Разное

Проверить сопротивление: Как проверить сопротивление мультиметром — Строительство и ремонт

Проверить сопротивление: Как проверить сопротивление мультиметром — Строительство и ремонт

Содержание

Как прозвонить электродвигатель мультиметром | Техпривод

Одна из частых неисправностей электродвигателя – отсутствие вращения. Причину поломки можно определить следующим образом. Прежде всего с помощью мультиметра (в режиме вольтметра) проверяется подача питающего напряжения. Если питание подается, проблема заключается в электрической неисправности самого двигателя, соответственно, необходимо проверить целостность подключения и прозвонить обмотки. В большинстве случаев для этого используется обычный мультиметр.

Прозвонка электродвигателя мультиметром

Трехфазный электродвигатель имеет 3 обмотки, у каждой из которых по два вывода. Для измерения сопротивления обмотки мультиметр переводится в режим омметра, его щупы соединяются с парой выводов. Предел измерения — 200 Ом или меньше. Необходимо последовательно прозвонить сопротивления всех трех обмоток. Полярность омметра в данном случае роли не играет.

Как узнать, какое должно быть сопротивление у обмоток? На данном этапе это неважно – главное, чтобы сопротивления были одинаковы.

Расхождения показаний по обмоткам должны быть не более 10%.

Логично, что сопротивления обмоток зависят от мощности электродвигателя. У маломощных двигателей (сотни ватт) сопротивление каждой обмотки может составлять десятки Ом, у двигателей средней мощности (несколько киловатт) – единицы Ом. У приводов мощностью десятки киловатт сопротивление составляет доли ома, и обычным мультиметром проблематично точно его измерить.

Если мультиметр показывает 0 Ом, это говорит о коротком замыкании (начало и конец обмотки замкнуты). Можно попытаться устранить замыкание в районе борно, но это удается редко. Обычно в таких случаях двигатель разбирают или перематывают. Если на одной из обмоток мультиметр показывает бесконечность, произошел обрыв, и двигатель также подлежит разборке или перемотке.

Кроме того мультиметр позволяет без труда определить замыкание обмотки на корпус. В этом случае сопротивление между обмоткой и корпусом электродвигателя будет составлять единицы Ом (при нормальной изоляции — Мегаомы).

Проверка борно

Если после прозвонки остались подозрения, нужно вскрыть клеммную коробку (борно). Часто можно увидеть, что в борно плохо затянут крепеж, или отгорели провода. Если для соединения используются гайки, нужно на каждой клемме проверить протяжку не только верхней гайки, которой прикручен питающий проводник, но и осмотреть гайку, которая держит вывод обмотки, уходящий внутрь двигателя.

При отсутствии мультиметра допускается в первом приближении проверять обмотки на обрыв при помощи универсального пробника-прозвонки. Однако, при этом невозможно определить межвитковое и короткое замыкание в обмотках.

Как определить межвитковое замыкание

Межвитковое замыкание можно определить несколькими способами, самый практичный из них – измерение токов по фазам. Если при равенстве фазных напряжений токи отличаются более чем на 15%, и при этом двигатель греется на холостом ходу, можно смело нести его в перемотку.

Выводы

Следуя инструкциям, приведенным в статье, можно при помощи мультиметра определить большинство неисправностей обмотки двигателя. Как правило, при нарушениях целостности обмотки двигатель нужно перематывать.

Другие полезные материалы:
Выбор электродвигателя для компрессора
Типичные неисправности электродвигателя
Трехфазный двигатель в однофазной сети

инструкция по измерениям, резистор и нелинейные элементы

Замечали, что при измерениях сопротивления в начальный момент на дисплее мультиметра начинают мелькать циферки, останавливающиеся на неком значении. Внутри применяются цифровые алгоритмы, не дающие мгновенно получить нужный ответ. Особенно трудно приходится проводящим измерение малых сопротивлений мультиметром. Точность его невелика, дробные части найти не получится. Как мультиметром проверить сопротивление – тема сегодняшнего обзора.

Измерение сопротивлений мультиметром

В отличие от ёмкостей сопротивление умеет измерять каждый тестер. Это простая операция. Фокус в том, что механические модели работают с напряжением без батарейки, а для оценки параметров резисторов нужен некий заряд для формирования вспомогательного напряжения. Разумеется, ограничения возможно обойти путём создания резистивного делителя, пользуясь внешним источником – к примеру, розеткой. Отличие цифровых мультиметров – без подпитки приборы не работают.

Цифровой мультиметр

Минусом современных моделей считается ограниченность шкалы. Хочешь сопротивление резистора мультиметром измерить, а натыкаешься на сплошные трудности. Максимальный предел не превышает 2000 кОм. Это лишь 2 МОм, радиолюбители знают, что это далеко не верхняя граница для достойного резистора. Сопротивление изоляции электрических приборов должно составлять 20 МОм. Проверить его качество при помощи рядового мультиметра не получится. Первое правило измерения сопротивления мультиметром: «Размер шкалы соответствует измеряемому значению».

Понять соответствие непросто. В былые времена номинал проставлялся на корпусе резистора. Для слишком малых моделей сложно разглядеть цифры. От габаритов номинал не зависит. Приходится гадать: малютка на пару Ом или МОм. Разница в миллион раз, ошибиться не хочется. Большинство резисторов сегодня маркируются цветными полосами. Не стоит учить таблицу наизусть. Советуем пользоваться простой методикой: найти в интернете онлайн-калькулятор для решения собственных задач. Подобный находится по адресу http://www.chipdip.ru/info/rescalc/.

Все оформлено в виде таблицы, причём показано, что резисторы маркируются четырьмя или пятью полосами. Допустимые цвета приведены в строках сформированной авторами сайта таблицы. Номера полос идут по столбцам. Выбор нужной гаммы происходит в виде кликов по радиобоксам. Для каждой полосы возможен единственный цвет. В верхней части текущие изменения отображаются на схематически нарисованном резисторе, что добавляет удобства. Обычно крайняя полоса толще остальных, на практике это невозможно заметить.

Тогда стараются достать схему прибора, чтобы сориентироваться. Если примерный номинал известен, ошибиться сложно. Во вторую очередь смотрят на полосы. К примеру, золотой и серебристый цвет встречаются исключительно с крайней тонкой полосы. На практике отличить от жёлтого и серого сумеет редкий человек. Без опыта слишком сложно. Потребуется завести на калькулятор оба варианта (слева направо и справа налево), потом начинать измерения мультиметром с максимального из полученных номиналов.

Итак, для получения значения в онлайн-калькуляторе потребуется проставить все полосы. В режиме реального времени на Чип&Дип работать не получится – маленький недостаток. В результате усилий в текстовом поле появляются:

  1. Номинал резистора, сопротивление в стандартных единицах. К примеру, омах.
  2. Через запятую идёт допуск на точность. Худшие резисторы показывают отклонение в 10% (в обе стороны по отдельности). В результате разброс номиналов сопротивлений  сильный. Поэтому требуется проверка сопротивления мультиметром.

Форма калькулятора не лучшая, зато находится на сайте известного магазина Чип&Дип, где возможно заказать нужные детали. Сообразно найденной величине выставляется шкала мультиметра с запасом. Допустимо, для резистора на 10 кОм предел составляет 20k. Напоминаем, что на лицевой панели группа шкал измеряющих сопротивление помечается греческой буквой омега Ω.

Как проверить резистор мультиметром

Обычно проверка начинается с измерения номинала, как показано выше. На дисплее появится соответствующая цифра. Обратите внимание, параметр номинала способен сильно разниться, сохраняя допуск на точность. Точность цифрового мультиметра составляет 0,5 Ом, прибор показывает лишь целые значения. Принимая во внимание, что дополнительно присутствует и внутреннее сопротивление мультиметра, оценить параметры резистора с малым номиналом невозможно.

Проверка резистра

Важные замечания:

  • При измерении сопротивления иногда показания близки к нулю, либо наоборот – фиксируется обрыв. Значит, резистор вышел из строя. В первом случае замкнуло ближайшие витки, во втором – перегорела нить. Большинство резисторов состоит из керамического основания и намотанной на него высокоомной жилы. Каждый элемент характеризуется максимальной мощностью рассеивания, указываемой в технических данных. Если параметр превышен, случаются описанные выше эффекты. Часто корпус резистора темнеет. Не любая чернота означает поломку – в большинстве случаев краска менее устойчива к нагреву, нежели жила, и темнеет.
  • Немало зависит от допуска. Дешёвые резисторы даже в одном наборе отличаются на 15 и более процентов. Не значит, что мультиметр врёт, просто нужно учитывать сей факт при сборке схемы. Подходить с умом. Если написано, что требуется получить резистивный делитель с равными плечами по 100 Ом, страшного не случится, если взять номиналы по 90 Ом. Главное, соблюдать равенство.

Параметры малых сопротивлений требуется оценивать косвенными методами. Допустим, собрать резистивный делитель, как показано на рисунке. Дадим краткие пояснения. Во-первых, видим два резистора, причём один эталонный. Это небольшого номинала сопротивление с минимальным допуском 0,05% (серая полоса, не серебряная). Что обеспечит максимальную точность при работе. Напряжение питания +12 В взято не случайно. Это максимальный номинал, легко добываемый, к примеру, использовав блок питания от персонального компьютера. Чем выше напряжение, тем точнее измерения. Добрались до главной тонкости: вольтаж может быть измерен с потрясающей точностью – до десятых долей мВ.

Схема сборки резистивного делителя

Это поможет определить разность потенциалов на исследуемом резисторе. Потом номинал вычисляется из пропорции: (12 — U) / U = Rэт / R. Где Rэт – сопротивление эталонного резистора, а U — измеренное значение (см. рисунок). На картинке показано, куда подключать щупы мультиметра, земля берётся от источника питания (часто чёрный провод). Посмотрим выгоды применения схемы. Допустим, есть резистор номиналом 1,5 Ом с допуском 10%. Очевидно, что прямое измерение сопротивления даст на дисплее значение 1 или 2. Этого явно недостаточно. Теперь берём эталонный резистор номиналом 2,7 Ом, собираем схему и видим значение напряжения 4,4 В. Посчитаем пропорцию:

(12 — 4,4) / 4,4 = 2,7 / R;

откуда находим, что R = 1,56 Ом. Мы не смогли бы замерить сопротивление мультиметром при столь малых значениях номинала. Вдобавок точность великая – до сотых долей! Главное – становится понятно, что резистор соответствует технической документации и годится для применения по назначению. Описанным методом допустимо сопротивление провода попробовать измерить, при большой длине. К примеру, километр медной жилы сечением 6 кв. мм составляет несколько ом. Сопротивление кабеля ниже, речь пойдёт о целой бухте.

Помните, для измерения сопротивление контура заземления потребуется найти опорную точку. Это контур, который гарантированно заземлён. Либо потенциал снимать с Uэт, а формулу сообразно переделать под требуемый случай. Кстати, нет нужды использовать именно напряжение 220 В переменного тока. +12 В намного безопаснее, не факт, что точность станет ниже, учитывая наличие среди шкал цифрового мультиметра предела 200 мВ. Это позволит при наличии хорошего эталонного резистора сопротивление заземления мультиметром измерить крайне точно.

Проверка сопротивления

Измерение мультиметром сопротивления нелинейных элементов

На уроках по элементной базе говорили, что в открытом состоянии падение напряжения на кремниевом диоде превышает вдвое показатели германия. А полупроводниковые элементы изготавливаются и из арсенида галлия. Перед оценкой сопротивления диода в прямом направлении, нужно понимать, что перед нами нелинейный элемент. Его характеристики зависят от приложенного напряжения. Сопротивление, измеренное разными мультиметрами, не будет одинаковым: каждый тестер формирует на щупах вспомогательное напряжение, для разных приборов неодинаковое.

Чтобы сориентироваться на вольт-амперной характеристике диода (график, где показывается зависимость выходного тока от напряжения приложенного к контактам), потребуется узнать характеристики мультиметра. Нередко вспомогательные величины в паспорте не указываются, потребуется провести тест. Возьмите конденсатор средней ёмкости. Зарядим вспомогательным напряжением. Ставим диапазон на измерение сопротивления и, не забывая про полярность (красный щуп – плюс), прикладываем к конденсатору. Когда сопротивление на дисплее завершит забег от нуля до бесконечности, переходим к измерению постоянного напряжения (не забывая про полярность).

В итоге получается в наличии значение вспомогательного напряжения. Теперь при помощи него возможно найти ток: I = U / R, где R считывается с дисплея в режиме измерения сопротивления (аналогичное происходит с режимом прозвонки диодов, помеченных характерной жирной стрелкой с поперечной чертой на конце). Теперь смотрим на вольт-амперную характеристику и смотрим, совпадает ли полученная точка с положением пересечения U и I. Если отклонение в пределах нормы, диод однозначно годный. В противном случае, если диод открывается и закрывается, деталь допустимо использовать в цепях, не критичных к точности.

Измерение мультиметром сопротивлений приборов

Если взять лампочку на 60 Вт, легко быстро убедиться, что сопротивление спирали составляет лишь 68 Ом. При приложенном напряжении 220 В по приспособлению протекал бы ток более 3 А, что соответствует мощности 700 Вт. Причина в характере переменного напряжения 50 Гц. Проверка сопротивления тена электроплиты производится с учётом указанного простого факта. В разговоре об акустике подразумевается некая средняя частота для спектра звука, составляющая, к примеру, 2,5 кГц. Потому сопротивление свечи зажигания и сопротивление динамика призваны измеряться косвенными методами в условиях, приближенных к реальным. Собирается делитель, создаётся тестировочная схема.

А сопротивление катушки зажигания возможно измерить тестером. Для этого придётся найти полные технические данные о количестве витков и сечении провода.

Как измерить сопротивление, тестировать диоды или сделать «прозвонку» токовыми клещами АСМ-2159

Токовые клещи АСМ-2159 обладают широкой функциональностью и являются незаменимым инструментом для измерения параметров электрических цепей.

Токовые клещи АСМ-2159 позволяют измерять постоянный и переменный ток, постоянное и переменное напряжение, сопротивление, емкость, частоту, температуру при помощи подключаемых термопар типа К, выполнять тестирование p-n переходов и прозвонку цепи.

АСМ-2159 могут подключаться к компьютеру, а, кроме того, имеется возможность сохранения измеренных данных на карту SD в формате Excel в режиме реального времени без использования специального программного обеспечения.

Измерения производят в следующем порядке:

  1. Вставьте черный провод в разъем «COM».
  2. Вставьте красный провод в разъем «V/Ω/-||-»
  3. Установите вращающийся переключатель в положение. В нижнем правом углу дисплея будут отображаться символы «MΩ», что соответствует режиму измерения сопротивления. Подсоедините щупы к исследуемой схеме и считайте показания с дисплея. Если в правом верхнем углу экрана горят символы «AUTO», то прибор находится в режиме автоматического выбора диапазона.
    — Для ручного выбора диапазона нажмите и удерживайте нажатой около двух секунд кнопку ▼RANGE (11). В правом верхнем углу экрана вместо символов «AUTO» отобразятся символы «MANU».
    — Выбор нужного диапазона измерения напряжения производится последовательным нажатием кнопки ▼RANGE (11).
    — Для перехода обратно в режим автоматического выбора диапазона опять нажмите и удерживайте нажатой около двух секунд кнопку ▼RANGE (11). В правом верхнем углу экрана вместо символов «MANU» отобразятся символы . «AUTO».
  4. Для перехода в режим тестирования диодов нажмите кнопку FUNC (4). В верхнем левом углу дисплея отобразятся символы , что соответствует режиму тестирования диодов.
    — Подключите щуп красного цвета со стороны анода, а чёрного — со стороны катода (прямой тест). Значение падения напряжения на p-n переходе отображается на ЖКИ (Примерное значение для исправного маломощного кремниевого диода составит 0,7 Вольт). При неисправности диода на дисплее отобразится «,000» или значение близкое к «,000» (пробой диода) или «1» (обрыв в диоде).
    — Поменяйте полярность подключения (обратный тест). Если тестируемый диод исправлен, на экране отобразится «1». Если диод неисправен, то на экране отобразится «,000» или другие значения.
    — Примечание. Для правильного тестирования диода обязательно используйте обе процедуры.
  5. Для перехода в режим проверки целостности электрической цепи (прозвонки) еще раз нажмите кнопку FUNC (4). В верхнем левом углу дисплея отобразятся символы , что соответствует режиму прозвонки цепи.

Подсоедините щупы к исследуемой схеме и считайте показания с дисплея.

Если сопротивление исследуемой цепи меньше 5 Ом, то раздастся звуковой сигнал.

Источник: Центр Измерительной Техники «Эталонприбор»

Измерение сопротивления изоляции: полное руководство

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Внешние загрязнения:

 

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

 

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Состояние изоляции

<2

Проблемное

От 2 до 4

Хорошее

> 4

Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Состояние изоляции

<1,25

Неудовлетворительное

<1,6

Нормальное

>1,6

Отличное

 

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

DD (нормы)

Состояние

> 7

Очень плохое

От 4 до 7

Плохое

От 2 до 4

Сомнительное

<2

Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

 

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования

Нормы испытательного напряжения постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

 

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

 

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

 

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

 

c. Между высоковольтной обмоткой и низковольтной обмоткой

 

d. Между высоковольтной обмоткой и землей

 

e. Между низковольтной обмоткой и землей

 

Выбираем приборы

Посмотреть приборы для проверки изоляции высоковольтных кабелей.

 

что это такое, как его проверить

Контроль внутреннего сопротивления аккумулятора позволяет поддерживать источник электроэнергии в работоспособном состоянии длительное время. Показатель зависит от многих параметров, способов измерения также существует большое количество.

Внутреннее сопротивление аккумулятора – что это?

Легче всего объяснить эту характеристику любой электрической батареи на примере. Когда берется новая АКБ для автомобиля, в полностью заряженном состоянии ее напряжение составляет 13 В. Если ее подключить к потребителю с минимальным сопротивлением 1 Ом, то при измерении окажется, что сила тока не 13 А, а примерно 12,2 А.

Это противоречит закону Ома: I=U/R. Если 13 В разделить на 1 Ом, должно получиться 13 А. Это объясняется тем фактом, что не только нагрузка, но и сам источник питания обладает сопротивлением. Реакция в нем, в результате которой появляется электроэнергия, проходит с некоторым замедлением.

Падение силы тока при подсоединении любой нагрузки к источнику питания происходит в т. ч. и в результате внутренних процессов в аккумуляторе. Существуют другие факторы, влияющие на его внутреннее сопротивление, что сказывается на действительной силе тока.

Эта величина, которую еще называют проводимостью, импедансом, условная, никогда не бывает постоянной. Она меняется в зависимости от состояния аккумулятора и многих других обстоятельств.

Как проверить внутреннее сопротивление АКБ

Давно существуют приборы, показывающие взаимосвязь емкости и внутренней проводимости. Они оценивают:

Определение внутреннего сопротивления аккумулятора.

  • состояние под нагрузкой по напряжению при постоянной величине тока;
  • сопротивление при переменном токе;
  • приборы для сравнения спектров.

Все способы позволяют получить только информацию о качественном состоянии батареи. Количественные показатели недоступны, т. е. невозможно по внутреннему сопротивлению судить о том, сколько проработает АКБ под нагрузкой. Однозначная зависимость между проводимостью и емкостью отсутствует.

Измерения рекомендуется проводить регулярно. Они позволяют оценить состояние АКБ, планировать покупку новой. Практикой доказано, что показатель с каждым годом возрастает минимум на 5%. Если увеличение превышает 8%, оценивают условия эксплуатации, нагрузку. Возможно, причина кроется в них.

От чего зависит

Показатель проводимости аккумулятора рассчитывают с учетом ЭДС, тока, нагрузки. Получают условную постоянно меняющуюся величину, зависящую от таких условий:

  • физических параметров батареи: размера, формы;
  • конструктивного исполнения основных элементов;
  • состояния электролита;
  • присутствия легирующих добавок;
  • состояния контактов.

Особенное влияние на импеданс оказывает электролитическая масса: химический состав, концентрация, температурные условия эксплуатации. Зависимость внутреннего сопротивления источников питания от состава электролита:

  1. Кислотно-свинцовые АКБ отличаются минимальными показателями. Они способны отдать ток силой до 2,5 кА, который необходим для запуска ДВС.
  2. Среди всех аккумуляторов самый низкий импеданс у NiCd. Он сохраняется даже после 1 тыс. разрядно-зарядных циклов.
  3. У NiMH импеданс вначале выше. Через 350 циклов он еще увеличивается.
  4. Характеристики Li-ion батареи лучше, чем NiMH, но уступают NiCd. В процессе эксплуатации импеданс у них не увеличивается, но зато в течение 2 лет Li-ion выходят из строя, даже если не эксплуатировались.

Поддерживать низкий импеданс особенно важно для устройств с высоким импульсным током потребления, например мобильных телефонов. Если никелевые аккумуляторы не обслуживать, их проводимость резко возрастает.

Подача переменного тока

Самый простой способ, но требует до 2 часов времени. Понадобятся:

Один из способов подачи переменного тока.

  • постоянный резистор определенного номинала;
  • ограничительный трансформатор;
  • конденсатор;
  • цифровой вольтметр.

Последний прибор может быть самым простым. Цифровая индикация необходима для большей точности измерений.

Несмотря на простоту метода, существуют факторы, которые не позволяют с уверенностью оценить внутреннее сопротивление. Значения при измерениях включают активные и реактивные параметры, учитывают частоту. Влияние оказывают химические реакции, протекающие в электролите.

Метод постоянной нагрузки

Способ, более часто используемый по сравнению с предыдущим. Применяется к батареям для автотранспорта. В течение нескольких секунд их разряжают под нагрузкой. Вольтметром фиксируют напряжение до разряда и после него. По закону Ома проводят вычисления.

Для старых АКБ метод неподходящий – он не позволяет определить их состояние. Нагрузка измеряется.

Короткоимпульсный способ

Сравнительно новаторский метод, обладающий следующими преимуществами:

  1. Батарея остается на своем месте, не отключается, что избавляет от лишней работы.
  2. При измерении изменение напряжения краткосрочное, что не влияет на работоспособность оборудования.
  3. Из приборов нужен вольтметр.
  4. Тестируют регулярно, но на состоянии АКБ это не сказывается.

Параллельно определяется емкость при сравнении новой и эксплуатируемой батарей. Учитываются сила тока, короткие замыкания. Метод позволяет сделать выводы о состоянии АКБ.

Зависимость состояния аккумулятора от внутреннего сопротивления

Провести измерения можно самостоятельно собранными устройствами, но большинство отдают предпочтение промышленным. Они позволяют оценить состояние аккумулятора, его основные характеристики. Рынок предлагает изделия с необходимыми функционалами.

Среди таких приборов:

  1. Нагрузочные вилки – проверяют напряжение АКБ. Позволяют установить необходимую нагрузку.
  2. Устройства, помогающие установить связь состояния батареи с импедансом.
  3. Измерители спектров, позволяющие определить проводимость при переменном и постоянном токе.

Разные измерительные устройства служат для определения внутреннего сопротивления. Тестеры подают сигналы, по которым устанавливают работоспособность АКБ, емкость, время заряда и разряда. Показатели взаимосвязаны, но зависимость в одних случаях больше, в других – меньше.

Измерение внутреннего сопротивления автомобильного АКБ

Особенное влияние оказывает величина импеданса на автомобильные аккумуляторы. Если эксплуатация транспортного средства активная как в городе, так и на трассе, сельских дорогах, импеданс оказывает большое влияние на продолжительность службы батареи. Регулярное тестирование позволяет определить, когда пригодность АКБ для работы приближается к финишу.

Описание параметра

Сопротивление принято обозначать R. В автомобильном аккумуляторе это сумма сопротивлений омического и поляризации. В свою очередь, омическое R слагается из сопротивлений, которые возникают в электролите, на соединениях банок, на контактах, электродах, сепараторах.

Импеданс проявляется в отношении тока внутри батареи независимо от того, разрядный он или зарядный. Все элементы АКБ имеют свою проводимость, которая различается.

Связанные факторы

Конструкции аккумуляторов, применяемые материалы разные, поэтому показатели неодинаковые. Например, плюсовая решетка имеет R в 10 тыс. раз меньше, чем у нанесенного на нее свинца. На минусовой решетке разница неощутимая.

Технология изготовления электродов также различается, что сказывается на показателях. Сюда относятся: качество материала, контактов, конструкция, присутствие легирующих компонентов.

На R сепараторов влияют толщина и пористость материала. Сопротивление электролита зависит от его температуры, концентрации.

Измерение сопротивления

Точное измерение внутреннего сопротивления невозможно без использования графиков разрядных кривых. На него влияют заряженность АКБ, нагрузка, температура. Автолюбители пользуются более простым способом, позволяющим судить о состоянии источника питания.

Пользуются лампой из фары, например галогеновой на 60 Вт, и тестером. Светодиодную не следует применять ни в коем случае. Лампочку и мультиметр подключают к батарее последовательно. Записывают показания вольтметра. Отключают нагрузку и смотрят напряжение, которое окажется больше.

Сравнивают показания измерительного прибора. Проводят расчет: если разница не превышает 0,02 В, состояние АКБ хорошее – импеданс не больше 0,01 Ом.

Пользуются вольтметром с цифровой индикацией: на стрелочном трудно зафиксировать точные показатели.

Опыт автолюбителей

Отзывы водителей разные. Небольшая часть предпочитает проверять АКБ в мастерских. Другие, которые поняли процесс и значение этого параметра для жизнедеятельности аккумулятора, уделяют несколько минут для регулярной проверки.

При этом автолюбители советуют обратить внимание на такие моменты:

  1. Не следует слепо руководствоваться абсолютными показателями, взятыми из специальной литературы, интернета. Более полезно сравнивать старые показатели с новыми.
  2. Существуют нормы для каждой АКБ. Их берут из инструкции или оригинальной упаковки.
  3. Регулярное измерение импеданса позволяет отслеживать изменения в батарее. В одних случаях достаточно найти и устранить причину, в других – это сигнал о необходимости замены АКБ в ближайшем будущем.

Параметр важный. Если измерять его регулярно, это позволит избежать многих проблем. Так считают большинство автолюбителей независимо от того, проводят они измерения сами или обращаются к мастерам.

Проверка бронепроводов на автомобиле. Как проверить вв провода машины мультиметром на пробой, сопротивление и обрыв

Высоковольтные бронепровода автомобиля требуют регулярного осмотра. В случае возникновения пропусков зажигания, троения и снижения мощности такая проверка должна быть более детальной, и с использованием мультиметра. Предварительный ответ можно получить без использования инструментов, применив один из общедоступных методов визуальной проверки. Если вы не знаете какое должно быть сопротивление исправных автомобильных вв проводов или как еще можно узнать их работоспособность читайте статью.

Содержание:

Осматривать бронепровода на возможные повреждения стоит в среднем раз в месяц. В зависимости от частотности проявляемых симптомов неисправности свечных брони проводов стоит применять и разные методы проверки.

Частота проявления неисправностейВероятная причина проблем с проводамиМетод проверки
НерегулярноПробой или обрывВизуальный осмотр и диагностика без инструментов
РегулярноПовышение сопротивления или обрывМультиметром
Пробой, повышенное сопротивление, обрывОсциллографом

Определить место пробоя проще всего в темное время суток или с помощью куска провода — заметите яркое искрение. Проверяя мультиметром в режиме омметра обращайте внимание не только на то, показывает прибор “1” (либо бесконечность у аналогового) или какое-то значение, но так же и на то, насколько оно отличается от номинального значения или варьируется от его длины.

Признаки неисправности бронепроводов

Когда высоковольтные провода выходят из строя, нарушается работа системы зажигания. Это отразится на работе двигателя следующими симптомами:

  • проблемы при запуске мотора, особенно в дождливую погоду;
  • заметные помехи в работе электроприборов, например магнитолы;
  • нестабильная работа на холостом ходу;
  • “троение” двигателя;
  • пропуски зажигания;
  • неуверенная работа мотора при разгоне;
  • общее снижение мощности.

Явно говорят о неисправности именно проводов только первые два признака. Все остальные могут проявляться при проблемах со свечами зажигания или при нарушении настроек подачи топливо-воздушной смеси. Поэтому, для уверенности, стоит обязательно проверять и бронепровода. Сделать это можно тремя способами:

  1. с помощью визуального осмотра;
  2. используя мультиметр;
  3. используя осциллограф.

Ниже мы расскажем подробно о каждом из методов и про особенности его применения. Но сначала о том, почему провода выходят из строя.

Причины выхода бронепроводов из строя

Почему бронепровода вообще перестают работать? Самая распространенная причина — это естественный износ и старение. Работая в условиях сильного перепада температур, вибраций и под воздействием высокого напряжения, изоляция высоковольтных проводов со временем перестает выполнять свою функцию. Также страдают места соединений со свечами и катушками или трамблером, то есть “колпачки”.

В результате такого воздействия провода начинают “пробивать”, теряя часть передаваемого на свечу зажигания напряжения. Также под воздействием электрического тока центральная жила со временем выгорает и истончается — поэтому у проводов растет сопротивление.

Зачастую результаты старения можно заметить визуально — по трещинам и повреждениям проводов. Но если их не видно, пробой помогут определить другие методы диагностики.

Вторая распространенная причина — это механические повреждения. Они возникают в результате некорректной замены проводов или неудачных действий во время ремонта. Поэтому важно всегда укладывать провода с использованием хомутов — так, чтобы исключить их соприкосновение с другими деталями под капотом. В таком случае чаще всего возникает обрыв внутри провода, хотя возможен и пробой — поэтому и нужна диагностика.

Помните, что в случае повреждений провода их самостоятельный ремонт изолентой или силиконовым герметиком не позволяет восстановить заводские характеристики изоляции.

Более редкие причины — это неисправности других компонентов системы зажигания. Например, при пробое катушки может быть превышено максимальное напряжение для провода и он полностью выходит из строя. Или дефекты в работе свеча зажигания могут приводить к росту сопротивления соответствующего ей провода.

Специалисты рекомендуют производить замену высоковольтных проводов каждые 80-90 тысяч километров пробега либо после замены каждого третьего комплекта свечей (при условии использования обычных никелевых).

Как проверить бронепровода на инжекторе и карбюраторе

Как проверяются бронепровода видео

У карбюраторных автомобилей, в силу их конструкции и отсутствия электронного контроля системы подачи топлива, доступны дополнительные методы.Самый распространенный — выкручиваем свечи, вставляем их в колпачки бронепроводов и кладем на крышку ГБЦ (для заземления на массу). Затем прокручиваем стартером коленвал, чтобы сымитировать запуск двигателя и проверяем образование искры. Если на каком-то проводе искра не возникает либо она очень слабая, то при условии использования заведомо исправных свечей, проблема скорее всего именно в проводе.

Также проверять бронепровода на авто с карбюратором можно на работающем двигателе поочередно отсоединяя их со свечей. Если во время отключения характер работы двигателя не изменился, этот провод неисправен. Опять же, важно понимать что и сама свеча на этом цилиндре исправна.

Проводить подобные проверки на инжекторных автомобилях категорически запрещается, потому что иначе может выйти из строя электронный коммутатор зажигания и электронный блок управления!

После определения потенциально неисправного провода, его нужно проверять дополнительно: визуальным осмотром и с помощью мультиметра или осциллографа. Эти методы диагностики полностью идентичны для инжекторных и карбюраторных автомобилей и будут детально описаны ниже.

Есть еще несколько советов, которых стоит придерживаться при проверке бронепроводов на карбюраторных автомобилях. Во-первых, при проверке сопротивления мультиметром, их лучше отсоединить от крышки распределителя зажигания, чтобы получить максимально точные результаты проверки. Во-вторых, если вы решили проверить провода потому что появилась сильная потеря мощности двигателя или он вообще не заводится, то проверку стоит начинать сразу с центрального, который идет от катушки на распределитель зажигания (трамблер).

Кстати, есть лайфхак и для инжекторных автомобилей с электронным контролем зажигания. Для них имеет смысл проверить сопротивление свечей, и поставить их в таком соответствии высоковольтным проводам, чтобы суммарное сопротивление каждой пары свечи и бронепровода было приблизительно одинаковым. Так вы добьетесь максимально равномерной силы искры.

Как проверить бронепровода без инструментов?

Явные проблемы со свечными высоковольтными проводами можно выявить с помощью визуального осмотра, без каких-либо дополнительных инструментов. Есть 5 методов как проверить работоспособность провода без тестера.

Первым делом осмотрите все провода на отсутствие видимых повреждений — трещин, изломов, дефектов изоляции (особенно если видна токопроводящая жила). Повреждения часто проявляются в районе креплений и колпачков. Также отодвиньте колпачки и проверьте состояние центральной жилы — возможно, она уже совсем перегорела.

В полевых условиях вместо тестера может выступать лампочка габаритных огней и кусок провода. Закрепляем провод одним концом на минусе АКБ, а вторым на лампочке. Высоковольтный провод крепим к плюсу АКБ и с помощью отвертки прислоняем к лампочке. Если лампа горит, провод исправен.

Как проверить бронепровода на пробой

Демонстрируется проверка проводов на пробой (методом визуальной проверки с использованием дополнительного проводника)

Когда провод кажется рабочим, но есть перебои в зажигании, то проблема может быть из-за невидимых повреждений изоляции, давая пробой на массу автомобиля. Этот дефект можно проверить в темноте или используя дополнительный провод. В темное время суток или в гараже с выключенным светом заведите двигатель и посмотрите на провода. В местах пробоя будет заметно искрение. Такой метод эффективнее всего применять когда на улице ли под капотом очень влажно!

Также выявить пробой свечных проводов поможет самодельный прибор из дополнительного проводника. Нужно взять медный провод с двумя зачищенными концами — один крепим на кузов автомобиля, второй формируем в виде полупетли и ей проводим вдоль всех проводов при включенном моторе. В местах пробоя будет заметно искрение. В условиях гаража можно сделать специальный рычаг из резинового шланга, к которому прикрепить конец провода с петлей — так будет еще безопаснее. Чтобы такая проверка на пробой была более эффективнее, лучше побрызгать провода водой из мелкого распылителя. Так вы имитируете дождевые условия, когда система получает дополнительную нагрузку!

Для “проверки проводом” можно использовать также “крокодил” для “прикуривания” автомобиля. Один конец цепляем на кузов, вторым открытым разъемом проверяем провода.

Если нет мультиметра, то кроме такой петли может применяться и еще один метод. Наматываем 2-3 витка бронепровода на отвертку и при работающем двигателе касаемся отверткой корпуса ГБЦ. Это позволит определить факт пробоя, но не его конкретное место.

Перед тем как проверять бронепровода на пробой, убедитесь, что вы соблюдаете все требования техники безопасности, чтобы не получить поражения током. Работайте в диэлектрических перчатках, не касайтесь металлических частей автомобиля.

Минус описанных выше методов в том, что они не всегда дают результат. Провода могут быть работать, но делать это неэффективно и все равно требовать замены. Поэтому если проверка без инструментов не дала четких результатов, а признаки неисправностей проявляются, стоит использовать проверку мультиметром.

Как проверить ВВ провода мультиметром?

Проверка бронепроводов Рено Логан с помощью мультиметра

Прозвонка бронепроводов мультиметром (часто их называют тестерами, хотя это некорректно) позволяет определить наличие обрыва и фактическое сопротивление проводника. Осуществлять проверку можно любым мультиметром — сгодится и самый дешевый китайский прибор и старая-добрая “цешка”, то есть советский ампервольтомметр Ц-20.

Сопротивление центральной жилы должно соответствовать заводским значением или допустимым параметрам. Повышенное сопротивление провода приводит к снижению эффективности свечей и говорит о том, что центральная жила выгорела в процессе эксплуатации. Наличие обрыва провода приводит к перебоям в зажигании или слишком слабой искре на свече.

Важно понимать, что обычный мультиметр не позволяет измерить сопротивление изоляции бронепроводов, потому что оно достигает нескольких мегаом. Для этого нужен специальный прибор — мегомметр.

С помощью мультиметра проверяются только снятые с автомобиля высоковольтные провода. Для автомобилей с проводами одинаковой длины, нанесите на них порядковые номера, чтобы потом установить их на те же места.

Как проверить сопротивление высоковольтных проводов

Процедура проверки сопротивления бронепроводов состоит из трех простых действий:

  • снимаем провода с автомобиля;
  • выставляем мультиметр в режим омметра, на измерения до 20 кОм;
  • вставляем щупы прибора в оба края каждого бронепровода и фиксируем показания.

Как проверять сопротивление вв проводов

По результатам измерений у проводов будут разные уровни сопротивления и это нормально. Во-первых, если одна из свечей работала неэффективно, то этот провод будет сильнее “изношен” и его сопротивление будет выше. Во-вторых, бронепровода на большинстве автомобилей имеют разную длину. Это сделано для того, чтобы провода нигде не перегибались, а удобно устанавливались в подкапотном пространстве. А по законам физики, длина напрямую влияет на сопротивление — чем короче провод, тем меньше сопротивление. Поэтому в таких комплектах сопротивление разных проводов может сильно отличаться.

Так, если рассматривать сопротивление на бронепроводах ВАЗовской “классики”, то разброс измерений может быть от 3,5 до 10 кОм (также разброс параметров не должен превышать 4 кОм). А на автомобиле Дэу Нексия параметры могут быть от 3,1 кОм на четвертом цилиндре до 12,8 кОм на первом. У Шевроле Лачетти все провода должны иметь сопротивление не выше 3 кОм. Значения сопротивления для каждого провода указаны на упаковке, иногда на самих проводах, и в инструкции по эксплуатации автомобилем.

Измерив сопротивление бронепроводов мультиметром, сравните полученные данные с требованиями вашего автопроизводителя — какой рекомендуемый уровень сопротивления он допускает для проводов на ваш автомобиль. И на основании этих данных примите решение о необходимости замены.

Нюанс в том, что само по себе сопротивление бронепровода не говорит о том, что провод работает хорошо или плохо. Важно именно соответствие заявленным параметрам. Потому что в зависимости от исполнения или производителя проводов, уровень сопротивления проводов может отличаться.

Например, популярный бренд Tesla создает провода с сопротивлением около 6 кОм. У бренда Slon этот показатель от 4 кОм до 7 кОм (начиная с первого и заканчивая последним цилиндром). Cargen делает провода с сопротивлением 0,9 кОм. Также сопротивление может отличаться в зависимости от материала центральной жилы. Например, созданные из хлопчатобумажной пряжи, пропитанной сажевым веществом, будут иметь сопротивление 15-40 кОм/м. А полимерные жилы обычно идут с сопротивлением 13-15 кОм/м.

Есть еще так называемые брони провода нулевого сопротивления, но их применение является спорным вопросом. Система зажигания настроена с учетом определенного сопротивления проводов и снижение этого параметра до минимума может привести к выходу из строя других элементов системы зажигания. Кроме того такие свечные провода делаются только кустарным способом, а не на заводском оборудовании. Что также может повлиять на их работу.

Проверка бронепроводов на обрыв

Узнать о наличии обрыва в проводе можно либо с помощью “полевых” методов описанных выше, либо с помощью мультиметра. Последний вариант — точнее и надежнее. Если в проводе есть обрыв, то при проверке цифровым мультиметром сопротивления прибор покажет единицу, а стрелка аналогового прибора будет стремиться к бесконечности.

Важно понимать, что даже с оборванным проводом двигатель может работать, а неисправность будет продолжаться только периодически. Дело в том, что оборванный провод передает напряжение, но делает это намного хуже. В месте разрыва образуется искра, напряжение падает, но оно есть, и свеча зажигания дает искру, хотя и недостаточную для эффективного сгорания топлива. Также у оборванного провода возникает электромагнитный импульс, негативно влияющий на работу датчиков и электросистем.

Как проверить бронепровода осциллографом

Проверка высоковольтного провода и системы зажигания осциллографом. Так выглядит осциллограмма когда провода и вся система зажигания работают исправно

Чтобы проверить осциллографом (мотор-тестером) высоковольтные провода автомобиля на них закрепляют емкостный и индуктивный датчик (также может подключаться высоковольтный, при проверке DIS системы зажигания). Включив осциллограф, запускают двигатель и наблюдают за диаграммой на экране прибора. Осциллограмма будет поделена на 5 этапов. По кривых осциллограммы диагност понимает как происходит каждый из процессов. Работу вв проводов можно будет увидеть по третьему и четвертому этапу “пробой свечного зазора”, “горение искры”.

Если линия искры не ровная, короткая или имеет много шумов, то это свидетельствует о пробоях вв проводов либо о плохом состоянии самой свечи. А когда в проводе есть обрыв, то линия напряжения на диаграмме будет доходить до максимального выдаваемого катушкой зажигания.

Осциллограмма на которой показана неисправность всех высоковольтных проводов

Пример осциллограммы на которой видно неисправность высоковольтного провода на 2-м цилиндре

Учтите, что в зависимости от системы зажигания, классическая (трамблерная) либо индивидуальная и DIS, диагностика помощью осциллографа будет проводится по разным алгоритмам.

Так что, как видите, проверка бронепроводов осциллографом требует не только наличия подобного оборудования, но и навыков расшифровки осциллограмм работы автомобильных систем. Поэтому для большинства обычных автовладельцев достаточно описанных выше проверок.

Плюс осциллографа в том, что с его помощью можно проверять работу системы зажигания в целом и в разных режимах двигателя. А это дает больше информации для диагностики неисправности, особенно в сложных случаях. Ознакомиться с нюансами проверки бронепровода и других элементов осциллографом можно вот в этой статье о проверке системы зажигания.

Спрашивайте в комментариях. Ответим обязательно!

Как определить сопротивление тэна | Псков

В каких случаях нужно определять сопротивление ТЭНа, технология проверки трубчатого электронагревателя. Как использовать мультиметр, способы проверки работоспособности нагревательного элемента без тестера.

Причин неполадок электроприборов, в которых установлены трубчатые электронагреватели, довольно много. И не всегда это выход из строя ТЭНа. Чтобы исключить этот вариант, может потребоваться его тестирование при помощи специального прибора – мультиметра.

Когда может потребоваться определение сопротивления ТЭНа

Знать, как измерить сопротивление ТЭНа, потребуется во многих случаях. Обычно – если бытовое устройство, которое использует ТЭН, начало функционировать неверно. В частности, тревожными симптомами могут быть:

  • Отказ устройства включаться;
  • Нарушение температурного режима работы устройства;
  • Слишком сильное и быстрое нагревание;
  • Появление искр или даже дыма;
  • Так называемый «пробой» на корпус, а также неисправности иного рода.

Не обязательно они связаны с выходом из строя ТЭНа: причины могут быть самыми разными. Поэтому не будет лишним знать, как проверить сопротивление ТЭНа.

Если вдруг бытовое оборудование стало вести себя подозрительно, необходимо немедленно отключить его от электросети и приступить к диагностике возможных неполадок.

Что нужно выполнить перед проверкой

Перед тем, как измерить сопротивление ТЭНа мультиметром, можно рассчитать значение его сопротивления на бумаге. Для этого потребуется определить мощность устройства. Как правило, данный параметр указан в эксплуатационном паспорте. В крайнем случае можно всегда просмотреть нужную информацию на сайте производителя или поискать данные в Интернете.

Зная значение мощности, нужно сначала рассчитать протекающий через нагреватель ток. Любой, кто знаком со школьным курсом физики за 8 класс, ответит, что сила тока в данном случае будет равна отношению мощности к напряжению (обычно это 220 вольт):

I=P/U, Ампер

После этого можно будет по Закону Ома (все тот же 8 класс физики) высчитать и значение сопротивления – разделив напряжение на силу тока:

R=U/I, Ом

Как вариант – воспользоваться другой формулой:

R=U²/P, Ом

В качестве примера: перед тем, как определить сопротивление ТЭНа рассчитывается его теоретический показатель при мощности в 2 киловатта (2 000 ватт) при стандартном напряжении в 220 вольт:

R=(220 В)²/2 000 Вт = 24.2 Ом.

Это и будет искомое теоретическое сопротивление. Часто мастера и электрики, тестируя ТЭН мультиметром, просто придерживаются показателей в промежутке между 20 и 30 омами. Это будет не совсем верно: все-таки, чем точнее измеренный показатель будет совпадать с теоретическим, тем лучше.

Технология проверки ТЭНа

Перед тем как проверить сопротивление ТЭНа, устройство необходимо отключить от электропитания. Это обязательно! При необходимости, пользуясь специальными инструкциями, ТЭН извлекается из своего посадочного гнезда в приборе. Как это сделать – зависит от каждого конкретного устройства и его модели, а также от производителя.

После того как ТЭН извлечен и отсоединен от проводов, нужно включить мультиметр в режиме замера сопротивления и выставить диапазон до 200 Ом. Щупами устройства нужно прикоснуться к выводным контактам ТЭНа.

Использование измерительного прибора

Собственно, это и есть проверка сопротивления ТЭНа. Мультиметр может показать разные значения. Возможно три варианта развития событий:

  • На дисплее показывается точно такое же значение, какое было рассчитано выше, по формуле. Если это так – ТЭН исправен, причина неполадки бытового прибора кроется в чем-то ином;
  • Дисплей показывает нулевое значение. Пользоваться таким ТЭНом категорически запрещается! Ноль свидетельствует о наличии короткого замыкания. Поможет лишь замена нагревателя;
  • Если высвечивается значение – единица или знак бесконечности, то где-то в цепи имеет место разрыв. Например, произошло механическое разрушение ТЭНа. Соответственно, его также потребуется заменить.

Кроме как измерить сопротивление ТЭНа мультиметром, можно проверить, нет ли утечки тока. Чтобы это сделать, мультиметр переводится в режим зуммирования, после чего один из его щупов подводится к контакту вывода, а другой – к корпусу ТЭНа. Если зуммер издал сигнал – имеет место пробой. В этом случае нагреватель также подлежит замене.

Можно провести проверку сопротивления изоляционного слоя ТЭНа при помощи мегаомметра. Чтобы это сделать, на приборе выставляется диапазон до 500 В. Один из щупов подводится к выводному контакту ТЭНа, а другой – к корпусу прибора. Считается нормальным показание от 0.5 Ома.

Перед тем, как определить сопротивление ТЭНа посредством прозвона, нужно его внимательно осмотреть. На нем не должно присутствовать механических повреждений. Причиной неисправности может стать накипь. В случае с явными повреждениями – вздутие, трещины (пусть и самые незначительные), сколы и т.д. – ТЭН просто подлежит замене. Можно даже не проводить никаких замеров. Накипь устраняется через вымачивание в течение двух суток элемента в растворе уксуса или лимонной кислоты.

Утечка тока на корпус

Бывает и так, что с течением времени изоляционный слой ТЭНа изнашивается. При этом наблюдается так называемая утечка тока на корпус оборудования. Определить это можно уже описанным выше способом – посредством мегаомметра.

Если в доме стоит УЗО, то из-за износа изоляционного слоя автоматика может отключаться. Происходит это при достижении половины значения от номинального отключающего дифференциального тока. Мультиметром определить этот факт будет невозможно, поскольку у него отсутствует короткое замыкание на корпус.

Проверка ТЭНа без мультиметра

Если под рукой нет мультиметра, бывалый мастер может провести проверку нагревателя на предмет обрыва и без него. Для этого потребуется контрольная лампа электрика. Ее можно изготовить самому, но лучше приобрести заводской прибор.

Для проверки нужно один контакт ТЭНа подать на ноль от сети, а другой – фазу через контрольную лампу. Если лампочка загорелась – обрыва в цепи нет. Минус этого способа в том, что полноценная проверка сопротивления ТЭНа таким образом невозможна, однако проконтролировать целостность цепи все-таки получится.

Аналогичными способами можно выполнять проверку ТЭНа во многих электроприборах – начиная от посудомоечной машины, заканчивая обогревателями и электрическими чайниками.

Советы по поводу того, как продлить срок службы ТЭНа

В заключение – немного о том, как продлить срок работы ТЭНа. Нет ничего приятного в том, когда выходит из строя водонагревательное устройство в бытовой технике. Однако существуют некоторые рекомендации, которые позволят отодвинуть это неприятное событие:

  • Необходимо своевременно проводить замену магниевого анода, который защищает ТЭН;
  • Самым главным требованием является использование как можно более качественной воды. При необходимости следует установить на водопровод фильтрующие устройства;
  • Не повредит минимум один раз в год осматривать ТЭН на предмет целостности и образования на нем накипи;
  • Если требуется проводить замену деталей, лучше всего использовать оригинальные комплектующие.

Не нужно без крайней необходимости задавать максимальный нагрев воды в устройстве. Обычно производитель указывает оптимальный температурный режим его работы. Это позволит сэкономить электричество и продлить срок работы ТЭНа.

Ничего особенно сложного в том, как измерить сопротивление ТЭНа, нет. Но только в том случае, если есть полная уверенность в правильности проводимых операций. В противном случае лучшим выходом будет обратиться за помощью к специалисту.

Что такое проверка контактного сопротивления и почему проводится проверка контактного сопротивления


Что такое контактное сопротивление

Контактное сопротивление — это сопротивление току, возникающее из-за состояния поверхности и других причин, когда контакты касаются друг друга (в замкнутом состоянии устройства). Это может произойти между контактами:

  • выключатели
  • Контакторы
  • Реле
  • Коммутаторы
  • Разъемы
  • Коммутационные аппараты прочие

Тестирование сопротивления контактов, также известное как тестирование воздуховодов, измеряет сопротивление электрических соединений — выводов, стыков, соединителей, секций шин или кабельных соединений и т. Д.Это могут быть соединения между любыми двумя проводниками, например, кабельные соединения или секции сборных шин. Инструмент, который используется для выполнения теста на проводнике, называется омметром, и, поскольку его функция заключается в выполнении теста на проводнике, омметр также известен как тестер проводника.

Дукторный тестер можно найти во многих вариантах, таких как микро-, мега- и миллиомметры, тестеры статического сопротивления или DLRO, что означает цифровой омметр с низким сопротивлением. Используется для измерения сопротивления в различных приложениях электрического тестирования.Этот тестер состоит из амперметра постоянного тока и нескольких других компонентов. Тест измеряет сопротивление на уровне микро- или миллиомов и используется в первую очередь для проверки правильности электрических соединений и может обнаруживать следующие проблемы:

  • Ослабленные соединения
  • Достаточное натяжение болтовых соединений
  • Эродированные контактные поверхности
  • Контакты загрязнены или корродированы

Термин «контактное сопротивление» относится к вкладу в общее сопротивление системы, которое может быть отнесено к контактным поверхностям электрических выводов и соединений, в отличие от внутреннего сопротивления, которое является неотъемлемым свойством, не зависящим от метода измерения.Этот эффект часто описывается термином «сопротивление электрического контакта» или ECR и может изменяться со временем, чаще всего уменьшаясь в процессе, известном как ползучесть по сопротивлению. Идея падения потенциала на инжекционном электроде была введена Уильямом Шокли, чтобы объяснить разницу между экспериментальными результатами и моделью постепенного приближения канала. В дополнение к термину ECR также используются «интерфейсное сопротивление», «переходное сопротивление» или просто «поправочный термин». Термин «паразитное сопротивление» использовался как более общий термин, в котором обычно все еще предполагается, что контактное сопротивление играет основную роль.

Зачем нужен тест на сопротивление контакта?

Контакты в автоматическом выключателе необходимо периодически проверять, чтобы убедиться, что выключатель исправен и функционирует. Плохо обслуживаемые или поврежденные контакты могут вызвать искрение, потерю фазы и даже возгорание.

Это испытание особенно важно для контактов, по которым протекает большой ток (например, шин распределительного устройства), поскольку более высокое сопротивление контактов может привести к снижению допустимой нагрузки по току и более высоким потерям.Тестирование воздуховодов обычно выполняется с помощью микро / миллиомметра или низкоомметра.

Измерение контактного сопротивления помогает идентифицировать фреттинг-коррозию контактов, а также позволяет диагностировать и предотвращать контактную коррозию. Увеличение контактного сопротивления может вызвать падение высокого напряжения в системе, и это необходимо контролировать.

Что делается во время испытания контактного сопротивления?

Двумя обычными проверками, проводимыми на контактах автоматического выключателя, являются визуальный осмотр и проверка контактного сопротивления.

  1. Визуальный осмотр включает проверку контактов автоматического выключателя на наличие следов точечной коррозии из-за дугового разряда и изношенных или деформированных контактов.
  2. Вторая проверка — измерение контактного сопротивления. Это включает в себя подачу фиксированного тока, обычно около 100 А, 200 А и 300 А, через контакты и измерение падения напряжения на нем. Этот тест проводится с помощью специального прибора для измерения контактного сопротивления. Затем по закону Ома рассчитывается значение сопротивления.Значение сопротивления необходимо сравнить со значением, указанным производителем. Значение также следует сравнить с предыдущими записями.

Оба этих теста необходимо проводить вместе. Так как есть случаи, когда контакты имеют хорошее контактное сопротивление, но находятся в поврежденном состоянии. Таким образом, чтобы контакт был сертифицирован как здоровый, он должен иметь хорошее сопротивление контакта и пройти визуальный осмотр.

Тестер воздуховодов

Существует два типа тестеров для воздуховодов:

Омметр типа
    серии
  1. имеет 4 резистора, напряжение внутренней батареи — E и выходные клеммы A и B.При соединении клемм A и B с резисторами R1 и R2 батарея образует простую последовательную цепь.
  2. Омметр шунтового типа, используется для измерения малых значений текущего сопротивления. Когда клеммы A и B замкнуты, стрелка показывает ноль, потому что ток течет только через резистор RX. Когда эти две клеммы разомкнуты, ток через резистор RX не течет, поэтому показания на тестере воздуховодов помечаются как бесконечные.

Как мы проводим испытание контактного сопротивления?

Критерии испытаний

Критерии оценки контактного сопротивления электрических соединений во многом зависят от типа соединения (например,грамм. болтами, пайкой, зажимом, сваркой и т. д.), площадь металлической контактной поверхности, контактное давление и т. д. Они будут различаться в зависимости от оборудования и производителя, и не существует норм или стандартов, которые предписывают минимальное сопротивление контакта. Таким образом, необходимо консультироваться с рекомендациями производителя. Например, производители иногда указывают максимальное контактное сопротивление 10 мкОм для больших болтовых соединений сборных шин.

Измерение контактного сопротивления и область его применения довольно обширны.

Электрические соединения

Электрические соединения цепей имеют различные способы и средства, такие как соединение сваркой, нажатием, вставкой и плотной промокшей и т. Д. Если вы хотите узнать качество разъема и его характеристики проводимости, вам просто нужно измерить его контактное сопротивление. Контактное сопротивление часто применялось при проверке качества переключателей, реле и площадок печатных плат.

В аспекте сборки оборудования контактное сопротивление контактной поверхности металлов можно использовать для оценки надежности и герметичности сборки оборудования.Контактное сопротивление связано с характеристикой проводимости контактной поверхности. Чем больше площадь и чем меньше примесей на поверхности пары металлов, тем лучше проводимость и меньше сопротивление, и наоборот.

По способам измерения контактного сопротивления мы можем качественно проанализировать надежность и герметичность агрегата. Этот метод уже применялся при проверке качества сборки экрана на ЭМС. Методы измерения для разных приложений не совпадают.Например, в случае измерения сопротивления контактов мощных переключателей и реле следует использовать высокий ток, пару контактов, такие вещи, как состояние, которое на самом деле происходит в рабочем состоянии. В случае соединителя «сухой» цепи испытательный ток должен быть низким, чтобы соединение не расплавилось от тепла (ток менее 100 мА).

Сборка оборудования

В случае проверки качества сборки машинного оборудования следует выбирать разные испытательные схемы в соответствии с различными структурами.Есть два типа структур: замкнутая структура петли и открытая структура не петли. Их методы измерения совершенно разные.

Как измерить сопротивление контактов, которое присутствует в цепи контура, но не меняет цепь?

Новый метод решит эту проблему. Этот метод очень полезен для измерения контактного сопротивления в сложных узлах оборудования. Контактное сопротивление определяется как отношение напряжения на контакте к току, протекающему через замкнутую пару контактов.Это соответствовало закону Ома. Между металлом 1 и металлом 2 существует граница раздела. Ток I, исходящий от источника тока, протекает через эту границу раздела, и его можно считывать с измерителя тока. И тогда падение напряжения на интерфейсе может быть считано с измерителя напряжения как U. Затем значение контактного сопротивления Rx может быть рассчитано с помощью.

Rx = U / I

Поскольку контактное сопротивление изменяется в зависимости от окружающей среды и протекания тока, условия измерения должны быть такими же, как и условия использования.Для точного измерения необходимо использовать четырехполюсный метод измерения и метод исключения термо-ЭДС. Этот косвенный метод измерения может применяться при измерении контактного сопротивления или сопротивления контура. Для этого нужны три контрольных точки, три шага и три формулы. Этот метод был признан правильным, и его также можно использовать при калибровке эталона петлевого резистора.

Типовой метод испытания контактного сопротивления

Четырехпроводное (Кельвинское) падение напряжения постоянного тока — это типичный метод, используемый микроомметрами для проверки контактного сопротивления, который обеспечивает более точные измерения за счет устранения собственного контактного сопротивления и сопротивления измерительных проводов.

  • Проверка контактного сопротивления выполняется с использованием двух токовых выводов для инжекции и двух потенциальных выводов для измерения падения напряжения; кабели напряжения должны быть подключены как можно ближе к проверяемому соединению и всегда внутри цепи, образованной подключенными токоподводами.
  • На основе измерения падения напряжения управляемые микропроцессором микроомметры рассчитывают контактное сопротивление, устраняя при этом возможные ошибки из-за эффектов термо-ЭДС в соединениях (термоЭДС — это небольшие напряжения термопары, которые возникают при соединении двух разных металлов ) Они будут добавлены к измеренному общему падению напряжения и внесут ошибки в испытание контактного сопротивления, если они не будут вычтены из измерения другими методами (изменение полярности и усреднение, прямое измерение величины термо-ЭДС и т. Д.))
  • Если при проверке сопротивления контактов выключателя с использованием низкого тока получены показания низкого сопротивления, рекомендуется повторно проверить контакты при более высоком токе. Почему нам выгодно использовать более высокий ток? Более высокий ток будет иметь возможность преодолеть проблемы с подключением и окисление на клеммах, где более низкий ток может привести к ложным (более высоким) показаниям в этих условиях.

При испытании контактного сопротивления очень важно поддерживать постоянные условия измерения, чтобы иметь возможность сравнивать с предыдущими и будущими результатами для анализа тенденций.Поэтому при проведении периодических измерений испытание контактного сопротивления должно проводиться в одном и том же положении, с теми же измерительными проводами (всегда с калиброванными кабелями, поставляемыми производителем) и в тех же условиях, чтобы можно было определить, когда соединение , соединение, сварка или устройство станут небезопасными.

Заключение

Измерения теплопроводности также зависят от контактного сопротивления, что особенно важно при переносе тепла через гранулированные среды.Точно так же падение гидростатического давления (аналогично электрическому напряжению) происходит при переходе потока жидкости из одного канала в другой.

Испытания сопротивления контактов предоставляют информацию о состоянии контактов и их способности выдерживать номинальный ток.

Максимальное сопротивление контакта следует проверять в соответствии со спецификациями производителя. Номинальный ток не должен превышаться, рекомендуется испытание при 10% номинального тока.

Следует использовать минимальный испытательный постоянный ток в соответствии со спецификацией производителя; однако рекомендуемые уровни IEC и ANSI: 50 A IEC 60694 100 A ANSI.

Испытание сопротивления изоляции | Цветность

При испытании сопротивления изоляции (IR) измеряется общее сопротивление между любыми двумя точками, разделенными электрической изоляцией. Таким образом, испытание определяет, насколько эффективно диэлектрик (изоляция) сопротивляется прохождению электрического тока. Такие испытания полезны для проверки качества изоляции не только при первом производстве продукта, но и во время его использования.

Выполнение таких испытаний через регулярные промежутки времени может выявить надвигающиеся нарушения изоляции до того, как они произойдут, и предотвратить несчастные случаи с пользователем или дорогостоящий ремонт изделия.

Как показано на Рисунке 15, двухпроводное незаземленное соединение является рекомендуемой установкой для тестирования незаземленных компонентов. Это наиболее распространенная конфигурация для тестирования 2-контактных устройств, таких как конденсаторы, резисторы и другие дискретные компоненты.

Как показано на Рисунке 16, 2-проводное заземленное соединение является рекомендуемым подключением для тестирования заземленных компонентов.Заземленный компонент — это компонент, в котором одно из его соединений идет на землю, тогда как незаземленный компонент — это компонент, в котором ни одно соединение не идет на землю. Измерение сопротивления изоляции кабеля в водяной бане является типичным применением 2-проводного заземленного соединения.

Процедура измерения

Проверка сопротивления изоляции обычно состоит из четырех этапов: зарядки, выдержки, измерения и разрядки. Во время фазы заряда напряжение нарастает от нуля до выбранного напряжения, что обеспечивает время стабилизации и ограничивает пусковой ток тестируемого устройства.Как только напряжение достигнет выбранного значения,

Затем можно позволить напряжению

оставаться на этом уровне до начала измерений.

После измерения сопротивления в течение выбранного времени тестируемое устройство снова разряжается до 0 В во время последней фазы.

Измерители сопротивления изоляции

обычно имеют 4 выходных соединения — заземление, экран, (+) и (-) — для различных применений. Выходное напряжение обычно находится в диапазоне от 50 до 1000 вольт постоянного тока.При выполнении теста оператор сначала подключает тестируемое устройство, как показано на рисунках 15 или 16.

Прибор измеряет и отображает измеренное сопротивление. При подаче напряжения через изоляцию сразу же начинает течь ток. Этот ток имеет три компонента: ток «диэлектрического поглощения», зарядный ток и ток утечки.

Диэлектрическое поглощение

Диэлектрическое поглощение — это физическое явление, при котором изоляция медленно «поглощает» и сохраняет электрический заряд с течением времени.Это демонстрируется приложением напряжения к конденсатору в течение длительного периода времени, а затем его быстрой разрядкой до нулевого напряжения. Если конденсатор оставить разомкнутым в течение длительного периода, а затем подключить к вольтметру, измеритель покажет небольшое напряжение. Это остаточное напряжение вызвано «диэлектрическим поглощением». Это явление обычно связано с электролитическими конденсаторами.

При измерении ИК-излучения различных пластиковых материалов это явление приводит к увеличению значения ИК-излучения с течением времени.Завышенное значение ИК-излучения вызвано тем, что материал медленно поглощает заряд с течением времени. Этот поглощенный заряд выглядит как утечка.

Зарядный ток

Поскольку любое изолированное изделие демонстрирует основные характеристики конденсатора, то есть два проводника, разделенных диэлектриком, приложение напряжения через изоляцию вызывает протекание тока по мере зарядки конденсатора. В зависимости от емкости продукта этот ток мгновенно повышается до высокого значения при приложении напряжения, а затем быстро спадает экспоненциально до нуля, когда продукт становится полностью заряженным.Зарядный ток спадает до нуля намного быстрее, чем ток диэлектрического поглощения.

Ток утечки

Установившийся ток, протекающий через изоляцию, называется током утечки. Оно равно приложенному напряжению, деленному на сопротивление изоляции. Цель теста — измерить сопротивление изоляции. Чтобы вычислить значение IR, подайте напряжение, измерьте установившийся ток утечки (после того, как токи диэлектрической абсорбции и зарядки снизятся до нуля), а затем разделите напряжение на ток.Если сопротивление изоляции соответствует требуемому значению или превышает его, испытание считается успешным. В противном случае тест не пройден.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Есть много причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Ой. Что-то пошло не так, и вы оказались здесь.

Что случилось?

Похоже, запрошенного URL не существует. Простите. Есть несколько возможных объяснений: страница могла быть перемещена, страница может больше не существовать или страница может быть временно недоступна. Убедитесь, что адрес веб-сайта, который вы ввели, написан и отформатирован правильно. Если вы попали на эту страницу, щелкнув ссылку, сообщите нам об этом.

Что мне теперь делать?

Попробуйте поискать в PlantServices.com. Просто введите ключевое слово (а) в поле поиска выше.

Я все еще не могу найти то, что ищу.

Взгляните на наше меню навигации. Там вы можете найти информацию, которую искали, а также другой полезный контент. Ознакомьтесь с нашими статьями, отраслевыми новостями, официальными документами, веб-трансляциями и многим другим. Вот некоторые из наших последних материалов:

  • Завод по производству рапсового масла стоимостью $ 350 млн планируется в Канаде
    Сельскохозяйственный гигант Cargill объявил, что планирует открыть новый крупный завод по производству рапсового масла в Регине, Саскачеван, в 2024 году.Cargill из Уэйзаты, штат Миннесота, планирует начать строительство завода стоимостью 350 миллионов долларов в начале 2022 года.
  • Производитель из Висконсина расширяет производство дверей и столешниц
    Производитель дверей и поверхностей столешниц планирует многомиллионную экспансию в Северо-Восточном Висконсине. Подразделение Eggers заявило, что инвестирует 16 миллионов долларов в расширение своей фабрики в Нине и увеличение производства на своем заводе в Ту-Риверс.
  • Производство 5.0 во главе с инвестициями в технологии и оншорингом
    До пандемии Огайо — третий по величине производственный штат в США после Калифорнии и Техаса — не производил средств индивидуальной защиты (СИЗ). Но производители, работающие с некоммерческими организациями и штатом Огайо, активизировались. Более 2000 компаний из Огайо нарастили производство СИЗ в течение нескольких недель, и это всего лишь притча об «оншоринге» или возвращении производства и производства в США из-за границы.
  • Stellantis сокращает 1600 рабочих мест на заводе Jeep в Иллинойсе
    Stellantis NV заявила, что сокращает более 1600 рабочих мест на своем заводе Jeep в Иллинойсе, что является признаком усугубляющейся нехватки стружки, которая привела к простаиванию автомобильных заводов, теперь наносит более серьезный ущерб.
  • США и ЕС обсудят отмену тарифов на сталь
    Европейский Союз и Соединенные Штаты должны начать переговоры по поводу тарифов на сталь, введенных президентом Дональдом Трампом.

Подоконник потерялся и запутался? Перейдите на домашнюю страницу Plant Services.

Тестер сопротивления нейтрали | Высокое напряжение Inc

Ω-Check®

Особенности и преимущества

Тестер сопротивления концентрической нейтрали Ω-Check® (модель OCK-30, ) — это уникальный и полезный .Он пропускает переменный ток через нейтраль под напряжением и измеряет падение напряжения для расчета сопротивления этой нейтрали. Основываясь на предыдущих данных тестируемого кабеля, машина сравнивает измеренные данные с данными идеального кабеля, чтобы определить уровень износа нейтрали или количество разомкнутых концентрических нейтральных жил.

Насколько хороша нейтраль от начала до конца?

Концентрическая нейтраль состоит из множества жил круглого или плоского провода, спирально намотанного вокруг изоляции кабеля и обычно заземленных с обоих концов.Серьезные проблемы могут возникнуть, если нейтраль подверглась коррозии до такой степени, что она больше не может нести обратные токи и / или токи короткого замыкания. Могут возникнуть другие проблемы, такие как паразитное напряжение и колебания напряжения, а также препятствия для диагностических тестов, таких как VLF-TD и VLF-PD. Прежде чем рассматривать вопрос об омоложении кабеля (инъекции), необходимо оценить нейтральную целостность.

Использование тестера Ω-Check®

  • Проверка целостности нейтралей для проведения обратных токов и токов короткого замыкания
  • Измерить % неповрежденной нейтрали перед вводом кабеля
  • Проверить нейтраль перед испытанием тангенса дельта и частичного разряда
  • Снижение колебаний напряжения и неправильной работы реле
  • Снижение риска поражения электрическим током за счет поиска и замены плохих нейтралей
  • Убедитесь, что непрерывная нейтраль существует до обнаружения неисправности кабеля
  • Измерьте сопротивления заземляющих кабелей подстанции

Модель OCK-30

Ввод: 120 В переменного тока при 15 А, 60 Гц
Выход: 0-48 В RMS, 0-30 A RMS
Меры: В, I, R (Ом)
R (Ом / 100 ’)
% от нейтральной нейтрали
Коэффициент мощности
Экспорт данных: SD-карта на панели
Выходное сопротивление: Две катушки по 500 футов

Другие загрузки

Ω-Check® является зарегистрированным товарным знаком High Voltage, Inc.®

Тест омического сопротивления

Тест омического сопротивления позволяет выявить:

  • Постоянные короткие замыкания внутри обмоток
  • Обрыв цепи
  • Обмотки с неправильным числом витков.
Используемый метод измерения — классический 4-проводной метод Кельвина. Новая модель клеммной коробки гарантирует, что «четыре провода» сохранятся до тех пор, пока не произойдет физический контакт с клеммными проводами статора.

Еще одно важное нововведение заключается в следующем: перед каждым испытанием сопротивления выполняются две очень важные операции для обеспечения высокой эффективности и продолжительности контактов реле, участвующих в измерении:

1. активируется операция «очистки электрических контактов»;

2. Измеряется контактное сопротивление измерительной цепи. В случае ошибки активация реле и соответствующая операция «очистки электрических контактов» повторяются три раза.Если ошибка повторяется, сигнализируется неисправность.

Система тестирования EDC имеет специальную программную процедуру для постоянной проверки эффективности контактов каждого реле. Эти новые функции значительно сокращают проблемы, связанные с износом реле и «случайными ложными контактами», вызванными микрочастицами пыли, оседающими на контактах.

При изменении температуры на каждые 10 ° C сопротивление обмотки изменяется примерно на 10 ° C. 4%. Поэтому очень важно, чтобы измерение омического сопротивления регулировалось в зависимости от начальной температуры обмотки; Другими словами, измеренное значение автоматически регулируется для получения значения сопротивления, которое обмотка будет иметь при эталонной температуре (обычно 20 ° C или 25 ° C).

Для регулировки температуры доступны три варианта:

1. Активируйте значение температуры тестируемого статора с клавиатуры.

2. Датчик температуры расположен в задней части стойки и определяет температуру в помещении. Измерение омического сопротивления регулируется исходя из предположения, что температура статора совпадает с комнатной температурой.

3. Инфракрасный датчик температуры бесконтактно определяет реальную температуру статора.

  1. Можно установить значение эталонной температуры, обычно 20 ° C или 25 ° C, а также материал провода (медь или алюминий).

Основы поддержки и сопротивления

Понятия поддержки и сопротивления торгового уровня, несомненно, являются двумя наиболее обсуждаемыми атрибутами технического анализа. Часть анализа графических моделей, эти термины используются трейдерами для обозначения ценовых уровней на графиках, которые, как правило, действуют как барьеры, предотвращая толчок цены актива в определенном направлении.

Сначала объяснение и идея, лежащие в основе определения этих уровней, кажутся простыми, но, как вы узнаете, поддержка и сопротивление могут иметь различные формы, и эту концепцию сложнее освоить, чем кажется на первый взгляд.

Ключевые выводы

  • Технические аналитики используют уровни поддержки и сопротивления для определения ценовых точек на графике, где вероятности указывают на паузу или разворот преобладающего тренда.
  • Поддержка возникает там, где ожидается приостановка нисходящего тренда из-за концентрации спроса.
  • Сопротивление возникает там, где ожидается, что восходящий тренд временно приостановится из-за концентрации предложения.
  • Психология рынка играет важную роль, поскольку трейдеры и инвесторы помнят прошлое и реагируют на меняющиеся условия, чтобы предвидеть будущее движение рынка.
  • Области поддержки и сопротивления можно определить на графиках с помощью линий тренда и скользящих средних.
Торговля с поддержкой и сопротивлением

Определены уровни поддержки и сопротивления

Поддержка — это уровень цен, на котором можно ожидать приостановки нисходящего тренда из-за концентрации спроса или покупательского интереса. Когда цена активов или ценных бумаг падает, спрос на акции увеличивается, образуя линию поддержки. Между тем зоны сопротивления возникают из-за интереса продавцов при повышении цен.

После определения области или «зоны» поддержки или сопротивления эти ценовые уровни могут служить потенциальными точками входа или выхода, потому что, когда цена достигает точки поддержки или сопротивления, она будет делать одно из двух — отскакивать назад. от уровня поддержки или сопротивления, либо нарушить уровень цены и продолжить движение в его направлении — до тех пор, пока не достигнет следующего уровня поддержки или сопротивления.

Выбор времени для некоторых сделок основан на убеждении, что зоны поддержки и сопротивления не будут пробиты.Независимо от того, останавливается ли цена уровнем поддержки или сопротивления, или она прорывается, трейдеры могут «делать ставки» на направление и могут быстро определить, верны ли они. Если цена пойдет не в том направлении, позиция может быть закрыта с небольшим убытком. Однако, если цена движется в правильном направлении, движение может быть значительным.

Основы

Большинство опытных трейдеров могут поделиться историями о том, как определенные уровни цен не позволяют трейдерам подтолкнуть цену базового актива в определенном направлении.Например, предположим, что Джим держал позицию в акции с марта по ноябрь и ожидал, что стоимость акций вырастет.

Представим, что Джим замечает, что цена не может подняться выше 39 долларов несколько раз в течение нескольких месяцев, хотя она очень близко подошла к тому, чтобы подняться выше этого уровня. В этом случае трейдеры назвали бы ценовой уровень около 39 долларов уровнем сопротивления. Как видно из диаграммы ниже, уровни сопротивления также считаются потолком, потому что эти ценовые уровни представляют собой области, в которых заканчивается ралли.

Изображение Сабрины Цзян © Investopedia 2020

Уровни поддержки — это другая сторона медали. Под поддержкой понимаются цены на графике, которые, как правило, действуют как нижняя граница, предотвращая снижение цены актива. Как вы можете видеть из диаграммы ниже, способность определить уровень поддержки может также совпадать с возможностью покупки, потому что это, как правило, область, в которой участники рынка видят ценность и снова начинают подталкивать цены вверх.

Изображение Сабрины Цзян © Investopedia 2020

Линии тренда

Приведенные выше примеры показывают, что постоянный уровень не позволяет цене актива двигаться выше или ниже.Этот статический барьер является одной из самых популярных форм поддержки / сопротивления, но цена финансовых активов обычно имеет тенденцию вверх или вниз, поэтому нередко можно увидеть, как эти ценовые барьеры меняются с течением времени. Вот почему концепции тренда и линий тренда важны при изучении поддержки и сопротивления.

Когда рынок движется вверх, уровни сопротивления формируются, когда цена замедляется и начинает возвращаться к линии тренда. Это происходит в результате фиксации прибыли или краткосрочной неопределенности по конкретному выпуску или сектору.В результате ценовое действие подвергается эффекту «плато» или небольшому падению цены акций, создавая краткосрочную вершину.

Многие трейдеры будут уделять пристальное внимание цене ценной бумаги, поскольку она падает в сторону более широкой поддержки линии тренда, потому что исторически это была область, которая не позволяла цене актива существенно снизиться. Например, как вы можете видеть из диаграммы Newmont Mining Corp (NEM) ниже, линия тренда может обеспечить поддержку актива в течение нескольких лет.В этом случае обратите внимание, как линия тренда поддерживала цену акций Newmont в течение длительного периода времени.

Изображение Сабрины Цзян © Investopedia 2020

С другой стороны, когда рынок имеет тенденцию к снижению, трейдеры будут следить за серией падающих пиков и будут пытаться соединить эти пики вместе с линией тренда. Когда цена приближается к линии тренда, большинство трейдеров будут следить за тем, чтобы актив столкнулся с давлением продавцов, и могут рассмотреть возможность открытия короткой позиции, потому что это область, которая в прошлом толкала цену вниз.

Поддержка / сопротивление идентифицированного уровня, обнаруженного с помощью линии тренда или любым другим методом, считается тем сильнее, чем больше раз цена исторически не могла выйти за его пределы. Многие технические трейдеры будут использовать свои идентифицированные уровни поддержки и сопротивления для выбора стратегических точек входа / выхода, потому что эти области часто представляют цены, которые имеют наибольшее влияние на направление актива. Большинство трейдеров на этих уровнях уверены в базовой стоимости актива, поэтому объем обычно увеличивается больше, чем обычно, что значительно затрудняет трейдерам дальнейшее повышение или снижение цены.

В отличие от рациональных экономических субъектов, изображаемых финансовыми моделями, настоящие люди-трейдеры и инвесторы эмоциональны, допускают когнитивные ошибки и прибегают к эвристике или упрощенным методам. Если бы люди были рациональны, уровни поддержки и сопротивления не работали бы на практике!

Круглые числа

Другой распространенной характеристикой поддержки / сопротивления является то, что цене актива может быть трудно выйти за пределы круглого числа, такого как 50 или 100 долларов за акцию.Большинство неопытных трейдеров склонны покупать или продавать активы, когда цена равна целому числу, потому что они с большей вероятностью считают, что на таких уровнях акция оценивается справедливо. Большинство целевых цен или стоп-приказов, устанавливаемых розничными инвесторами или крупными инвестиционными банками, размещаются на круглых уровнях цен, а не на таких ценах, как 50,06 доллара США. Поскольку так много заказов размещается на одном уровне, эти круглые числа, как правило, действуют как сильные ценовые барьеры. Если все клиенты инвестиционного банка разместят заказы на продажу по предлагаемой цели, например, в 55 долларов, потребуется огромное количество покупок, чтобы поглотить эти продажи, и, следовательно, возникнет уровень сопротивления.

Скользящие средние

Большинство технических трейдеров используют возможности различных технических индикаторов, таких как скользящие средние, для помощи в прогнозировании будущего краткосрочного импульса, но эти трейдеры никогда полностью не осознают способность этих инструментов определять уровни поддержки и сопротивления. Как видно из диаграммы ниже, скользящая средняя — это постоянно меняющаяся линия, которая сглаживает прошлые ценовые данные, а также позволяет трейдеру определять поддержку и сопротивление.Обратите внимание, как цена актива находит поддержку на скользящей средней, когда тренд идет вверх, и как он действует как сопротивление, когда тренд нисходящий.

Изображение Сабрины Цзян © Investopedia 2020

Трейдеры могут использовать скользящие средние по-разному, например, для прогнозирования движений вверх, когда линии цены пересекают ключевую скользящую среднюю, или для выхода из сделок, когда цена опускается ниже скользящей средней. Независимо от того, как используется скользящая средняя, ​​она часто создает «автоматические» уровни поддержки и сопротивления.Большинство трейдеров будут экспериментировать с разными временными периодами в своих скользящих средних, чтобы найти тот, который лучше всего подходит для этой конкретной задачи.

Прочие показатели

В техническом анализе было разработано множество индикаторов для выявления препятствий на пути будущих ценовых действий. Сначала эти индикаторы кажутся сложными, и для их эффективного использования часто требуются практика и опыт. Однако, независимо от сложности индикатора, интерпретация выявленного барьера должна соответствовать тем, которые достигаются с помощью более простых методов.

1,62

«Золотое сечение», используемое в последовательности Фибоначчи, а также неоднократно наблюдаемое в природе и социальной структуре.

Взаимодействие с другими людьми

Например, инструмент коррекции Фибоначчи является фаворитом среди многих краткосрочных трейдеров, поскольку он четко определяет уровни потенциальной поддержки / сопротивления. Обоснование того, как этот индикатор рассчитывает различные уровни поддержки и сопротивления, выходит за рамки этой статьи, но обратите внимание на рис. 5, как выявленные уровни (пунктирные линии) являются барьерами для краткосрочного направления цены.

Изображение Сабрины Цзян © Investopedia 2020

Измерение значимости зон

Помните, как мы использовали термины «пол» для обозначения поддержки и «потолок» для обозначения сопротивления? Продолжая аналогию с домом, безопасность можно рассматривать как резиновый мяч, который отскакивает в комнате, ударяется об пол (опора), а затем отскакивает от потолка (сопротивление). Шар, который продолжает отскакивать между полом и потолком, похож на торговый инструмент, который переживает консолидацию цен между зонами поддержки и сопротивления.

Теперь представьте, что мяч в полете превращается в шар для боулинга. Эта дополнительная сила, если приложить ее на пути вверх, протолкнет мяч через уровень сопротивления; при спуске он будет проталкивать мяч через уровень опоры. В любом случае, для прорыва поддержки или сопротивления требуется дополнительная сила или энтузиазм со стороны быков или медведей.

Предыдущий уровень поддержки иногда становится уровнем сопротивления, когда цена пытается вернуться вверх, и, наоборот, уровень сопротивления становится уровнем поддержки, когда цена временно падает.

Графики цен позволяют трейдерам и инвесторам визуально определять области поддержки и сопротивления и дают представление о значимости этих ценовых уровней. В частности, они смотрят на:

Количество касаний

Чем чаще цена тестирует область поддержки или сопротивления, тем значительнее становится уровень. Когда цены продолжают отскакивать от уровня поддержки или сопротивления, больше покупателей и продавцов замечают это и принимают торговые решения на основе этих уровней.

Предыдущее изменение цены

Зоны поддержки и сопротивления могут быть более значительными, когда им предшествуют крутые подъемы или падения. Например, быстрое, крутое продвижение или восходящий тренд будет встречено с большей конкуренцией и энтузиазмом и может быть остановлено более значительным уровнем сопротивления, чем медленное, устойчивое продвижение. Медленное продвижение может не привлекать столько внимания. Это хороший пример того, как рыночная психология управляет техническими индикаторами.

Объем при определенных ценовых уровнях

Чем больше покупок и продаж произошло на определенном уровне цен, тем сильнее будет уровень поддержки или сопротивления.Это потому, что трейдеры и инвесторы помнят эти уровни цен и склонны использовать их снова. Когда наблюдается сильная активность на большом объеме и цена падает, вероятно, произойдет много продаж, когда цена вернется к этому уровню, поскольку людям гораздо удобнее закрывать сделку в точке безубыточности, а не с убытком.

Время

Зоны поддержки и сопротивления становятся более значимыми, если уровни тестировались регулярно в течение длительного периода времени.

Итог

Уровни поддержки и сопротивления являются одной из ключевых концепций, используемых техническими аналитиками, и составляют основу широкого спектра инструментов технического анализа. Основы поддержки и сопротивления состоят из уровня поддержки, который можно рассматривать как основание торговых цен, и уровня сопротивления, который можно рассматривать как потолок. Цены падают и тестируют уровень поддержки, который либо «удерживается», либо цена отскакивает обратно вверх, либо уровень поддержки будет нарушен, и цена упадет через поддержку и, вероятно, продолжит снижение до следующего уровня поддержки.

Определение будущих уровней поддержки может значительно улучшить доходность краткосрочной инвестиционной стратегии, поскольку дает трейдерам точную картину того, какие ценовые уровни должны поддерживать цену данной ценной бумаги в случае коррекции. И наоборот, предвидение уровня сопротивления может быть выгодным, потому что это уровень цен, который потенциально может повредить длинной позиции, обозначая область, где инвесторы имеют высокую готовность продать ценную бумагу. Как упоминалось выше, существует несколько различных методов, которые можно выбрать при поиске поддержки / сопротивления, но независимо от метода интерпретация остается той же — она ​​предотвращает движение цены базового актива в определенном направлении.

Хотя определить уровни поддержки и сопротивления на графике относительно просто, некоторые инвесторы полностью игнорируют их, потому что уровни основаны на прошлых ценовых движениях и не дают реальной информации о том, что произойдет в будущем.

.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *