Разное

Подключение светодиода через резистор: Расчет резистора для светодиода, калькулятор расчёта сопротивления

Подключение светодиода через резистор: Расчет резистора для светодиода, калькулятор расчёта сопротивления

Содержание

Расчет резистора для светодиода, калькулятор расчёта сопротивления

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.



Содержание

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно. Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели  SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.

Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм. В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Китайские светодиодные лампы кукурузы

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.

Автомобильные лампы на самых слабых лед 0,1W

Чтобы сэкономить денежку, мои  светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло.  Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх — ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (Uвх — ULED)2 / R

где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт
43 7.2 2.5 5 1.1
24 13 4.5 9 2
22 14 5 10 2.2
12 26 9 18 4
10 31 11 22 4.8
7.5 41 15 29 6.5
4.3 72 25 51 11.3
2.2 141 50 100 22

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILEDdt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх — U2LED)) [Ф],

где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх — U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C1 15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF
ILED 1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).

Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) (видео)

 Светодиоды — это современные, экономичные, надежные радиоэлементы, применяемые для световой индикации. Мы думаем об этом знает каждый и все! Именно исходя из этого опыта, столь высоко желание применить именно светодиоды, для конструирования самых различных электрических схем, как в бытовой электронике, так и для автомобиля. Но здесь возникают определенный трудности. Ведь самые распространенные светодиоды имеют напряжение питания 3…3,3 вольта, а бортовое напряжение автомобиля в номинале 12 вольт, при этом порой поднимается и до 14 вольт. Само собой здесь всплывает закономерное умозаключение, что для подключения светодиодов к 12 вольтовой сети машины, необходимо будет понизить напряжение. Именно этой теме, подключению светодиода к бортовой сети автомобиля и понижению напряжения, будет посвящена статья.

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

 Прежде, чем перейти к конкретным схемам и их описаниям, хотелось бы сказать о двух принципиально разных, но возможных вариантах подключения светодиода к 12 вольтовой сети.

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю — светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения. А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод. Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы. В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло. Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

 Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле.  14,5-3,3= 11,2 вольта. То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод.  Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается. R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле  P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.
 Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

 Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети.  К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV. Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

 Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт. Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.
Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор. Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен. По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно. Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные — завышенные.
 О применение аналогичных микросхем мы уже рассказывали в статье «Зарядное устройство на 5 вольт в машине». Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

 Подводя итог о подключении светодиода к 12 вольтовой сети можно сказать о простоте выполнения схемотехники. Как со случаем где применяется резистор, так и с микросхемой – стабилизатором. Все это легко и просто. По крайней мере, это самое простое, что может вам встретиться в электронике. Так что осилить подключение светодиода к бортовой сети машины в 12 вольт  должен каждый и наверняка. Если уж и это не «по зубам», то за более сложное и вовсе браться не следует.

Видео по подключению светодиода к сети в автомобиле

… а теперь чтобы вам было легче прикинуть какой номинал сопротивления нужен и какой мощностью для вашего конкретного случая, можете воспользоваться калькулятором подбора резистора

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте.

В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:

ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.

Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Расчет резистора для светодиодов: примеры, онлайн калькулятор

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор.  Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

http://cxem.net/calc/ledcalc.php

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

http://ru.e-neon.ru/prog/ledz.rar

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Как подключить диоды в автомобиле?

Инструкция о том, как правильно подобрать сопротивление в цепи, чтобы диоды не перегорали Просмотров: 21851

Очень часто мы видим на дорогах автомобили с полусгоревшими ангельскими глазками или ДХО, часть диодов на которых не светится, а другая часть неприятно моргает. Наверняка эти водители очень расстроены «качеством» диодов и лично для себя поставили точку в их использовании. Но если бы они знали – как мало нужно было сделать чтобы светодиоды не перегорали и не моргали. А именно, нужно было провести элементарный расчёт тока в сети и подключить всё правильным образом.

Расчет и подключение светодиодов.

Светодиод — это полупроводниковый прибор. Поэтому, при его включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод («минус»), а другой — анод («плюс»). Светодиод будет «гореть» только при прямом включении. При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.

Рассмотрим схему подключения одного светодиода и формулу расчета резистора (резистор может быть припаян к любому из контактов):

где Uпит – напряжение источника питания, Uпр – прямое максимальное напряжение светодиода, Iпр – прямой максимальный ток.

Для примера, рассмотрим каталог светодиодов:

Возьмем произвольный светодиод. Напряжение питания 13,6 В (Так как при работе автомобиля за счёт генератора напряжение немного выше стандартных 12 В ). Рассмотрим параметры обычного среднего светодиода. Прямой ток 5мА (0,005А). Максимальное прямое напряжение — 2,8 В. Подставим данные в формулу:

Однако нельзя забывать, что производители резисторов изготавливают их с определёнными номиналами, так что ровно на 2160 Ом возможно не удастся найти, но ближайший к этому значению будет 2200 Ом. Кроме расчета сопротивления нужно вычислить рассеиваемую на нем мощность по формуле:

Исходя из этого, при подключении светодиода АЛ102АМ к источнику питания с напряжением 13,6 В. нам потребуется резистор с сопротивлением 2,2 кОм на 0,125 Вт.

Теперь рассмотрим последовательное соединение нескольких светодиодов по формуле, которая имеет следующий вид:

где N –число подключенных светодиодов. Чтобы схема работала, необходимо соблюдение условия Uист > N•Uпр . Вследствие этого неравенства можно определить максимальное количество светодиодов при последовательном подключении:

Пример 1

Вновь используем светодиод c Uпр = 2,8 В. Вычислим максимальное количество светодиодов, которое можно последовательно подключить в цепь с источником питания 13,6 В. Воспользуемся формулой Nmax = INT(Uист/Uпр) = INT(13,6 / 2,8) = INT(4,85) = 4. В итоге получаем целое число 4 и остаток 0,85, который отбрасываем. Теперь рассчитаем резистор при максимальном количестве светодиодов. Используем формулу:

Процесс расчета резистора при параллельном подключении светодиодов ничем не отличается от первой схемы! Та же самая школьная физика

Но справедливости ради стоит отметить, что правильное сопротивление это ещё пол беды. Есть вторая проблема – микроперепады напряжения в сети. Если машина уже имеет небольшой износ, то есть вероятность, что штатный стабилизатор напряжения допускает небольшие перепады, которые могут с лёгкостью «погубить» вашу подсветку. В этом случае рекомендуем воспользоваться стабилизатором напряжения. Более подробную информацию о нём можно почитать здесь.

Полный каталог светодиодов с техническими характеристиками(сила тока, напряжение и т.д.) можно посмотреть здесь

Пример 2

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода

Uгасящее = Uпитания – Uсветодиода

Uпитания = 5 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

Пример 3

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов.

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uгасящее = Uпитания – N * Uсветодиода

Uпитания = 15 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 4

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.


R = Uгасящее/Iсветодиода

Uгасящее = Uпитания – N * Uсветодиода

Uпитания= 7 В

Uсветодиода = 3 В

Iсветодиода = 20 мА = 0.02 А

R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 5

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:

1-ый красный напряжение 3 Вольта 20 мА

2-ой зеленый напряжение 2.5 Вольта 20 мА

3-ий синий напряжение 3 Вольта 50 мА

4-ый белый напряжение 2.7 Вольта 50 мА

5-ый желтый напряжение 3.5 Вольта 30 мА

Разделяем светодиоды по группам по току

1) 1-ый и 2-ой

2) 3-ий и 4-ый

3) 5-ый


рассчитываем для каждой ветви резисторы:

R = Uгасящее/Iсветодиода

Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)

Uпитания = 7 В

Uсветодиода1 = 3 В

Uсветодиода2 = 2.5 В

Iсветодиода = 20 мА = 0.02 А

R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

Аналогично

R2 = 26 Ом

R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

Важно! Если в расчёте получилось сопротивление с дробным значением, для котрого нет подходящего резистора — возьмите резистор с запасом (сопротивлением чуть больше)!

Как работают светодиоды и их виды, полярность и расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.
    Dip светодиоды

     

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.
    Smd

     

  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  
    Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. 
    Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.
    Filament

     

  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. 
    Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Почему резистор должен быть на аноде светодиода?

Посмотрите еще раз на книгу Forrest Mims III . Он не утверждает, что резисторы должны быть на аноде, и есть примеры, когда они находятся на катоде. В моей книге 1988 года серийная защита светодиодов представлена ​​на стр. 69:

.

ЦЕПЬ ПРИВОДА СИД

— Поскольку светодиоды зависят от тока, обычно необходимо защитить их от чрезмерного тока с помощью последовательного резистора. Некоторые светодиоды имеют встроенный резистор. Большинство не .

Затем дается формула о том, как рассчитать сопротивление по напряжению питания и прямому току светодиода. На прилагаемой схеме резистор установлен на аноде, но не объясняется, что выбор произвольный.

Однако на той же странице представлено устройство «индикатор полярности светодиодов», в котором два последовательно соединенных светодиода совместно используют резистор, который обязательно находится на аноде одного и катоде другого. В «трехпозиционном индикаторе полярности» ограничительный резистор находится на стороне питания, а не на стороне земли.

Обычно в некотором смысле лучше (если есть выбор), чтобы важное устройство было подключено к земле, а окружающие аксессуары, такие как резисторы смещения, были на стороне питания.

В цепях высокого напряжения выбор между нагрузкой со стороны питания или со стороны земли имеет значение с точки зрения безопасности. Например, следует ли поместить выключатель света на горячую сторону лампы или на нейтраль? Если вы подключаете выключатель так, что свет выключается путем прерывания возврата нейтрали, это означает, что патрон лампочки постоянно подключен к горячему! Это означает, что если кто-то выключит выключатель перед заменой лампы, на самом деле это не безопаснее; главная панель должна использоваться для фактического разрыва горячего соединения с розеткой.В цепи батареи нет защитного заземления: минусовая клемма произвольно обозначена как общий возврат, а слово «земля» используется для этого общего.

Является ли устройство нагрузки стороной заземления или стороной питания, также имеет значение, если напряжение от устройства передается в какую-либо другую цепь, где оно используется для какой-либо цели. Светодиод 1,2 В, анод которого подключен к 5 В, будет обеспечивать показание 3,8 В с катода, если течет ток. Если вместо этого катод заземлен, то анод будет обеспечивать 1.2В чтение. Таким образом, размещение резистора не имеет значения, только если такой ситуации не существует в схеме: нет третьего соединения с переходом между резистором и светодиодом, которое оказывает влияние на какую-либо другую схему.

Закон

Ом — Зачем нужны резисторы в светодиоде

Светодиод — это диод, сделанный из полупроводникового материала, который генерирует фотоны света, когда через материал протекает ток. Чем больше ток через светодиод, тем больше света будет излучать светодиод, тем он будет ярче.Однако существует верхний предел — величина тока, достаточная для повреждения светодиода.

Светодиод оказывает небольшое сопротивление протекающему через него току. Большая часть небольшого сопротивления, которое он предлагает, происходит из-за потери энергии из-за излучаемого света, а генерация фотонов настолько эффективна, что сопротивление довольно незначительно. Однако по мере увеличения тока, увеличения количества света, светодиод в какой-то момент выйдет из строя, потому что количество тока, проходящего через светодиод, вызывает повреждение материала.При достаточно большом токе катастрофическое испарение материала может привести к небольшому взрыву внутри внешней оболочки светодиода. При более низких уровнях тока в цифровых схемах 3,3 В или 5 В наиболее вероятным результатом является отказ полупроводникового материала и прекращение проводимости, а светодиод больше не светится.

Как напряжение цепи влияет на потребление тока светодиодами? Поскольку светодиод — это тип диода, уравнение диода Шокли описывает ток, который диод допускает при различных уровнях напряжения.Уравнение показывает, что результаты функции Шокли для заданного диапазона напряжений следует экспоненциальной кривой. Это означает, что небольшие изменения напряжения могут привести к большим изменениям тока. Таким образом, использование светодиода в простой цепи, напряжение которой выше, чем прямое напряжение светодиода, может привести к тому, что светодиод будет потреблять на удивление больше тока, чем рекомендуемые уровни, что приведет к отказу светодиода.

См. Тему в Википедии «Схема светодиода», а также в Википедии о уравнении диода Шокли.

Итак, идея состоит в том, чтобы спроектировать схему светодиода так, чтобы ограничить количество тока, протекающего через светодиод.Мы хотим сбалансировать наличие достаточного тока, чтобы обеспечить желаемый уровень яркости, не имея такого большого значения, чтобы светодиодный материал выходил из строя. Самый распространенный метод ограничения тока — это добавление в схему резистора.

Светодиод должен иметь технический паспорт, в котором описаны электрические характеристики светодиода и допуски. Например, см. Этот технический паспорт Номер модели: YSL-R531R3D-D2.

Первые характеристики, которые нас интересуют, это (1) максимальный ток, который светодиод может выдержать до того, как возможен отказ материала, приводящий к отказу светодиода, и (2) каков рекомендуемый диапазон тока.Эти и другие максимальные значения для типичного стандартного красного светодиода (разные светодиоды будут иметь разные значения) приведены в таблице, дублированной ниже.

В таблице технических данных для этого стандартного красного светодиода мы видим, что максимальный ток составляет 20 мА, а рекомендуемый диапазон — от 16 мА до 18 мА. Этот рекомендуемый диапазон — это ток, при котором светодиоды должны быть максимально яркими, без риска повреждения материала. Мы также видим, что номинальная рассеиваемая мощность составляет 105 мВт. Мы хотим быть уверены в том, что при проектировании нашей схемы светодиодов мы придерживаемся этих рекомендуемых диапазонов.

В следующей таблице мы находим значение прямого напряжения для светодиода 2,2 В. Значение прямого напряжения — это падение напряжения при протекании тока через светодиод в прямом направлении от анода к катоду. См. Что такое «прямое» и «обратное» напряжение при работе с диодами ?.

Если бы мы использовали этот светодиод в цепи с напряжением 2,2 В и током 20 мА, тогда светодиод будет рассеивать 44 мВт, что находится в пределах нашей зоны безопасности по рассеянию мощности. Если ток изменится с 20 мА до 100 мА, рассеиваемая мощность будет в 5 раз больше или 220 мВт, что намного выше номинальной рассеиваемой мощности 105 мВт для светодиода, поэтому можно ожидать, что светодиод выйдет из строя.Посмотрите, что происходит с моим светодиодом, когда я подаю слишком большой ток ?.

Чтобы снизить ток через светодиод до рекомендуемых уровней, мы введем в схему резистор. Какой номинал резистора мы должны использовать?

Мы рассчитываем номинал резистора, используя закон Ома, В = I x R . Однако мы сделаем алгебраическое преобразование, потому что мы хотим найти сопротивление, а не напряжение, поэтому вместо этого мы используем формулу R = V / I .

Значение I, тока в амперах, довольно очевидно, давайте просто используем рекомендуемый минимум 16 мА или.016A из таблицы данных светодиода в преобразованной формуле. Но какое значение мы должны использовать для вольт, В?

Нам нужно использовать падение напряжения на резисторе, которое является вкладом резистора в общее падение напряжения во всей цепи. Таким образом, нам нужно будет вычесть вклад падения напряжения светодиода из общего напряжения цепи, чтобы определить вклад падения напряжения, необходимый для резистора. Падение напряжения светодиода — это значение прямого напряжения, падение напряжения в прямом направлении от анода к катоду, из таблицы выше.

Для стандартного проекта Raspberry Pi, использующего шину 3,3 В в качестве источника питания, расчет будет (3,3–2,2 В) / 0,016 А = 69 Ом (округление до 68,75 в большую сторону)

Итак, почему обычно используется сопротивление резистора, например 200 Ом, если в расчетах указано 69 Ом?

Простой ответ заключается в том, что резистор на 200 Ом — это обычный резистор, включенный во многие экспериментальные наборы. Мы хотим использовать общий резистор, если свет, излучаемый светодиодом, не будет заметно уменьшаться.

Итак, если мы заменим резистор 69 Ом на резистор 200 Ом, как изменится ток? Опять же, на этот раз мы используем закон Ома для определения тока в цепи, I = V / R или 3,3 В / 200 Ом = 0,0165 A , и когда мы смотрим на лист данных светодиода, мы видим, что это значение находится в рекомендуемый диапазон от 16 мА до 18 мА, поэтому светодиод должен быть достаточно ярким.

Действительно ли мне нужны резисторы при управлении светодиодами с помощью Arduino?

40 участок,

Я должен сказать, что управление светодиодом без резистора НЕ РЕКОМЕНДУЕТСЯ, если вы не знаете, что делаете.Однако, если вы понимаете, как ведет себя светодиод, вы можете безопасно управлять им без резистора. На самом деле, часто лучше управлять светодиодом без токоограничивающего резистора.

Зачем управлять светодиодом без резистора? Просто, чтобы сделать вашу схему более энергоэффективной.

Следует ли управлять светодиодом с ШИМ, установленным на постоянный рабочий цикл (т.е. 5 В ШИМ при рабочем цикле 34% для достижения среднего напряжения 1,7 В)?

Да и нет. Использование ШИМ может работать так же хорошо, как и приложение определенного напряжения (если вы будете осторожны), но есть способы получше.О чем следует беспокоиться при использовании подхода ШИМ.

  1. Важна частота ШИМ. При использовании ШИМ в этом сценарии вы полагаетесь на способность компонентов вашей схемы временно обрабатывать большие токи. Больше всего вас беспокоит то, как светодиод справляется с временным высоким током и как выходная цепь вашего чипа может справиться с временным высоким током. Если эта информация не указана в даташите, значит, авторы даташита были ленивы. НО!!! Если эта информация указана в таблице данных, вы можете безопасно воспользоваться ею.Например, светодиод, который у меня рядом, имеет максимальный ток 40 мА. Тем не менее, он также имеет рейтинг «пикового прямого тока» 200 мА с примечанием, что ток не может оставаться на уровне 200 мА дольше 10 мкс. Таааааааааааааааааааааач … Я могу управлять светодиодом с напряжением 1,7В (типичное прямое напряжение для светодиодов из таблицы) При рабочем цикле 34% и источнике питания 5 В (34% от 5 В = 1,7 В) среднее напряжение составляет 1,7 В, мне просто нужно убедиться, что время включения ШИМ составляет 10 мкс или меньше. Во время работы ток через светодиод, вероятно, вырастет примерно до 58 мА (58 мА = типичное потребление тока при 1.7В моего диода делят на 34%). 58 мА превышают максимальный постоянный ток моих светодиодов 40 мА на 18 мА. Наконец … мне понадобится частота ШИМ 33,3 кГц или выше, чтобы безопасно управлять моим светодиодом (33,3 кГц = обратная величина [10 мкс времени включения, деленная на 34%, чтобы получить период ШИМ]). В РЕАЛЬНОСТИ я мог безопасно использовать ШИМ для питания моего светодиода с более медленной частотой ШИМ. Причина в следующем: в таблицах данных обычно не указываются все допустимые сценарии работы компонента. Они не описывают эти сценарии, потому что поставщик не хочет тратить время на определение и поддержку использования своего компонента для угловых вариантов использования.Например, с моим светодиодом, если я могу постоянно работать со светодиодом при 40 мА (40 мА — это максимальный номинальный постоянный ток), и я могу работать со светодиодом при 200 мА в течение 10 мкс. Тогда я могу быть на 99,99999% уверен, что могу безопасно управлять светодиодом при 100 мА в течение некоторого периода, превышающего 10 мкс, вероятно, близкого к 20 мкс.

ПРИМЕЧАНИЕ. Все компоненты могут безопасно справляться с временными всплесками тока, превышающими их максимальные значения, при условии, что продолжительность всплесков тока составляет МАЛЫЙ ДОСТАТОЧНО . Некоторые компоненты будут более снисходительными, чем другие, и, если вам повезет, в таблице данных компонента будет указано, насколько хорошо он может справляться с пиками тока.

  1. Напряжение вашего ШИМ важно. Я продемонстрирую свою точку зрения на примере, а не через объяснение. Если мы используем светодиод, о котором я говорил ранее, мы знаем, что рабочий цикл 34% при 33,3 кГц и 5 В является безопасным. Однако, если бы наше напряжение составляло 12 В, нам пришлось бы переработать наши расчеты, чтобы сохранить то же количество тока, протекающего через светодиод. Наш рабочий цикл должен упасть до 14,167% (1,7 В, разделенные на 12 В), а минимальная частота ШИМ снизится до 14,285 кГц (обратное значение [10 мкс, разделенное на 14.167%]). ОДНАКО! , это повод для беспокойства. В сценарии 5 В мы применяем 5 В для 10 мкс, а в сценарии 12 В мы применяем 12 В для 10 мкс. Мы увеличили напряжение более чем вдвое за эти 10 мксек, должны быть некоторые последствия. И да, есть! В моем техническом описании светодиодов нет данных, необходимых для того, чтобы знать, какое напряжение я могу использовать в течение 10 мкс, прежде чем я поврежу свой светодиод. Наверняка 1000V на 10us поджарит мой светодиод. Но как мне узнать, поджарит ли мой светодиод 5 В при 10 мкс? или 12 В на 10 мкс? Если для него нет спецификации, вы рискуете.Итак … 5 В на 10 мкс — это рискованно, но, скорее всего, безопасно.

ПРИМЕЧАНИЕ. Вы можете добавить в схему конденсатор, чтобы усреднить ШИМ и устранить эту проблему.

  1. Вы должны знать возможности выходного контакта, к которому вы также подключили свой светодиод. Самым важным параметром будет максимальный выходной ток. Я считаю, что для Arduino Uno это 40 мА. Вам следует выбрать рабочий цикл ШИМ, при котором среднее напряжение поддерживает ток, проходящий через светодиод, ниже 40 мА.Чтобы узнать, какие напряжения будут производить такой большой ток, вам нужно взглянуть на кривую ВАХ светодиодов (график зависимости тока от напряжения). Для типичного светодиода напряжение от 0,7 В (типичное минимальное напряжение, необходимое для излучения светодиода) до 1,25 В почти наверняка будет безопасным. Почему 1,25 В, вероятно, безопасно? Что ж, большинство светодиодов не превышает 40 мА при 1,25 В даже без токоограничивающего резистора. Еще одна вещь, помогающая защитить кого-то в случае, если они прикладывают слишком большое напряжение, заключается в том, что цифровая выходная цепь Arduino будет иметь собственное выходное сопротивление, это выходное сопротивление будет низким, но даже выходное сопротивление 20 Ом обеспечит значительную количество защиты.Arduino uno имеет сопротивление цифрового выхода около 250 Ом. Короче говоря, если вы управляете светодиодом, используя ШИМ при 1,0 В на высокой частоте, для обычного светодиода нет никаких шансов, что вы повредите свой цифровой выход на Arduino Uno.

  2. ШИМ-подход управляет светодиодом по разомкнутому контуру (как и при использовании источника питания 1,7 В без ШИМ). Вы прикладываете к светодиоду среднее напряжение , которое является правильным значением для включения светодиода, но недостаточно высоким, чтобы повредить светодиод.К сожалению, диапазон напряжения от включенного (и достаточно яркого, чтобы видеть) до поврежденного светодиода очень мал (этот диапазон на моем светодиоде составляет около 0,7 В). Есть несколько причин, по которым 1,7 В, которые вы думаете, что применяете, не всегда будет 1,7 В …

а. Изменения температуры окружающей среды. Что делать, если у вас есть драйвер двигателя, регулятор напряжения и т. Д. В закрытой коробке, в которой также находится светодиод. Эти другие компоненты нередко повышают температуру внутри корпуса с 25 ° C до 50 ° C.Это повышение температуры БУДЕТ изменить поведение вашего светодиода, вашего регулятора напряжения и т. Д. Когда-то безопасное 1,7 В больше не будет 1,7 В, а светодиод, который раньше жарил при 2,5 В, теперь будет гореть при 2,2 В.

г. Изменения в вашем питающем напряжении. Что, если бы вашим источником питания был аккумулятор. По мере разряда батареи напряжение значительно падает. Что, если вы спроектировали свою схему так, чтобы она хорошо работала со слегка использованной батареей 9 В, но затем вы добавили новую батарею на 9 В. Новые свинцово-кислотные батареи на 9 В обычно имеют фактическое напряжение 9 В.5В. В зависимости от схемы, которая обеспечивает 5 В, используемое для ШИМ, эти дополнительные 0,5 В могут повысить ваши 5 В ШИМ до 5,3 В. Что, если бы вы использовали аккумуляторную батарею? У них есть еще больший диапазон напряжений на протяжении всего цикла разряда.

г. Есть и другие сценарии, например, индуцированный ток от EMI (двигатели будут делать это).

Наличие токоограничивающего резистора избавляет вас от многих из этих проблем.

Использование ШИМ для управления светодиодом — не очень хорошее решение. Есть ли лучший способ, при котором не требуется резистор ограничения тока?

Да! Делайте то, что они делают в светодиодных лампах для вашего дома.Управляйте светодиодом с помощью регулятора тока. Настройте регулятор тока на управление током, на который рассчитан ваш светодиод.

При правильном контроллере тока его можно значительно увеличить, и вы можете безопасно управлять светодиодом, не беспокоясь о большинстве проблем, связанных с разомкнутым контуром управления светодиодом.

Оборотная сторона: Вам нужен регулятор тока, и вы увеличили сложность схемы в 10 раз. Но не расстраивайтесь. Вы можете купить микросхемы контроллера тока, микросхемы драйверов светодиодов или сделать свой собственный повышающий преобразователь с управляемым током.Это не так уж и сложно. Выделите немного времени в своем плотном графике и узнайте о повышающих и понижающих преобразователях. Узнайте об импульсных источниках питания. Именно они питают ваш компьютер, и они чрезвычайно энергоэффективны. Затем либо создайте ее с нуля, либо купите недорогую микросхему, которая сделает большую часть работы за вас.

Конечно, как и во всех электронных схемах, вы всегда можете сделать больше вещей, чтобы улучшить вашу схему. Ознакомьтесь с рисунком 3 в следующем PDF-файле, чтобы увидеть, насколько сложной в наши дни может быть даже бытовая светодиодная лампа…

http://www.littelfuse.com/~/media/electronics/design_guides/led_protectors/littelfuse_led_lighting_design_guide.pdf.pdf

Итого:
Вы должны решить для себя, на какой риск вы готовы пойти со своей схемой. Использование 5V PWM для управления вашим светодиодом, вероятно, будет работать нормально (особенно если вы добавите конденсатор для сглаживания прямоугольной волны PWM и максимальной частоты PWM). Не бойтесь выводить свою электронику за пределы их обычных условий эксплуатации, просто будьте в курсе, когда вы это делаете, знайте, на какой риск вы идете.

Наслаждайтесь!

FYI: Я удивлен тем, как много людей сразу же переходят к ответу: «ВЫ ДОЛЖНЫ ИСПОЛЬЗОВАТЬ ОГРАНИЧЕНИЕ ТОКА». Это благие намерения, но слишком безопасный совет.

Орт

Резистор до или после светодиода?

Я только что опубликовал новое видео, где отвечаю на вопрос:

«Резистор идет до или после светодиода?»

Если вы не хотите смотреть видео, я прикрепил скрипт ниже, чтобы вы могли его прочитать:

—————————-
[СЦЕНАРИЙ ВИДЕО]:

Это светодиод.

Если через светодиод проходит слишком большой ток, он перегорает и умирает.

Значит, для защиты всегда нужен резистор.

Но в каком порядке?

Вот в чем дело…

Неважно!

Резистор может быть установлен до или после светодиода, и он все равно будет его защищать.

Вы видите…

: ток, вытекающий из батареи, всегда равен току, который течет обратно в батарею.

Итак, в такой схеме — только с одним путем для протекания тока — ток одинаков во всей цепи.

Ток через резистор такой же, как ток через светодиод.

Теперь вы можете задаться вопросом — а что же тогда управляет током?

Светодиод имеет так называемое «прямое напряжение».

Это падение напряжения на светодиодах при нормальных условиях.

Типичное прямое напряжение составляет 2 В.

В цепи с батареей 9 В, светодиодом и резистором у вас будет 2 В.

Остальное напряжение — 7В — будет на резисторе.

Закон

Ома гласит, что ток равен напряжению, деленному на сопротивление.

Итак, если у вас есть резистор на 1000 Ом, вы получите 7, разделенное на 1000, равное 0,007, что составляет 7 мА.

Поскольку ток в цепи одинаков, вы также получите через светодиод 7 мА — независимо от того, находится ли резистор до или после светодиода.

Важен только размер резистора.

Продолжайте пайку!
Oyvind @ build-electronic-circuits.com

Основы: выбор резисторов для светодиодов

Итак … вы просто хотите зажечь светодиод.Какой резистор использовать?

Может быть, вы знаете ответ, или, может быть, все уже считают, что вы должны знать, как добраться до ответа. В любом случае, это вопрос, который вызывает больше вопросов, прежде чем вы действительно сможете получить ответ: какой тип светодиода вы используете? Какой блок питания? Батарея? Плагин? Часть более крупной схемы? Серии? Параллельно?

Игра со светодиодами должна доставлять удовольствие, и выяснение ответов на эти вопросы на самом деле является частью веселья.Есть простая формула, которую вы используете для выяснения этого — закон Ома. Эта формула: В = I × R , где В, — напряжение, I — ток, а R — сопротивление. Но как узнать, какие числа использовать в этой формуле, чтобы получить правильное значение резистора?

Чтобы получить В в нашей формуле, нам нужно знать две вещи: напряжение нашего источника питания и напряжение наших светодиодов.

Начнем с конкретного примера.Предположим, что мы используем держатель батареек 2 × AA (например, этот из нашего магазина), который обеспечит нас питанием 3 В (с двумя последовательно соединенными элементами AA 1,5 В; мы складываем напряжения), и мы планирую подключить желтый светодиод (как один из этих).

Светодиоды

имеют характеристику, называемую «прямым напряжением», которая часто обозначается в технических данных как Vf. Это прямое напряжение представляет собой величину напряжения, «потерянного» в светодиоде при работе с определенным опорным током, обычно определяемым как около 20 миллиампер (мА), т.е.е., 0,020 ампер (А). Vf зависит в первую очередь от цвета светодиода, но на самом деле немного отличается от светодиода к светодиоду, иногда даже в пределах одного пакета светодиодов. Стандартные красные, оранжевые, желтые и желто-зеленые светодиоды имеют Vf около 1,8 В, в то время как чисто зеленые, синие, белые и УФ-светодиоды имеют Vf около 3,3 В. Таким образом, падение напряжения на нашем желтом светодиоде будет около 1,8 В.

В в нашей формуле находится путем вычитания прямого напряжения светодиода из напряжения источника питания.

3 В (источник питания) — 1.8 В (падение напряжения на светодиодах) = 1,2 В

В этом случае у нас осталось 1,2 В, которые мы подключим к нашей формуле В = I × R .

Следующее, что нам нужно знать, это I , ток, на котором мы хотим управлять светодиодом. Светодиоды имеют максимальный номинальный непрерывный ток (часто обозначается как If или Imax в таблицах данных). Часто это около 25 или 30 мА. На самом деле это означает, что типичное значение тока, к которому нужно стремиться со стандартным светодиодом, составляет от 20 мА до 25 мА, что немного ниже максимального тока.

Вдобавок: Всегда можно дать светодиоду меньше тока . Работа светодиода, близкая к номинальному максимальному току, дает вам максимальную яркость за счет рассеиваемой мощности (тепла) и срока службы батареи (если, конечно, у вас разряжаются батареи). Если вы хотите, чтобы ваши батареи прослужили в десять раз дольше, обычно вы можете просто выбрать ток, который составляет лишь одну десятую номинального максимального тока.

Итак, 25 мА — это «желаемый» ток — то, что мы надеемся получить, когда выбираем резистор, а также I , который мы подключим к нашей формуле В = I × R .

1,2 В = 25 мА × R

или перефразируя:

1,2 В / 25 мА = R

и когда мы решаем это, получаем:

1,2 В / 25 мА = 1,2 В / 0,025 А = 48 Ом

Где «48 Ом» — 48 Ом. (Единицы измерения таковы, что 1 В / 1 А = 1 Ом; один вольт, разделенный на один ампер, равен одному ому. Если вы имеете дело с током в мА, преобразуйте его в А, разделив на 1000.)

Наша версия формулы теперь выглядит так:

(напряжение источника питания — напряжение светодиода) / ток (в амперах) = требуемое значение резистора (в омах)

Получаем сопротивление резистора 48 Ом.И это хорошее значение пускового резистора для использования с желтым светодиодом и источником 3 В.

Давайте на мгновение посмотрим на номиналы резисторов. Резисторы обычно доступны с такими значениями, как 10 Ом, 12 Ом, 15 Ом, 18 Ом, 22 Ом, 27 Ом, 33 Ом, 39 Ом, 47 Ом, 51 Ом, 56 Ом, 68 Ом, 75 Ом и 82 Ом. (и их кратные 510 Ом, 5,1 кОм, 51 кОм и т. д.), и (если вы не укажете более высокую точность при совершении покупок) имеют значение допуска около ± 5%.

Если вы занимаетесь большим количеством проектов в области электроники, у вас, вероятно, будет валяться куча резисторов.Если вы только начинаете, возможно, вам захочется приобрести ассортимент, чтобы было что-нибудь под рукой. Резисторы также рассчитаны на работу с различной мощностью — резисторы, рассчитанные на большую мощность (больше ватт), могут безопасно рассеивать больше тепла, выделяемого внутри резистора. Резисторы на 1/4 ватта, вероятно, являются наиболее распространенными и обычно подходят для простых светодиодных схем, подобных тем, которые мы здесь рассматриваем. (Мы обсуждали рассеяние мощности ранее — обратите внимание на это, когда вы начнете выходить за рамки этих основ.)

Итак, значение резистора, которое мы вычислили выше, было 48 Ом, что не является одним из наших обычных значений. Но это нормально, потому что мы будем использовать резистор с допуском ± 5%, так что в любом случае это значение не обязательно будет точно таким же. На всякий случай мы обычно выбираем следующее более высокое значение, которое у нас есть; 51 Ом в этом примере.

Давайте подключим:
батарейный блок на 3 В, резистор 51 Ом и желтый светодиод.

Это небольшая симпатичная светодиодная схема, но как мы можем сделать это с помощью большего количества светодиодов? Можем ли мы просто добавить еще один резистор и еще один светодиод? Ну да, в точку.Каждому светодиоду потребуется 25 мА, поэтому нам нужно выяснить, какой ток могут отдавать наши батареи.

Помимо : Немного покопавшись, можно найти полезный технический справочник (pdf) по щелочным батареям от Energizer. Оказывается, чем сильнее вы их водите, тем быстрее вы их истощаете. Часть этого очевидна: если вы постоянно потребляете 1000 мА из батареи, вы ожидаете, что батарея прослужит 1/10 того времени, как если бы вы потребляли 100 мА. Но на самом деле есть второй эффект, заключающийся в том, что общая выходная энергия батареи (измеряемая в ватт-часах) уменьшается, когда вы приближаетесь к пределу того, какой ток может выдавать батарея.На практике, с щелочными батареями AA, если вы разрядите их при токе 1000 мА, они прослужат только около 1/20 того времени, как если бы вы разрядили их при 100 мА.

Для нашего одиночного светодиода 25 мА элементы AA прослужат чертовски долго. Если мы запустим четыре светодиода параллельно, потребляя 100 мА, у нас все равно должно получиться довольно приличное время автономной работы. Если ток превышает 500 мА, следует подумать о подключении к розетке. Итак, мы можем добавить несколько наших желтых светодиодов, каждый с собственным резистором 51 Ом, и успешно управлять ими с помощью держателя батареи 2xAA.

Хорошо, а как насчет батареи на 9 В? Давайте остановимся на желтых светодиодах. Если мы хотим отключить один светодиод от батареи 9 В, это означает, что мы должны потреблять колоссальные 7,2 В с нашим резистором, который должен быть 288 Ом (или ближайшее удобное значение: 330 Ом, в моей мастерской). .

9 В (питание) — 1,8 В (желтый светодиод) = 7,2 В

7,2 В / 25 мА = 288 Ом (округлить до 330 Ом)

Использование резистора для падения напряжения любого размера рассеивает эту энергию в виде тепла.Это означает, что мы просто тратим эту энергию на тепло, вместо того, чтобы получать больше света от нашей светодиодной схемы. Итак, можем ли мы использовать несколько светодиодов, соединенных вместе? Да! Давайте соединим четыре светодиода 1,8 В последовательно, в сумме получим 7,2 В. Когда мы вычтем это из напряжения питания 9 В, у нас останется 1,8 В, для чего потребуется только резистор 72 Ом (или ближайшее значение. : 75 Ом).

9 В — (1,8 В × 4) = 9 В — 7,2 В = 1,8 В

1,8 В / 25 мА = 72 Ом (затем округляем до 75 Ом)

Наша обобщенная версия формулы с несколькими последовательно включенными светодиодами:

[Напряжение источника питания — (напряжение светодиода × количество светодиодов)] / ток = номинал резистора

Мы даже можем подключить пару цепочек из четырех светодиодов плюс резистор параллельно, чтобы получить больше света, но чем больше мы добавляем, тем больше мы сокращаем срок службы батареи.

А можно ли сделать пять последовательно с батареей 9 В? Ну, возможно. Значение 1,8 В, которое мы использовали, является всего лишь «типичным практическим правилом». Если вы уверены, что прямое напряжение равно 1,8 В, он будет работать. Но что, если это не совсем так? Если прямое напряжение ниже, вы можете перегрузить их при более высоком токе, что может сократить срок их службы (или полностью убить). Если прямое напряжение выше, светодиоды могут быть тусклыми или даже не гореть. В некоторых случаях вы можете последовательно подключить светодиоды без резистора, как в нашей схеме светодиодного обеденного стола, но в большинстве случаев предпочтительнее и безопаснее использовать резистор.

Давайте сделаем еще один пример, на этот раз с белым светодиодом (вы можете найти его здесь) и батарейным блоком 3xAA (например, этот). Напряжение источника питания составляет 4,5 В, а напряжение светодиода — 3,3 В. Мы по-прежнему стремимся к току 25 мА.

4,5 В — 3,3 В = 1,2 В

1,2 В / 25 мА = 48 Ом (округлить до 51 Ом)

Итак, вот примеры, которые мы рассмотрели, и еще несколько примеров с некоторыми другими распространенными типами источников питания:

Напряжение источника питания Цвет светодиода Светодиод Vf светодиодов в серии Желаемый ток Резистор (расчетный) Резистор (округлый)
3 В Красный, желтый или желто-зеленый 1.8 1 25 мА 48 Ом 51 Ом
4,5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 36 Ом 39 Ом
4,5 В Синий, Зеленый, Белый или УФ 3,3 1 25 мА 48 Ом 51 Ом
5 В Синий, Зеленый, Белый или UV 3,3 1 25 мА 68 Ом 68 Ом
5 В Красный, желтый или желто-зеленый 1.8 1 25 мА 128 Ом 150 Ом
5 В Красный, желтый или желто-зеленый 1,8 2 25 мА 56 Ом 56 Ом
9 В Красный, желтый или желто-зеленый 1,8 4 25 мА 72 Ом 75 Ом
9 В Синий, Зеленый, Белый или UV 3,3 2 25 мА 96 Ом 100 Ом

Все эти значения основаны на тех же предположениях о прямом напряжении и желаемом токе, которые мы использовали в первых примерах.Вы можете проработать их и проверить математику или просто использовать ее как удобную таблицу, если считаете, что наши предположения разумны. 😉

Так вот, в какой-то момент кто-то мог сказать вам: «Просто воспользуйтесь онлайн-калькулятором светодиодных резисторов». И действительно, такие вещи есть — даже у нас есть одна (ну, версия для печати из бумаги) — так зачем вообще работать над всем этим? Во-первых, гораздо лучше понять, что и почему этот калькулятор делает то, что он делает. Но также почти невозможно использовать эти калькуляторы, если вы не знаете, какие переменные вам нужно будет ввести.Надеюсь, теперь вы сможете вычислить значения, которые вам понадобятся (напряжение источника питания, напряжение светодиода и ток) для использования светодиодного калькулятора. Но что более важно (1) он вам на самом деле не нужен: вы можете сделать это самостоятельно и (2) если вы его используете, вы можете подвергнуть сомнению основные предположения, которые он может сделать от вашего имени.

Надеюсь, вы также заметили, что есть гораздо больше, чем просто один способ зажечь светодиод. И мы даже не добрались до таких вещей, как объединение светодиодов разного номинала в цепи! Теперь, можете ли вы вернуться к наклеиванию светодиодов на батареи CR2032, чтобы сделать светодиодные броски? Да, определенно можно.Но вы можете вернуться и прочитать о том, когда вам следует добавить резистор даже в эту маленькую схему!

Наконец, отметим, что в этой статье мы говорили о вашем основном сквозном маломощном (хотя, возможно, очень ярком) светодиодах. Специализированные типы, такие как светодиоды высокой мощности, могут иметь несколько другие характеристики и требования.

Обновление : исправлен список общих значений резисторов, чтобы включить более общие значения.

Подключение светодиодов

Полярность светодиода

Светодиоды — это диоды, которые представляют собой электронные устройства, пропускающие ток только в одном направлении.Это означает, что светодиоды (и другие диоды) имеют положительную (+) и отрицательную (-) стороны. Для работы светодиода его необходимо подключить к источнику напряжения правильной стороной. Сторона подачи напряжения диода является положительной (+) стороной, она называется анодом . Отрицательная сторона называется катодом .

Поскольку диоды изготовлены из полупроводникового материала, они имеют очень определенное напряжение, при котором они будут включаться. Если напряжение питания, которое вы используете, больше, чем напряжение включения, вам понадобится резистор между одним из выводов светодиода и подключением к GND или к напряжению питания.

Светодиодный резистор

Чтобы убедиться, что светодиод не повреждается слишком большим током, соединение между ним и источником напряжения требует резистора. Величина необходимого сопротивления зависит от того, какой ток будет использовать светодиод, чтобы он был достаточно ярким, чтобы видеть, но не настолько, чтобы он перегорел. Обычно это около 20 мА для большинства одноцветных светодиодов. Чтобы выбрать правильное значение сопротивления светодиода, вам также необходимо знать, какое у него напряжение включения (Vf).Красный светодиод потребляет наименьшее количество напряжения для включения, около 1,8 В, в то время как для некоторых синих светодиодов требуется более 3,0 В.

Чтобы решить, какое сопротивление вам нужно, вам нужно использовать закон Ома для тока через резистор. Этот ток равен той же величине, что течет к светодиоду, но напряжение на резисторе другое, потому что светодиод имеет напряжение включения, которое вы вычитаете из напряжения питания:

Напряжение резистора = напряжение питания - напряжение включения светодиода (Vf)

Для расчета сопротивления, необходимого при токе 20 мА для красного светодиода с Vf, равным 2.0 в:

R = (3,3 В - 2,0 В) / 0,02 А = 65 Ом

Вот небольшая таблица с несколькими вариантами резисторов для красных светодиодов с разными значениями Vf:

Поставка Vf R
3.3 v 1.8 v 75 Ом
3.3 v 2.0 v 65 Ом
3.3 v 2.2 v 55 Ом

Все о светодиодах

Какой резистор мне использовать со светодиодом? — Kitronik Ltd

Выбрать резистор для работы со светодиодом довольно просто, но для этого требуются некоторые знания о светодиодах и немного математики.Некоторые светодиоды, такие как светодиоды с изменяющимся цветом, мигающие светодиоды и светодиоды на 5 В, рассчитаны на работу от источника питания 5 В и поэтому не нуждаются в резисторе. Для всех остальных стандартных и ярких светодиодов потребуется резистор, ограничивающий ток. LED расшифровывается как Light Emitting Diode, и, как следует из названия, это диод, который излучает свет. Когда диод включен в цепь, на него падает 0,7 В. Точно так же на светодиодах падает напряжение, известное как прямое напряжение, хотя оно отличается для каждого светодиода. Для стандартного светодиода прямое напряжение обычно составляет 2 В, а для сверхяркого светодиода — около 3.5В. Часть напряжения батареи падает на светодиод (прямое напряжение), а остальная часть напряжения падает на резистор. Это показано на диаграмме вверху справа. Поэтому мы можем записать это как:

Сопротивление можно рассчитать по закону Ома:

Светодиоды

обычно требуют от 10 до 20 мА, это подробно описано в спецификации светодиода вместе с прямым падением напряжения. Например, сверхяркий синий светодиод с батареей 9 В имеет прямое напряжение 3.2 В и номинальный ток 20 мА.

Значит, резистор должен быть на 290 Ом или как можно ближе к нему.

Пусть ваш компьютер сделает всю работу

Мы добавили на веб-сайт Kitronik отличный инструмент, позволяющий упростить расчет резистора ограничения тока. Просто выберите, какой светодиод вы используете, из раскрывающегося списка. Введите напряжение аккумулятора, и он скажет вам, какой резистор использовать. Он даже сообщает вам, какие цветные полосы будут на резисторе. Нажмите здесь, чтобы перейти на страницу калькулятора

Подробнее об авторе подробнее »

© Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *