слева направо)
Первый резистор. Написано 100. Это означает: 10 и 0 нулей. Вывод- 10 Ом.
Второй резистор. Написано 220. Это означает 22 и 0 нулей. Вывод- 22 Ома.
Третий резистор. Написано 222. Это означает 22 и 2 нуля. То есть 2200 Ома (2,2 кОм).
Думаю все понятно, ничего сложного здесь нет 😎

Параллельное и последовательное включение резисторов

В принципе данную тему проходят в средней школе, но давайте повторимся…

Итак, резисторы могут включаться параллельно или последовательно друг другу и тогда их общий номинал высчитывается вот по таким формулам:

Может возникнуть вопрос- а, собственно, зачем их так включать? Например зачем включать последовательно два резика по 1 кОм? Не проще-ли поставить один на 2 кОм?
А здесь в первую очередь все упирается в суммарную мощность:
При параллельном включении мощность резисторов складывается. То есть если мы включим напримиер два резистора по 1W, то в результате получим 2W. Это удобно если места маловато (например при использовании SMD резисторов)
При последовательном сопротивлении мощность будет равна среднеарифметическому значению используемых резисторов. Что это нам дает: суммарная мощность не увеличивается, но мы можем ее равномерно распределить по всей цепочке. Вот пример: цепь, формирующая пусковое напряжение для импульсного источника питания (отметил на картинке)

Здесь три SMD резика по 470 кОм каждый. Можно было-бы использовать и один на 1,4 мОма, но тогда потребовался-бы более мощный, а в данном случае на каждом резисторе будет рассеиваться 1/3 от общей мощности.
Помимо этого различные способы включения резисторов дают нам и некоторые полезные свойства- если в наличие нет необходимого номинала, мы всегда можем прибегнуть к некоторым хитростям.
Например если нету резистора на 0,5 Ома, то можно использовать два резика по 1 Ому, включив их параллельно или, например,  чтобы получить сопротивление в 54 Ом, мы можем включить последовательно два резистора по 27 Ом.

Проверка терморезисторов

Что касается терморезисторов- то тут из названия понятно что их номинал зависит от температуры. Следовательно чтобы проверить терморезистор достаточно просто сравнить значения при разных температурах. Вроде все легко и просто, однако и здесь есть кое-какие тонкости…

Сами по себе терморезисторы делятся на два вида- у одних с нагревом сопротивление увеличивается, а других наоборот уменьшается. Первый вариант широко применяется в бытовой радиоаппаратуре и их называют позистор (от слова positiv- положительный). Выглядят они вот так:

И еще вот так:

Применяются они обычно в устройствах размагничивания кинескопных телевизоров и на входе источников питания для сглаживания броска при включении. В последнем случае он может и роль предохранителя сыграть… 😉

Что касается терморезисторов с уменьшением сопротивления при нагреве, то их в бытовой аппаратуре не применяют- они используются в основном в различных устройствах автоматики в качестве термодатчика.
Например- на терморегуляторах инкубаторов. Обозначаются они аббревиатурой NTC.

В обеих видах терморезисторов за номинальное сопротивление принимается значение, соответствующее значению при комнатной температуре (ну то есть примерно +20°C)

Что-же касается проверки терморезисторов, то тут есть кое-какие тонкости: применяемые в телеках позисторы в холодном виде всегда имеют низкое сопротивление

Да только вот греть их вручную (феном например) бесполезно- сопротивление у них меняется только при прохождении электрического тока. Правда замкнутый позистор с петли размагничивания можно определить и визуально

Обычно такой дефект всегда вызывает перегорание предохранителя.

А вот проверить NTC термак в общем-то не трудно. Вот, например, я взял термодатчик от инкубатора.
В холодном виде мультик показал 19,8 кОм.

Нагрел его фоном- сопротивление упало

Переменные и подстроечные резисторы

Переменные резисторы (да и подстроечные тоже) в наше время уже мало где применяются. Встретить их можно разве что в старых телевизорах да в дешевой аудиоаппаратуре, однако их тоже иногда требуется проверять на работоспособность.
Чтобы проверить переменный резистор нужно просто-напросто знать его устройство. Выглядит он как пластина с резистивным слоем (иногда, правда в мощных переменниках это может быть и спиралька из проволоки), по которой бегает ползунок. То есть, по сути, здесь возможны две неисправности- обрыв слоя или плохой контакт на ползунке.
Для начала проверяем резистивный слой- подключаем мультик к крайним выводам

Показывает 21 кОм, на самом корпусе написано 22 кОм, так что все в порядке.
Затем производим замер сопротивления между ползунком и одним из крайних контактов, плавно вращая ручку

Сопротивление должно плавно меняться. На примере выше- бегунок находится примерно в среднем положении

Типовые ошибки

1. Увидели обугленный резистор- ищем причину! Бывают иногда у меня ситуации, когда человек говорит: «да там всего-лишь одни резистор заменить надо». Смотришь- да, действительно, имеется выгоревший резистор, вот только весь процесс ремонта вряд-ли ограничится простой заменою…

Очень многие знают что резистор это сопротивление, но вот мало кто понимает зачем он вообще нужен в электрической цепи. Попробую пояснить, что называется, на пальцах…
Резистор, по сути, создает дополнительную нагрузку в электрической цепи чтобы снизить ток в основном элементе этой-же цепочки. Причем номинал его подбирается таким образом, чтобы он вносил минимальные искажения для протекающего тока. Для ясности- вот пара примеров:

Пример первый:

Резистор R821 (я его пометил на схеме). Здесь он установлен на входе диодного моста и служит балластом: при включении телевизора в сеть, начнет заряжаться конденсатор C817. Емкость у него довольно большая и поэтому во время зарядки по входу диодного мостика возникнет большая нагрузка по току. Чтобы ее немного сгладить и служит помеченный кондер- он здесь сыграет роль своеобразного амортизатора- заберет на себя разницу по току между входом диодного мостика и сетью. Затем (уже когда процесс зарядки сетевого конденсатора завершится), этот резистор не должен влиять на работу источника питания. Поэтому он в данном случае должен быть достаточно мощным и низкоомным.

Пример второй:

На этой картинке я пометил сразу два резистора.
R805. Он установлен на входе стабилизатора 7805. Это микросхема, позволяющая получить стабильно е напряжение +5V на выходе. Микросхемка очень распространенная так как она имеет минимум обвеса, очень простая в использовании, выпускаются с различными выходными напряжениями и поэтому часто применяются в различной аппаратуре. Однако у нее есть и свои особенности- для того чтобы она стабильно работала, ей нужно чтобы входное и выходное напряжение имело разницу минимум 1,5V и не превышало 10-15V.
В первом случае (когда разница между входом и выходом небольшая)- микросхема не сможет работать и просто начнет пропускать входное напряжение напрямую.
Во втором случае (когда будет большая разница между входом и выходом) микросхеме придется девать куда-то большой излишек напряжения и она начнет сильно нагреваться.
На данной схеме ( это кусок схемы телевизионного шасси кинескопного телека LG) входное напряжение на микросхеме получается +24V в рабочем режиме. Для 5-ти Вольтового стабилизатора это, конечно, многовато и поэтому на входе установили резистор R805- он немного ограничивает входной ток.\
FR812. Установлен на входе однополупериодного выпрямителя, имеет очень низкое сопротивление и никакой существенной роли в протекание тока в цепь не вносит. Однако- в случае возникновения КЗ в этой цепочке, он сыграет роль предохранителя.

Какие из всего этого вышесказанного можно сделать выводы? Резистор может сам по себе оборваться. Это на практике иногда встречается, но…. Если по резистору видно что он грелся во время работы, то явно он работал не в режиме и является не причиной, а последствием неисправности. Поэтому простая его замена ни к чему не приведет- он скорее всего опять перегорит. Так что надо искать перегрузку в цепи, в которой он применяется.

Резистор не может оказаться пробитым подобно диоду или конденсатору. Бывает иногда такое- начинаешь проверять резистор, он вроде-бы не низкоомный, однако прибор показывает пониженное сопротивление или вообще КЗ…
Друзья мои, резистор это не полупроводниковый прибор и электрический пробой в нем наступить никак не может!! 😉 В этом случае резистор показать пониженное сопротивление может только из-за каких-то других цепей, имеющихся на самой плате, и для того чтобы точное его проверить, нужно его просто-напросто выпаять.

Резисторы с сопротивлением от 470 кОм и выше не всегда можно проверить внутрисхемно. Признаться честно, сам не знаю в чем тут дело, но это факт… Возможно у мультиметра просто току не хватает, так что высокоомные резики для проверки всегда необходимо выпаивать.

Ну и напоследок

Небольшой тест на сообразительность

Приведу я Вам сейчас небольшой пример. Вот картинка

Здесь показана цепочка формирующая пусковое напряжение для ШИМки импульсного источника питания. Напряжения я указал на картинке.
На выходе крайнего правого резистора должно быть примерно +11V, но там 0. Есть какие-нибудь мысли?

Первое что сразу приходит в голову- обрыв крайнего правого резика, однако это в корне не правильно и вот почему: закон Ома в общем-то никто не отменял, а он гласит что ток в цепи может быть только лишь при нагрузке. Если крайний правый резистор в этой цепочке оборвется, то все остальные просто-напросто окажутся ни к чему не подключены, ток в этой цепи не возникнет и в точках соединения резисторов никакого падения напряжения не будет.
Так что вывод- на выходе крайнего правого резистора имеется КЗ.

Ну вот, дорогие читатели, на этом вроде-бы как-бы и все…
Сказать откровенно и сам удивлен что теме проверки такого простого радиоэлемента, такая длинная статья получилась- просто хотелось рассказать как можно более подробно. 😎
Удачи в ремонтах 😉

Как использовать мультиметр для проверки резисторов

Как использовать мультиметр для проверки резисторов

Как узнать, правильно ли резистор ограничивает поток электричества? Использование мультиметра — очевидный ответ. Тем не менее, это больше, чем кажется на первый взгляд. Эта статья объяснит, что вам нужно знать.

Когда ПК перестает работать, часто дешевле и проще заменить его, чем ремонтировать. В конце концов, зачем чинить компьютер, который ваша компания купила два года назад, если вы можете купить новый, который в два раза мощнее, за половину стоимости вашего первоначального компьютера? Однако сегодня многим специалистам по поддержке ИТ время и силы, затрачиваемые на ремонт электронного оборудования, по-прежнему необходимы из-за бюджетных ограничений или из-за конфиденциального характера данных, хранящихся на многих настольных компьютерах. К счастью, в распоряжении мастера имеется довольно много инструментов. А когда дело доходит до ремонта электроники, немногие инструменты могут быть такими же удобными, как мультиметр. В этой статье я покажу вам, как использовать мультиметр для устранения неполадок в некоторых основных электронных компонентах, таких как резисторы.


Прежде чем мы начнем

Все мультиметры разные, поэтому инструкции, которые я вам даю, могут не совпадать с вашим мультиметром. Поэтому убедитесь, что вы понимаете, как использовать вашу конкретную модель мультиметра, прежде чем пробовать какой-либо из этих методов. Невыполнение этого требования может привести к травме или повреждению тестируемых компонентов.


Номиналы резисторов
Резисторы, вероятно, являются наиболее простым компонентом для проверки с помощью мультиметра. Резисторы предназначены для уменьшения электрического тока. Например, если схема требует использования транзистора, но количество используемого электричества достаточно велико, чтобы повредить транзистор, то один из способов использования транзистора — разместить перед ним резистор.

Цветная полоса
Прежде чем вы сможете проверить резистор, вам нужно знать его прочность и допуск. Резисторы имеют цветовую маркировку. Если вы посмотрите на резистор, на одном его конце должна быть золотая, серебряная или белая полоса. Поверните резистор так, чтобы эта полоса была справа от вас. Эта полоса представляет допуск резистора.

Прежде чем я расскажу о допусках, вам нужно знать, как читать номиналы резисторов. Вы начинаете с перевода цветных полос в числа и записи этих чисел. Для первой и второй цветных полос значения следующие:

  • Черный = 0
  • Коричневый = 1
  • Красный = 2
  • Оранжевый = 3
  • Желтый = 4
  • Зеленый = 5
  • Синий = 6
  • Фиолетовый = 7
  • Серый = 8
  • Белый = 9

Диапазон множителя
Как только вы найдете значения для первых двух диапазонов, запишите их. Например, если у вас есть красная полоса и черная полоса, тогда значения будут 2 и 0. Сложите эти два числа вместе, и вы получите число 20. Третья полоса — это полоса множителя. Это число, на которое вы умножите первые две полосы, чтобы получить номинал резистора. Цветовая схема для третьей полосы следующая:

  • Черный = 1
  • Коричневый = 10
  • Красный = 100
  • Оранжевый = 1000 (или 1 К)
  • Желтый = 10 000 (или 10 тыс. )
  • Зеленый = 100 000 (или 100 К)
  • Синий = 1 000 000 (или 1 М)

Представьте, что резистор имеет красную, черную, желтую и серебряную полосы. Я уже объяснял, что красная и черная полосы в первых двух позициях означают 2 и 0, которые при соединении читаются как 20. Желтая полоса в третьей позиции — это множитель. Значение умножения равно 10 000 (или 10 К). Теперь умножьте 20 на 10 000, и вы получите 200 000. Это означает, что сопротивление резистора составляет 200 000 Ом, что чаще выражается как 200 кОм.

Поле допуска
Давайте посмотрим на поле допуска. Причина наличия диапазона допуска заключается в том, что ни один резистор не работает точно при своем номинальном значении. Полоса допусков предназначена для того, чтобы вы знали, насколько потенциально резистор может быть отключен. Золотой резистор означает, что номинальное значение находится в пределах плюс-минус 5 процентов от точности. Серебряная полоса означает, что фактическое значение резистора может быть в пределах плюс-минус 10 процентов от номинального значения. Если нет полосы допуска, это означает, что резистор имеет фактическое значение в пределах плюс-минус 20 процентов от номинального значения.

Теперь вернемся к нашему резистору на 200 000 Ом. Этот резистор имел серебряную полосу допуска, что означает, что его точность находится в пределах плюс-минус 10 процентов от номинального значения, при этом 10 процентов от 200 000 равны 20 000. Если мы добавим 20 000 к 200 000, мы определим, что фактическое измерение резистора может достигать 220 000 Ом. Точно так же, если мы вычтем 20 000 из 200 000, резистор может иметь сопротивление всего 180 000 Ом.

Тестирование резисторов
Теперь, когда вы знаете, как считывать оценочные и потенциальные значения резистора, давайте посмотрим, как проверить неисправный резистор. Как правило, резисторы довольно долговечны, но их можно сжечь чрезмерным количеством электричества. Еще в моем классе электроники в колледже я помню, как не один одноклассник готовил резисторы со слишком большим количеством сока. Обычно резистор нагревается, начинает дымить и издает странный пронзительный визг.

После перегорания резистора часто через него не проходит электричество. Говорят, что такие резисторы имеют бесконечное сопротивление. В то же время, если резистор был поврежден чрезмерным напряжением, но не разрушился, резистор может пропускать некоторое количество электричества, но иметь неправильный уровень сопротивления. Вот почему так важно знать о допусках. Например, если бы вы знали, что резистор должен иметь сопротивление 200 000 Ом, но проверили сопротивление резистора 180 000, вы могли бы предположить, что резистор неисправен.

При проверке резистора мультиметр пропускает известное количество электрического тока через резистор, а затем измеряет величину тока, который фактически проходит через него. Поскольку мультиметр пропускает ток через резистор, убедитесь, что устройство, содержащее тестируемый резистор, отключено и выключено. Если через резистор протекает нормальный ток, и вы попытаетесь проверить резистор, ваши показания будут не только неточными, но вы можете повредить резистор и другие компоненты. Вы также можете повредить мультиметр или получить сильный удар электрическим током.

При этом мультиметры предназначены для использования весов. Эти шкалы определяют, сколько тока мультиметр будет использовать во время теста. Например, мой мультиметр имеет шкалы для 200 Ом, 2 кОм, 200 кОм, 2 МОм и 20 МОм. Если бы мне нужно было проверить наш фиктивный резистор на 200 кОм с помощью этого конкретного измерителя, я бы установил шкалу на 200 кОм. Однако это чистое совпадение, что мой измеритель имеет настройку 200 кОм. Обычно шкала не соответствует номиналу резистора. В таких ситуациях вам нужно перейти к ближайшему значению шкалы 9.0073 выше номинал резистора. Например, если бы у вас был резистор 100 кОм, вы бы использовали шкалу 200 кОм. Если бы у вас был резистор на 300 кОм, вы бы использовали шкалу на 2 МОм. Доступные шкалы будут различаться в зависимости от марок и моделей мультиметров, но концепция останется прежней.

После того, как вы убедились, что устройство отключено от сети и выключено, а ваш измеритель настроен на правильную шкалу, пришло время провести измерение. Резисторы не поляризованы, поэтому не имеет значения, с какой стороны резистора вы поместите красный или черный щуп измерителя. После того, как вы поместите щупы на выводы резистора, вы должны получить значение для резистора.

В демонстрационных целях я решил использовать свой измеритель для проверки резистора на 200 кОм. Резистор протестирован на 197,6 Ом. Это было в диапазоне от 180 до 220 К, допускаемом 10-процентным допуском резистора. Если бы резистор был протестирован за пределами этого диапазона, резистор был бы неисправен и его необходимо было бы заменить.

Дополнительная информация о мультиметрах
Мультиметры — это универсальные инструменты, с которыми должны быть знакомы все специалисты по поддержке ПК для устранения неполадок электронного оборудования. Если вам нужна дополнительная информация о мультиметрах, ознакомьтесь с другими статьями TechProGuild:

  • «Устранение неисправностей блока питания с помощью мультиметра»
  • «10 обязательных инструментов сетевого инженера»
  • «Полный набор инструментов для устранения неполадок ПК»
  • «Подготовка к экзамену A+: заполните пробелы в знаниях!»

Брайен Поузи

Опубликовано: . Изменено: Увидеть больше Аппаратное обеспечение Поделиться: Как проверить резисторы мультиметром
  • Аппаратное обеспечение

Выбор редактора

  • Изображение: Rawpixel/Adobe Stock ТехРеспублика Премиум

    Редакционный календарь TechRepublic Premium: ИТ-политики, контрольные списки, наборы инструментов и исследования для загрузки

    Контент TechRepublic Premium поможет вам решить самые сложные проблемы с ИТ и дать толчок вашей карьере или новому проекту.

    Персонал TechRepublic

    Опубликовано: Изменено: Читать далее Узнать больше
  • Изображение: diy13/Adobe Stock Программного обеспечения

    Виндовс 11 22х3 уже здесь

    Windows 11 получает ежегодное обновление 20 сентября, а также ежемесячные дополнительные функции. На предприятиях ИТ-отдел может выбирать, когда их развертывать.

    Мэри Бранскомб

    Опубликовано: Изменено: Читать далее Увидеть больше Программное обеспечение
  • Изображение: Кто такой Дэнни/Adobe Stock Край

    ИИ на переднем крае: 5 трендов, за которыми стоит следить

    Edge AI предлагает возможности для нескольких приложений. Посмотрите, что организации делают для его внедрения сегодня и в будущем.

    Меган Краус

    Опубликовано: Изменено: Читать далее Увидеть больше
  • Изображение: яблоко Программного обеспечения

    Шпаргалка по iPadOS: все, что вы должны знать

    Это полное руководство по iPadOS от Apple. Узнайте больше об iPadOS 16, поддерживаемых устройствах, датах выпуска и основных функциях с помощью нашей памятки.

    Персонал TechRepublic

    Опубликовано: Изменено: Читать далее Увидеть больше Программное обеспечение
  • Изображение: Worawut/Adobe Stock
  • Изображение: Bumblee_Dee, iStock/Getty Images Программного обеспечения

    108 советов по Excel, которые должен усвоить каждый пользователь

    Независимо от того, являетесь ли вы новичком в Microsoft Excel или опытным пользователем, эти пошаговые руководства принесут вам пользу.

    Персонал TechRepublic

    Опубликовано: Изменено: Читать далее Увидеть больше Программное обеспечение

Должны ли вы тестировать резисторы на плате или вне ее?

Главная   >   Гостевой пост   >   Следует ли тестировать резисторы на плате или вне ее?

Я часто получал технические вопросы от студентов, обучавшихся на курсах, и один из самых частых вопросов был о том, следует ли тестировать или проверять резисторы на плате или вне ее. Мой ответ им был это зависит. К вашему сведению, резисторы на любой печатной плате часто подключаются параллельно каким-то другим частям. Его можно подключить параллельно другому резистору, конденсатору, диоду и т. д. Резисторы также можно подключить последовательно с другим компонентом. Давайте посмотрим, каковы последствия тестирования резисторов на плате и вне платы.

Проверка встроенного резистора

Проверка встроенного резистора означает, что вы проверяете резистор с помощью цифрового мультиметра (DMM), когда резистор все еще припаян к печатной плате.

Pro:

  • Это экономит время, так как вам не нужно отсоединять один из выводов резистора, чтобы проверить значение резистора. Если значение резистора равно 10 кОм, а встроенное тестирование показывает 10 кОм, вы знаете, что тестируемый резистор исправен.

Минусы:

  • Если резисторы соединены параллельно, измеряемое значение будет меньше, чем сопротивление самого резистора.
  • Если резистор подключен параллельно с разомкнутым резистором того же типа и номинала, сопротивление, измеренное на оставшемся исправном резисторе, все равно будет считываться на омметре. Это может ввести в заблуждение. Давайте посмотрим на диаграмму ниже:

Как вы знаете, когда два резистора одинакового номинала соединены параллельно, общее сопротивление будет составлять половину номинала резистора. Например, если сопротивление резистора 10 Ом подключено параллельно другому резистору сопротивлением 10 Ом, значение в омах, которое вы получите при измерении любого из резисторов сопротивлением 10 Ом, будет равно 5 Ом.

Теперь, предполагая, что вы тестируете резисторы A и B на приведенной выше диаграмме, и вы не проверяли , подключены ли оба резистора параллельно или нет, если вы поместите свои тестовые щупы на резистор A, вы получите 10 Ом, что Это хорошо. Затем вы переместили свои тестовые щупы к тесту резистора B, угадайте, какое значение вы получите? Вы получите значение 10 Ом! Почему? Потому что вы фактически измеряете резистор A, если резистор B разомкнут. Вы можете подумать, что оба резистора хорошие, хотя на самом деле один из них плохой (резистор B). Если вы приступите к тестированию других компонентов, надеясь найти неисправность в оборудовании, я могу сказать, что вы не сможете обнаружить неисправность, потому что ваш разум уже сказал вам, что оба резистора, которые вы тестировали, исправны. Вас ввели в заблуждение!

Теперь, я полагаю, вы можете ясно видеть недостатки тестирования одинаковых номиналов резисторов на плате. Если вы не подтвердили, что оба резистора не подключены параллельно, можно проверить резисторы на плате.

Типичный пример резисторов одинакового номинала (4,7 кОм), соединенных параллельно

  • показать очень низкий Ом!

Например, если в конденсаторе C19 произошло прямое короткое замыкание, и при проверке резистора R1017 цифровой мультиметр покажет очень низкое сопротивление или даже нулевое сопротивление.

Типичный пример электролитического конденсатора, подключенного параллельно резистору.

  • Часто цепь может иметь несколько или много параллельных путей, поэтому проверка резистора в такой ситуации не даст вам точных показаний сопротивления.
Проверка внешнего резистора:

Проверка резистора вне платы означает, что вы проверяете резистор с помощью цифрового мультиметра (DMM), когда один из выводов резистора выпаивается из платы.

Pro:

  • Это даст вам очень точный результат теста сопротивления, потому что вы проверяете только резистор, а не сумму всех других компонентов параллельного пути. Это означает, что если резистор имеет даже небольшое значение допуска, вы сможете это заметить.

Минусы:

  • Много времени на устранение неполадок уйдет, если на печатной плате много резисторов. Вам необходимо отпаять все выводы резисторов, чтобы получить точное значение показаний.

Примечание. Если опытный ремонтник сможет найти небольшой неисправный участок печатной платы, он сможет проверить все резисторы. Поскольку они ремонтники со стажем, нет сомнений в том, как они выдергивают один из выводов резистора; проверить его и припаять обратно не будет для них проблемой, потому что у них есть скорость, чтобы выполнить эту работу.

Какой метод проверки резистора лучше?

Если вы хотите протестировать резисторы на плате, всегда проверяйте, чтобы рядом с тестируемым резистором не было резисторов аналогичного типа и с таким же номиналом. Это делается для того, чтобы избежать вводящего в заблуждение теста, о котором я упоминал выше. Если вы получаете слишком высокое или слишком низкое показание в Ом или показание, из-за которого вы не уверены, является ли это хорошим или плохим значением, лучше всего проверить резистор вне платы.

Нормальный сквозной резистор редко вызывает короткое замыкание или уменьшение значения, обычно значение проблемного резистора либо увеличивается в Омах, либо вообще не имеет значения (разомкнутая цепь). Что касается проблемного SMD-резистора, значение Ом может увеличиваться, уменьшаться, замыкаться накоротко и вообще не иметь значения (разомкнутая цепь), так что обратите на это внимание.

Заключение – Индивидуальный выбор всегда зависит от того, следует ли тестировать резистор на плате или вне ее. Некоторые опытные ремонтники предпочитают проверять резисторы при подаче питания. Таким образом, они могут быстро определить неисправный резистор, но нужно действительно понимать, как работает схема, и если есть схематическая диаграмма, это будет плюсом. Или вы можете использовать все вышеперечисленные методы проверки комбинаций для проверки резисторов. Какой у вас метод проверки резисторов? Пожалуйста, оставьте комментарий ниже, что по этой теме. Спасибо!

Эта статья предоставлена ​​вам Джестин Йонг. Он из Куала-Лумпура, Малайзия, любит ремонт электроники и ведет блог о ремонте электроники. Он является автором знаменитых электронных книг «Базовый ремонт электроники » и « Ремонт импульсных источников питания» . Он также является инструктором и проводит курсы по ремонту электроники в Учебном центре электроники Noahtech .

Пожалуйста, окажите поддержку, нажав на социальные кнопки ниже. Ваши отзывы о публикации приветствуются. Пожалуйста, оставьте это в комментариях.

P.S. Если вам понравилась эта статья, нажмите здесь,  чтобы подписаться на мой блог (бесплатная подписка). Таким образом, вы никогда не пропустите пост. Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам. Спасибо!

Вас также может заинтересовать его предыдущая статья о ремонте Импеданс мультиметров

Нравится (70) Не нравится (0)

Как проверить мобильный резистор с помощью цифрового мультиметра

Этот сайт содержит партнерские ссылки на продукты. Мы можем получать комиссию за покупки, совершенные по этим ссылкам.

0 акции

  • Поделиться
  • Твитнуть

Вас интересуют все части вашего мобильного телефона и то, что заставляет его работать? Ну, есть части на уровне чипа или электронные компоненты. Вот несколько примеров таких компонентов: катушка, диод, конденсатор, регулятор, транзистор, резистор и многие другие. Знание этих мелких деталей очень важно, когда вам нужно проверить или отремонтировать мобильное устройство.

Как пользоваться цифровым мультиметром

Пожалуйста, включите JavaScript

Как пользоваться цифровым мультиметром

Но мы не будем говорить обо всех мелких деталях – только об одной. Это резистор или мобильный резистор. Я также покажу вам, как проверить мобильный резистор с помощью цифрового мультиметра и многое другое.

Содержание:

  1. Что такое мобильный резистор?
    • «R» означает сопротивление
    • «V» означает напряжение
    • «I» означает ток
  2. Как проверить мобильный резистор с помощью цифрового мультиметра?
  3. Советы по безопасности при проверке мобильного резистора с помощью мультиметра 
    • Проверка сопротивления, если компоненты резистора не подключены к цепи
    • Отключение мультиметра при измерении мобильного резистора 
    • Проверка путей утечки при проверке мобильного резистора 
  4. Подведение итогов…

Что такое мобильный резистор?

Мобильный резистор имеет компоненты с двумя выводами, предназначенные для ограничения тока на другие части или компоненты. Между двумя клеммами происходит падение напряжения. Вы можете рассчитать или измерить сопротивление, используя закон Ома, то есть — R = V / I. Здесь:

«R» означает сопротивление
«V» означает напряжение
«I» означает ток

Хорошо, формула у вас есть, но как проверить мобильный резистор? Это просто. Отсюда появляется цифровой мультиметр, который поможет вам измерить сопротивление.

Мультиметры используют тот же принцип измерения сопротивления. (Этот принцип применим даже к аналоговым мультиметрам.) В другом испытательном оборудовании также используется основной принцип: 

Идея заключается в том, что цифровой мультиметр или цифровой мультиметр подает напряжение на щупы, которые вызывают протекание тока к элементу, в котором измеряется сопротивление. При использовании мультиметра вы не только проверяете подвижный резистор, но и определяете сопротивление на щупах измерительного прибора.

Обратите внимание : Помимо проверки мобильного резистора с помощью мультиметра, вы также можете проверить, работает ли резистор. Это не все. Мультиметры также могут проверять, есть ли у компонентов обрыв или короткое замыкание.

Как проверить мобильный резистор с помощью цифрового мультиметра?

Цифровые мультиметры удобны в качестве измерительных инструментов для проверки подвижного резистора. Например, вам быстрее и проще измерить сопротивление резистора. Почему? В отличие от аналоговых мультиметров, цифровой мультиметр не нужно устанавливать на ноль.

Цифровой мультиметр обеспечивает прямое считывание измерения сопротивления. Итак, давайте поговорим о том, как проверить мобильный резистор с помощью цифрового мультиметра, выполнив следующие простые действия: 

  1. Получите мобильный резистор, который вы хотите проверить.
  2. Вставьте щупы тестера в правые гнезда. (Большинство цифровых мультиметров имеют несколько разъемов для щупов.) Правильно вставьте щупы и поместите их в требуемые разъемы. Розетки помечены как COM для Common, и есть знак Ома. Вы также можете увидеть гнездо измерения напряжения.
  3. Включите мультиметр.
  4. Вы выбираете необходимый диапазон измерения. Правильный диапазон дает вам наилучшие показания, которые вы можете получить от измерительного прибора.

Обратите внимание на : На переключателе измерительного прибора указано максимальное сопротивление. Выберите тот, где оценочное значение сопротивления ниже, но близко к самому высокому диапазону. При этом вы можете получить точное значение сопротивления.

  1. Вы выполняете тест или измерение, прикладывая щупы к мобильному резистору. При необходимости вы можете настроить диапазон.
  2. После проверки подвижного резистора выключите цифровой мультиметр для экономии батарей. Не забудьте установить переключатель функций в верхнее положение. Почему? Таким образом, мультиметр не будет поврежден.

Советы по безопасности при проверке мобильного резистора с помощью мультиметра 

Независимо от того, являетесь ли вы профессионалом или новичком в использовании цифрового мультиметра, не забывайте соблюдать меры предосторожности. Мультиметр является надежным устройством для проверки мобильного резистора, поскольку он дает точные показания.

Однако несоблюдение правильных указаний по использованию измерительного прибора может привести к неточным показаниям. В худших случаях мультиметр может сломаться, если вы неправильно его используете. Итак, вот полезные советы, которые следует помнить при проверке мобильного резистора с помощью измерительного прибора.

Проверка сопротивления, если компоненты резистора не подключены к цепи

Опытные техники и электрики советуют не измерять сопротивление мобильного резистора, когда он подключен к цепи. Правильный способ — проверить резистор, когда его нет в цепи. Если вы сделаете внутрисхемное измерение, это повлияет на компоненты резистора. Кроме того, вы не получите точных показаний, если резистор находится в цепи.

Выключите мультиметр при измерении подвижного резистора 

В целях безопасности не забывайте выключать тестер при проверке резистора. Мультиметр сломается, если резистор будет включен во время тестирования. Кроме того, любой ток, протекающий внутри счетчика, может повлиять на показания.

Проверка путей утечки при тестировании мобильного резистора

Знаете ли вы, что пути утечки ваших пальцев могут повлиять на показания мультиметра? Если вы проверяете сопротивление, путь утечки заметен. (Путь утечки может добавить низкое измерение, например, несколько мегаом. 

К счастью, уровни сопротивления в большинстве мультиметров низкие, так что не беспокойтесь о путях утечки. Но все по-другому, когда вы используете цифровой мультиметр. (Специализированные измерительные приборы часто используют высокое напряжение, поэтому все же рекомендуется проверить наличие пути утечки.)

Если вы хотите сэкономить, вы можете купить резисторы в разных упаковках в магазинах электронных компонентов или универмагах. Лучше купить цифровой мультиметр, чем аналоговый, потому что он прост в использовании и дает точные показания.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *