Разное

Подключение автоматов сверху или снизу: Как правильно подключить автомат, сверху или снизу, и в чем разница?

Подключение автоматов сверху или снизу: Как правильно подключить автомат, сверху или снизу, и в чем разница?

Содержание

Как правильно подключить автоматический выключатель — инструкция |

Сделав расчет автоматического выключателя и выбрав подходящую защиту, необходимо правильно ее подключить. На первый взгляд, в этом нет никаких сложностей. Процедура достаточно простая: зачищаем кабель, вставляем в клеммы и затягиваем винты. Но, как показывает практика, многие неопытные пользователи делают при этом ряд серьезных ошибок.

  • Как правильно подключать фазу — сверху или снизу?
  • Существует ли разница ввода?
  • Ошибки подключения одножильного провода
  • Как правильно зажимать соединение?
  • Неправильная коммутация жил с разным сечением в одной клемме
  • Как правильно оконцевать жилы перед соединением?
  • Присоединение многожильного провода к автомату
  • Можно ли паять провод под зажим?
  • Какие гребенчатые шины использовать?
  • Зачем разделять автоматы на группы?
  • Для чего нужны подвижные защелки на корпусе?

И так, давайте разберем основные моменты правильного подключения автоматического выключателя в распределительный щит и рассмотрим наиболее распространенные ошибки.

Как правильно подключать фазу — сверху или снизу?

Каждый АВ оборудован подвижным и неподвижным контактами. На многих тематических форумах часто возникают споры, на который из них нужно подключать питание? Если обратиться к 7-му изданию Правил устройства электроустановок (ПУЭ), то согласно пункту 3.1.6 фаза должна подключаться к неподвижному контакту. Но, из любого правила бывают исключения. И так, давайте разберем, где установлен неподвижный контакт в однополюсных выключателях.

Невооруженным взглядом видно, что в автомате ВА47-29 производства IEK верхний зажим является неподвижным. Индикаторы на корпусе это подтверждают.

Такие обозначения используются и у других производителей, например, в Schneider Electric неподвижные контакты установлены сверху, а подвижные — снизу.

В УЗО и автоматах немецкого бренда Hager также есть обозначения неподвижного контакта, установленного вверху.

 

Существует ли разница ввода — подключать автомат сверху или снизу?

При перегрузке или коротком замыкании нагревается проводник и плавится изоляция. Внутри корпуса находятся тепловой и электромагнитный механизмы расцепления, которые срабатывают при сверхвысоких токах. Исходя из принципа срабатывания, нет разницы, через какой из контактов будет проходить электричество.

Некоторые известные производители (ABB, Hager) допускают подключение силового кабеля к нижней клемме. Специально для этого корпус оборудуется зажимами под гребенчатые шины.

В обозреваемых выше моделях неподвижное соединение находится сверху (как и в старых образцах советского производства). Но, как определить его местонахождение в китайских моделях без обозначений на корпусе?!

Согласно правилам ПУЭ, коммутация питающего провода сверху является требованием эстетики и порядка. Аналогичным образом, сверху подключаются и промышленные рубильники РБ — при отключении электрик точно будет знать, что нижнее соединение обесточено.

Но, как показывает практика, фаза может быть подведена и снизу и даже с боку, в зависимости от планирования проводки. Как правило, чем более качественно произведен монтаж модульного оборудования в электрощитке, тем быстрее и проще определить направление движения тока, независимо от места входа фазы.

Неправильное подключение одножильного кабеля к автомату

Давайте разберем наиболее распространенные ошибки, допускаемые при подключении.

Первая ошибка — зажим изоляции в соединении

Довольно часто неопытные пользователи зажимают в клемме вместе с проводником край изоляции, которая может оплавиться.

В лучшем случае, эта ошибка проявится выгоранием автомата и обесточиванием помещения, в худшем — может спровоцировать пожар.

Исходя из такой опасности, рекомендуется перед подключением всегда проверять затяжку проводниковой жилы в контактном соединении.

Вторая ошибка — коммутация жил с разным сечением в одной клемме

Для подключения нескольких автоматов к силовой линии лучше купить гребенчатую шину. Если ее нет под рукой, можно самому сделать перемычку из проводниковой жилы.

 

Делается перемычка довольно просто: берем цельный кусок провода и, не снимая изоляции, формируем перемычку подходящего размера.

Далее, просто зачищаем изоляцию на изгибе с одной стороны.

Электрики не рекомендуют объединять автоматы перемычками из кабеля разного сечения, так как при зажиме хорошо стягивается только жила с большим сечением, меньший проводник с плохим контактом может оплавить корпус и привести к пожару.

Пример: к первому выключателю была подключена жила сечением 4 мм², к остальным — 2,5 мм². На фотографии хорошо видно, как из-за плохого соединения увеличилась температура меньшего проводника, который оплавил изоляцию и корпус.

Для наглядности давайте попробуем подключить два провода сечением 2,5 мм² и 1.5 мм². Каким бы сильным не был зажим, жила с меньшим сечением свободно прокручивается в клемме.

На фото провода с разным сечением в дифавтомате — меньший искрит и оплавляет изоляцию.

В дорогих сериях крупных производителей, таких как Legrand например проблема подключения проводов с разным сечением была решена при помощи специальных зажимов, которые их спрессовывают и прочно удерживают в соединении с контактом. Или Hager, которые используют технологию Bi-Connect.

Для большей прочности соединения на стенках зажимов делаются насечки, которые иногда можно встретить даже в дешевых аналогах. Подключение многожильного кабеля без наконечника тоже допускается, только через определенное время нужно подкручивать зажимные винты.

Третья ошибка — оконцевание жил кабелей

С конца провода снимается изоляция на 10 мм, вставляется оголенной частью в контакт и затягивается винтом — именно так чаще всего электрики выполняют подключение.
Как результат, контакт неплохо держится, но его прочность можно улучшить, просто сделав U-образный изгиб на концовке.

Таким образом увеличивается площадь соприкосновения проводника с зажимом, что увеличивает надежность подключения.

Присоединение многожильных кабелей к АВ

При монтаже чаще всего используется мягкий многожильный кабель — он проще монтируется, чем одножильный, но при его подключении тоже есть некоторые особенности.

Одна из наиболее распространенных ошибок — обжим провода без оконцевания, при котором тонкие жилки из-за передавливания обламываются и отпадают. Кабель начинает терять площадь сечения, из-за чего ухудшается прочность контакта, что может привести к уже известным последствиям.

 

Перед подключением в соединение, многожильный провод нужно оконцевать с помощью вот таких наконечников.

Для крепления двух проводов в одном зажиме применяется специальный наконечник НГИ-2, позволяющий также формировать перемычки для группового подключения нескольких АВ.

Можно ли паять провод под зажим?

Некоторые пользователи с целью экономии и из-за нежелания тратиться на наконечники и другие «монтажные мелочи» делают оконцевание проводников с помощью пайки.

Какую опасность может нести такое подключение?

Со временем под воздействием температуры от проходящего тока припой начинает плавиться. Возникает необходимость регулярно проверять прочность соединения, и подкручивать зажим. На практике, никто не уделяет этому внимание. Проводник все больше греется, а соединение ослабевает, как результат — контакт выгорает, что может спровоцировать пожар.

Использование гребенчатой шины или зачем «придумывать велосипед»?

К счастью, есть отличный аналог, заменяющий перемычки — гребенка. Ее применение имеет ряд преимуществ:

  • Простой монтаж;
  • Более надежные соединения контактов;
  • Безопасность в эксплуатации, так как токопроводящие части полностью заизолированы;
  • Универсальность, ведь Вы всегда можете обрезать шину под нужную длину;
  • Удобство распределения модульных устройств на группы;

При монтаже распределительного щита это не только отличное практическое решение, но и эстетический фактор. В случае расширения сети и установки других устройств, демонтаж перемычек вызовет массу трудностей, но не гребенки, которые можно быстро и безопасно извлечь, а затем установить заново. Для надежной и прочной фиксации используются гребенки двух типов:

  • штыревые гребенки;
  • вилочные (U-образные).

Штыревая более удобная при монтаже чем U-образная, но ее соединение менее прочное. Вторая обладает большей площадью соединения, которая размещена вокруг стягивающего винта, из-за чего контакт практически невозможно выдернуть, даже применив силу.

Из-за того, что некоторые корпуса обеспечены зажимами под определенный тип шины, практически, у каждого электрика при себе всегда есть и те и другие.

Как правило, в премиум сериях есть одновременно зажимы под оба вида шин.

Разделение автоматов на группы

Модульные устройства в шкафчике принято разделять на несколько групп по селективности электроснабжения. Самый простой пример — разделить розеточную линию и освещение.

К тому же розеточных линий может быть несколько — для комнат, кухни, ванной и т.д. Как правило, отдельная группа выделяется гребенкой, где к одному из устройств подводится фаза.

С точки зрения безопасности и эстетики по бокам шины ставятся заглушки, закрывающие контакты изоляцией, что удобно, если две группы находятся очень близко. Правилом хорошего тона считается использование в щитках ограничителей на DIN-рейку. Они выполняют три важные функции:

  • Разделение на группы для удобства работы;
  • Обеспечение теплоотвода;
  • Прочная фиксация корпусов.

При плотном размещении большого количества автоматов с подведенным током происходит их нагревание. А так как пространство между ними минимальное, воздух не циркулирует и температура поднимается, из-за чего меняются характеристики тепловых расцепителей.

Подвижные защелки — для удобства монтажа

В зависимости от перспектив расширения сети, которое повлечет за собой увеличение количества автоматов, стоит обратить внимание на их крепления, которые могут фиксироваться на DIN-рейке с помощью одной или двух подвижных защелок.

Почему две защелки — лучше? Многим неопытным пользователям может показаться, что нет разницы в способе крепления модуля, но при первой же замене автомата все станет ясно — для извлечения устройства с одной подвижной защелкой потребуется полная разборка всего щита. Этой проблемы можно избежать, если приобрести АВ с двумя подвижными защелками.

Например, они есть в Hager в серии N, извлечение которых происходит за пару минут с помощью отвертки, в отличие от других типов крепления, на демонтаж которых уйдет много времени и нервов.

Если вы только стоите перед выбором, наши квалифицированные менеджеры всегда готовы прийти на помощь.

Автор: Владислав C.

Как правильно подключить автомат: схемы подключения

Автор Aluarius На чтение 6 мин. Просмотров 6.9k. Опубликовано

10.06.2016

Содержание

  • 1 Устройство автомата
    • 1. 1 Электромагнитный расцепитель
    • 1.2 Тепловой расцепитель
  • 2 Схемы подключения
  • 3 Полезные советы
  • 4 Заключение по теме

Установить и правильно подключить автомат в распределительном шкафу – не проблема. С этим может справиться даже обычный человек, который с электричеством сталкивается только, когда вставляет в розетку штепсельную вилку от бытового прибора или включает освещение. Но вопрос, как правильно подключить автомат, все равно часто звучит от обывателей. Все дело в том, что даже среди электриков происходят споры о способах подсоединения. То есть, подводить питающий провод к автоматическому выключателю сверху или снизу.

Давайте не будем спорить здесь, а просто обратимся к правилам устройства электроустановок (ПУЭ), где в одном из пунктов, а, точнее, в пункте 3.1.6, четко все описано. Ни фото ниже нами сделана выписка из этого пункта ПУЭ.

Итак, правила рекомендуют подключать питающий провод к неподвижному контакту в автомате. А он расположен именно сверху. Но давайте до конца быть честными, и еще раз прочитаем правило. В нем нет строго ограничения, то есть, оно носит только рекомендательный характер. Поэтому отвечая на вопрос, как подключить автоматический выключатель снизу или сверху, можно использовать два варианта. Тем более, прибор будет отключать сеть от перегрузок и короткого замыкания в любом случае в независимости от схемы подключения.

И все же, почему в ПУЭ этот пункт присутствует? Чтобы ответить на этот вопрос, необходимо рассмотреть устройство автоматического выключателя.

Устройство автомата

Чтобы перейти к схемам подключения автомата, необходимо разобраться в первую очередь с его конструкцией. А так как нас интересует именно подключение проводов к нижним или верхним контактам прибора, то надо понимать, что оба контакта (подвижный и неподвижный) изготавливаются из разных металлических сплавов.

Когда дело касается сети переменного тока, то при коммутации автомата его контакты выгорают равномерно, и здесь разницы, куда подключать провода, нет никакой. Если автомат располагается в схеме с постоянным током, то выбор контакта подключения – важная составляющая правильной и долгосрочной работы самого прибора. При высокой величине силы тока наблюдается перенос металлов с одного контакта на другой, поэтому в таких сетях подключение питающих проводов надо производить только сверху, то есть, через неподвижный контакт.

Теперь переходим непосредственно к самому устройству автомата. Чтобы вы поняли, что находится внутри этого прибора, рекомендуем ознакомиться с рисунком ниже.

Два основных элемента, которые выполняют защитные функции автомата – это расцепители электромагнитный и тепловой.

Электромагнитный расцепитель

Этот элемент является защитным, который срабатывает в том случае, если в электрической цепи, куда был установлен сам автомат, появилось короткое замыкание. Именно в этот момент в цепи появляются токи огромной величины (практически превышающие номинальное значение тока в тысячи раз). Чтобы не сгорела проводка и бытовые приборы, включенные в розетки, расцепитель мгновенно отключает подающую сеть. Время отключения – это миллисекунды. Кстати, существует определенная маркировка по времятоковым характеристикам. Обозначается она буквами латинского алфавита и наносится на корпус самого автоматического выключателя. В быту чаще используются типы «А», «В», и «С».

Сама конструкция электромагнитного расцепителя – это сердечник (соленоид), вокруг которого расположены витки пружины. Соленоид связан напрямую с подвижным контактом автомата. А вот пружина соединяется последовательно с силовыми контактами и тепловым расцепителем. Номинальный ток слишком мал, чтобы созданный внутри катушки магнитный поток, смог втянуть сердечник и тем самым разомкнуть контакты. Как только в сети возникает короткое замыкание, то есть, появляется тог огромной величины, внутри катушки (пружины) возникают большие магнитные потоки, пружина сжимается и втягивает в себя сердечник, который в свою очередь тут же размыкает силовые контакты. А, значит, сеть будет обесточена.

Тепловой расцепитель

Этот элемент предназначается для защиты электрической цепи, если в ней начинают действовать большие нагрузки, отличные от номинальной. Это расцепитель, так сказать, замедленного действия. Он будет определенное время держать перегруз, и если последний не снизится до номинального значения, то отключит питание. Сразу оговоримся, что тепловой расцепитель не будет реагировать на скачки тока кратковременного действия.

Чисто конструктивно тепловой расцепитель представляет собой биметаллическую пластину, которая, по сути, является консолью. Ее свободный конец соединен с механизмом, который и будет разъединять контакты. При номинальном токе свободный конец пластины располагается близко к рычагу расцепительного механизма. Как только в цепи начнется перегрузка, пластина начинает нагреваться и изгибаться, тем самым действуя на рычаг, тот в свою очередь на механизм, а последний на контакты, размыкая их.

Вот такое достаточно сложное устройство автоматического выключателя и принцип действия.

Схемы подключения

Итак, принцип работы автоматического выключателя теперь понятен, можно переходить непосредственно к схемам его подключения. Начнем с того, что автоматы могут подключаться в однофазные и трехфазные сети. Какие автоматы для этого необходимы? Если разговор вести от однофазных сетях с напряжением в 220 вольт, то в них обычно устанавливается или однополюсный прибор, или двухполюсный. Сама схема будет зависеть от того, используется ли в ней заземляющий контур или нет.

Если в дом входят два провода (ноль и фаза), то в распределительный шкаф можно ставить однополюсный вариант. При этом фазный контур будет проходить именно через сам автомат. Если внутрь дома входит три провода (фаза, ноль и заземление), то общий автомат должен быть двухполюсным. То есть, к первой клемме прибора подключается фаза, ко второй ноль. Заземление через отдельную клеммную коробку разводится до потребителей (светильники и розетки). Далее, провода от автоматического выключателя проводятся до счетчика, затем к однополюсным автоматам, установленных по группам, но уже как было описано в первом случае. Кстати, вот ниже данная система подключения автомата.

Что касается трехфазной сети, то в данном случае лучше всего ставить трехполюсные или четырехполюсные конструкции. Здесь все точно так же, как и в случае с однофазным подключением. То есть, если в доме используется разводка без заземления, то к неподвижным контактам подключаются три фазы питающей сети. Нулевой провод разводится как отдельный контур до потребителей (розетки и лампы). Если в доме присутствует система заземления, то устанавливается четырехполюсная модель, то есть, к прибору будут подключаться три фазы и ноль, а контур заземления пойдет отдельной линией до потребителей.

Полезные советы

Иногда подключение автоматического выключателя связано с правильным проведением некоторых нюансов всего процесса. А именно подсоединением проводов к прибору. На что необходимо обязательно обратить внимание?

  • У каждой модели есть свои требования относительно сечения вставляемого провода и длины изоляционной оболочки. Это обязательно указывается в паспорте изделия.
  • Чаще всего зачищать провод надо на длину от 0,8 до 1,0 см.
  • Важно понимать, что ставить провод с изоляцией в зажим недопустимо, потому что диаметр изоляции больше диаметра самой жилы, поэтому контакт между зажимом и жилой или будет слабым, или будет полностью отсутствовать.
  • Фиксация провода в автомате производится винтом, который закручивается отверткой. После фиксации необходимо проверить качество зажима, для этого сам провод надо слегка подергать.
  • Если для подключения автомата используется многожильный проводник, то на его конец лучше всего надеть наконечник.

Заключение по теме

Итак, в этой статье мы постарались ответить на вопрос, который интересует многих, как подключить автомат правильно? Надеемся, что из предоставленной информации все понятно. И как уже было сказано выше, этот процесс не самый сложный, главное разобраться в схемах подключения.

Как запитать шину на автоматах

Содержание

  1. Как подключить автомат в щитке без ошибок
  2. Подключение автоматов в щитке – вход сверху или снизу?
  3. Подключаем провода к автомату – кабель с монолитной жилой
  4. Присоединение к автомату многожильных проводов
  5. Шина гребенка для автоматов
  6. Соединительная шина гребенка для автоматов
  7. Конструкция соединительных шин
  8. Схема подключения автоматов через соединительную гребенку
  9. Подключение УЗО и дифавтоматов с помощью гребенки
  10. Видео

Как подключить автомат в щитке без ошибок

Подключение автоматов в щитке – вход сверху или снизу?

Первое с чего бы хотел начать это правильность подключения автомата в принципе. Как известно автоматический выключатель имеет два контакта для подключения подвижный и неподвижный. На какой из контактов необходимо подключать питание к верхнему или нижнему? На сегодняшний день споров по этому поводу развелось очень много. На любом электротехническом форума куча вопросов и мнений на этот счет.

Обратимся за советом к нормативным документам. Что сказано в ПУЭ по этому поводу? В 7-м издании ПУЭ пункт 3.1.6. сказано:


Как видно, в правилах сказано, что питающий провод при подключении автоматов в щитке должен присоединяться, как правило, к неподвижным контактам. Это также относится ко всем узо, дифавтоматам и прочих устройств защиты. Из всей этой вырезки непонятно выражение «как правило». То есть вроде, как и должно, но в некоторых случаях может быть и исключение.

Чтобы понимать, где расположен подвижный и неподвижный контакт нужно представлять внутреннее устройство автоматического выключателя. Давайте на примере однополюсного автомата рассмотрим, где находится неподвижный контакт.


Перед нами автомат серии ВА47-29 фирмы IEK. Из фото понятно, что неподвижным контактом у него является верхняя клемма, а подвижным контактом – нижняя клемма. Если рассмотреть электрические обозначения на самом выключателе, то здесь тоже видно, что неподвижный контакт находится сверху.


У автоматических выключателей других фирм производителей аналогичные обозначения на корпусе. Взять, например автомат фирмы Schneider Electric Easy9, у него неподвижный контакт также находится сверху. Для УЗО Schneider Electric все аналогично сверху находятся неподвижные контакты, а снизу подвижные.


Другой пример, защитные устройства фирмы Hager. На корпусе автоматических выключателей и УЗО hager также можно увидеть обозначения, из которых понятно, что неподвижные контакты находятся сверху.


Давайте разберемся, с технической стороны есть ли значение, как подключить автомат сверху или снизу.

Автоматический выключатель защищает линию от перегрузок и коротких замыканий. При появлении сверхтоков реагируют тепловой и электромагнитный расцепитель, расположенные внутри корпуса. С какой стороны будет подключено питание сверху или снизу для срабатывания расцепителей разницы абсолютно нет. То есть с уверенностью можно сказать, что на работу автомата не влияет, на какой контакт будет подведено питание.

По правде говоря, должен отметить, что производители современных «брендовых» модульных устройств, такие как ABB, Hager и прочие допускают подключение питания к нижним клеммам. Для этого на автоматах имеются специальные зажимы, предназначенные под гребенчатые шины.

В недалеком советском прошлом у всех автоматов неподвижный контакт располагался вверху (например, АП-50). Сейчас по конструкции модульных АВ не разберешь где подвижный, а где неподвижный контакт. У АВ которые мы рассматривали выше, неподвижный контакт был расположен сверху. А где гарантии, что у китайских автоматов неподвижный контакт будет расположен сверху.

Поэтому в правилах ПУЭ подключение питающего проводника к неподвижным контактам подразумевает лишь подключение на верхние клеммы в целях общего порядка и эстетики.

Подключаем провода к автомату – кабель с монолитной жилой

Как выполняет подключение автоматов в щитке большинство пользователей? Какие ошибки можно при этом допустить? Давайте разберем здесь ошибки, которые наиболее часто встречаются.

Ошибка 1 – Попадание изоляции под контакт

Все знают, что перед тем как подключить автомат в щитке нужно снять изоляцию с подключаемых проводов. Казалось бы, здесь нет ничего сложного, зачистил жилу на нужную длину, затем вставляем ее в зажимную клемму автомата и затягиваем ее винтом, обеспечивая тем самым надежный контакт.


Но встречаются случаи, когда люди в недоумении, почему выгорает автомат, когда все правильно подключено. Или почему периодически пропадает питание, когда проводка и начинка в щитке абсолютно новые.


Одна из причин вышеописанного попадание изоляции провода под контактный зажим автоматического выключателя. Такая опасность в виде плохого контакта несет в себе угрозу оплавления изоляции, не только провода, но и самого автомата, что может привести к пожару.


Чтобы этого исключить нужно, следить и проверять, как затянут провод в гнезде. Правильное подключение автоматов в распределительном щите должно исключать такие ошибки.

Ошибка 2 – Нельзя подключать несколько жил разных сечений на одну клемму АВ

Если возникла необходимость подключить несколько автоматов стоящих в одном ряду от одного источника (провода) для этой цели как невозможно лучше подойдет гребенчатая шина. Но такие шины не всегда есть под рукой. Как объединить несколько групповых автоматов в таком случае? Любой электрик, отвечая на этот вопрос, скажет сделать самодельные перемычки из жил кабеля.


Чтобы сделать такую перемычку используйте куски провода одинакового сечения, а лучше вообще не разрывайте его по всей длине. Как это сделать? Не снимая с провода изоляцию, формируете перемычку нужной формы и размеров (по количеству ответвлений). Затем зачищаем изоляцию с провода в месте перегиба на нужную длину, и у нас получается неразрывная перемычка из цельного куска провода.


Никогда не объединяйте автоматы перемычками кабелем разного сечения. Почему? При затягивании контакта хорошо зажмется жила с большим сечением, а та жила, у которой сечение меньше, будет иметь плохой контакт. Как следствие оплавление изоляции не только на проводе, но и на самом автомата, что несомненно приведет к пожару.

Пример подключения автоматических выключателей перемычками из разных сечений кабеля. На первый автомат приходит «фаза» проводом 4 мм2, а на другие автоматы уже идут перемычки проводом 2.5 мм2. На фото видно, что перемычка из проводов разного сечения. Как следствие плохой контакт, повышение температуры, оплавление изоляции не только на проводах, но и на самом автомате.


Для примера попробуем затянуть в клемме автоматического выключателя две жили с сечением 2.5 мм2 и 1.5 мм2. Провод сечением 1,5 мм2 свободно болтался.



Еще один пример на фото дифавтомат, в клемму которого воткнули два провода разного сечения и попытались все это дело надежно затянуть. В результате чего, провод с меньшим сечением болтается и искрит.


Ошибка 3 – Формирование концов жил проводов и кабелей

Этот пункт, скорее всего, относится не к ошибке, а к рекомендации. Для подключения жил отходящих проводов и кабелей к автоматам мы снимаем с них изоляцию примерно на 1 см, вставляем оголенную часть в контакт и затягиваем винтом. По статистике 80 % электриков именно так и подключают.


Контакт в месте соединения получается надежный, но его дополнительно можно улучшить без лишних затрат времени и средств. При подключении к автоматам кабелей с монолитной жилой сделайте на концах U-образный загиб.


Такое формирование концов увеличит площадь соприкосновения провода с поверхностью зажима, а значит контакт будет лучше. P.S. Внутренние стенки контактных площадок АВ имеют специальные насечки. При затягивании винта эти насечки врезаются в жилу, благодаря чему надежность контакта увеличивается.

Присоединение к автомату многожильных проводов

Для разводки щитов электрики часто отдают предпочтение гибкому проводу с многопроволочной жилой типа ПВ-3 или ПуГВ. С ним легче и проще работать, чем с монолитной жилой. Но здесь есть одна особенность.


Корме того, если существует необходимость подключения двух многожильных провода к одному зажиму автомата для этого нужно использовать двойной наконечник НШВИ-2. С помощью НШВИ-2 очень удобно формировать перемычки для подключения нескольких групповых автоматов.


При сборке распределительных щитов НЕЛЬЗЯ опаивать и облуживать многопроволочную жилу. Дело в том, что луженое соединение со временем начинает «плыть». И чтобы такой контакт был надежный, его постоянно нужно проверять и подтягивать. А как показывает практика, про это всегда забывают. Пайка начинает перегреваться, припой плавится, место соединения еще больше ослабляется и контакт начинает «выгорать». В общем, такое соединение может привести к пожару.


Поэтому если при монтаже используется многожильный, провод то для его оконцевания нужно применять наконечники НШВИ.

Источник

Шина гребенка для автоматов

Добрый день уважаемые посетители сайта «Электрик в доме» сегодня предлагаю вам на рассмотрение один из способов аккуратного подключение модульной аппаратуры в электрических щитках.

Данный метод мне посоветовал один мой хороший товарищ, который занимается электромонтажом. Суть нашей с ним дискуссии заключалась в том, как лучше, или даже как правильнее подводить питание и подключать шлейфом несколько автоматических выключателей или УЗО.

На сегодняшний день многое усовершенствовано. И мой товарищ в этом плане немного эволюционировал и продвинулся вперед, так как использует для этой цели особые гребенки. Потому рассмотрим данный вопрос подробно. Именно о том, что такое гребенка для автоматов, как с ними работать и как подключать пойдет речь в данной статье.

У вас когда-нибудь возникали такие ситуации, при которых определённое количество УЗО или автоматических выключателей необходимо подключить к одному питанию (к одному питающему проводу)? Как правило, это относится к однофазным щиткам, хотя если щит трехфазный и нагрузка разбивается на три группы, там тоже такое встречается.

Например, в щите на одной дин рейке размещены три дифавтомата на розеточную группу, два автомата на сеть освещения, одно УЗО на электрическую плиту. Как подключить все эти устройства?

Для запитывания можно сделать между ними перемычку. Для этого берётся мягкий ПВ-3, а также наконечники НШВИ (2), подключаем один элемент, затем от него второй, третий и так далее. Пока не подключим все автоматы. Такое подключение называется шлейфом и если все правильно и качественно сделать будет очень надежным. Я всегда так делал.

Единственным недостатком такого способа подключения являются торчащие провода. Изгибы проводов из-за торчащих перемычек, мешающих осуществлять подводку проводов к автоматам, в металлических щитах лицевая панель для автоматов не станет на свое место. В конечном итоге получается сплошное нагромождение проводов, с которым сложно разобраться. Избавиться от этих перемычек при данном способе подключения невозможно единственное, что их можно посоветовать, не делать перемычки длинными, тогда получится более компактно.

Соединительная шина гребенка для автоматов

Автоматические выключатели, УЗО, дифавтоматы все эти модульные аппараты защиты используются сегодня в комплекте современных щитов распределения. Такие защитные устройства должны быть правильно, надёжно и безопасно подключены. Как большинство людей это делает?

В настоящее время люди чаще всего объединяют группы автоматов самодельными кабельными перемычками, как было описано выше. При аккуратной и достаточно качественной работе такие перемычки прослужат длительное время.

Но мастерство многих людей оставляет желать лучшего. Хочу привести реальный пример подключения автоматов в щите при помощи перемычек.

В одном из домов, где я делал электромонтаж (а точнее в квартире) как то решил заглянуть в электрощиток который был установлен на лестничной клетке.

Увиденное меня ужаснуло, так как перемычка между автоматами была сделана оголенным проводом. Смотрите сами:

Причем такое ощущение, что все работы в этом доме делал один и тот же человек (подозреваю, что электрик из ЖЭКа), этажом выше и этажом ниже точно такая же картина, все сделано аналогично. Обычным людям это вовсе не интересно, да и ничего они в этом не понимают. Что мешало этому электрику сделать перемычку изолированным проводом, я уже молчу про использование здесь соединительной шины гребенки для автоматов. Вот почему нужно обращать внимание на электриков, которые выполняют работы.

Итак, это мы рассмотрели халтурщиков и то как не нужно делать, сейчас рассмотрим как это делается правильно.

Если профессионально собирать щиты, то здесь многие используют штатное решение. Называется оно соединительная шина гребенка для автоматов. Электрики называют ее просто – гребенка. Что из себя представляет эта гребенка? Это цельная медная пластинка, которая помещена в пластиковый изолятор.

Такая шина соединительная для автоматов очень компактная, позволяет красиво и надежно подключить автоматические устройства, размещенные в один ряд. Также как и автоматические выключатели гребенки по количеству полюсов выпускаются производителями однополюсными, двухполюсными, трехполюсными и четырёхполюсными.

Конструкция соединительных шин

Если речь идет о двухполюсной гребенке, то здесь в пластиковом корпусе размещены две шины. Примечательно, что на одной шине зубья будут изогнутыми. В качестве примера рассмотрим гребенку для автоматов hager на 12 модулей.

В трехполюсной гребёнке находятся три медные шины, которые расположены в едином корпусе. Каждая шинка вставлена в свою направляющую с наличием между ней изоляции в виде пластиковой перегородки. Как правило, такие гребенки используются редко.

С количеством полюсов разобрались, теперь что касается модулей (зубьев). Гребенки в электротехнических магазинах продаются стандартной длины. Число модулей может быть: 12,24,36,48,60. Скорее всего, могут быть и больше, но мне они не встречались. Расстояние между контактами на гребенке составляет 17.5 сантиметров.

Вилкообразные контакты гребенки hager KDN163A-AC230-400V:

А так выглядит двухполюсная шина hager KDN263A-AC230-400V с типом контактов FORK (вилка):

Самый ходовой вариант – это штыревой контакт. В отличие от вилкообразного контакта, штыревой подходит для всех защитных аппаратов не зависимо от фирм производителей.

Шины соединительные для автоматов с контактами вилкообразного типа подходят не для всех защитных устройств, а только для защитной аппаратуры брендовых фирм таких как ABB, hager и т.п.

Как быть если длина гребенки большая (даже если взять наименьшую на 12 модулей шину). Понятно, что для подключения трех или четырех автоматов всю шину целиком не нужно запихивать в щиток. Ее нужно как то отрезать. Как это можно сделать? Все очень просто. Вытаскиваем из пластикового корпуса шину, берем обычные ножницы по металлу, ножовку (у кого что есть) и отрезаем такой длины которая нам нужна. Затем берем пластиковый корпус и отрезаем его по длине на 1.5 – 2 см больше чем сама шина. Это для того чтобы оголенные части гребенки были скрыты и не торчали по краям. Можно для защиты краев использовать специальные заглушки.

Схема подключения автоматов через соединительную гребенку

Итак, мы подошли к главному разделу данной статьи применение гребенок на практике и в качестве примера рассмотрим, как подключить группу автоматов соединительной шиной гребенкой. Для того чтобы подключить целую группу автоматов, я использую однополюсные гребенки.

В качестве примера рассмотрим подключение автоматов фирмы Schneider Electric. Берем гребенку, вытаскиваем из нее медную шину, отрезаем три, пять, семь зубьев, в общем столько, сколько нам нужно. Затем уже по длине медной шины отрезаем пластиковый корпус с запасом так, чтобы с краёв гребёнки не торчат различные детали.

Затем закручиваем гребенку под весь ряд установленных автоматов и подсовываем питающий провод к одному из зажимов. В этом месте будет выполнено совместное подключение провода с шиной в автомате. В итоге будет получена красивая разводка. Забыл упомянуть, что медная шина способна выдержать нагрузку в 63 Ампера.

Если вы внимательно читали статью, то уже знаете, что вилочные контакты подходят не для всех автоматических выключателей. Все дело в том, что определенные фирмы выпускают автоматические устройства защиты с двойным зажимом. Одна из таких фирм hager.

Как видно из фото в автоматические выключатели хагер шина с вилкообразными контактами не входит в обычные зажимы (ровно как и в любой автомат другой фирмы). Вот незадача, шина и автоматы одной фирмы, а контакты не подходят, почему? Вопрос на засыпку! 🙂

Можно рассмотреть поближе контакты:

Но здесь нет ни какой магии и все довольно просто и на мой взгляд гениально придумано. На самом деле шина с вилкообразным контактом должна входить в специальный зажим на автомате (который как раз есть не на всех экземплярах).

У Hager есть два контакта один для гребенки второй для провода.

Один зажим выглядит как обычно в виде прижимной площадки, второй под винт. Именно под этот винтовой зажим и предназначены вилочные контакты.

Так, у автомата хагер в один зажим вставляется питающий провод, а во втором располагается соединительная шина гребенка для автоматов, имеющая вилкообразный контакт, что очень удобно.

Поэтому при покупке такой гребенки учитывайте имеется ли в автоматическом выключателе соответствующий зажим. Иначе в противном случае в обычный автомат такую гребенку не засунешь, и вы зря потратите деньги.

Подключение УЗО и дифавтоматов с помощью гребенки

Линии розеток в современной квартире обязательно должны защищаться с помощью УЗО или дифавтоматов. Если вы заботитесь о своей жизни и о жизни своих родных и близких, то у вас в распределительном щитке на каждую линию будет установлена защита от утечки тока.

Эти устройства защиты также можно подключить с помощью соединительных шин. Но в отличие случая с автоматическими выключателями здесь есть одна особенность.

При подключении УЗО с помощью соединительных шин, шина как минимум должна быть двухполюсной (это если узо однофазное). Так как для питания здесь необходимо подводить фазу и ноль.

Использование здесь однофазной гребенки не подходит, ведь при этом произойдет замыкание «ноля» и «фазы» одновременно всех УЗО, установленных в одном ряду. У такой гребенки отходящие зубья должны быть расположены через один. То есть шаг между гребенками составляет один модуль (ширина автомата).

Подключается все очень просто. Например, есть два устройства защитного отключения. Фаза подводится к первой медной шине и зажимается в одном контакте УЗО, а ноль подводится ко второй медной шине и зажимается во втором контакте УЗО. Все последующие УЗО подключаются к обеим гребенкам шин.

Это очень удобно, так как несколько УЗО быстро соединяются между собой. Для этого нет необходимости делать множество перемычек с обязательным соблюдением цветовой маркировки.

Источник

Видео

Подключая автоматы гребенкой, знай об этом

Подключение автоматов гребёнкой

Как правильно подключить автомат. Ошибки при подключении автоматического выключателя.

Как подключать автоматы и УЗО гребенками

подключение автоматов

Соединение автоматов с помощью шины

Шина гребёнка ИЕК для электрощитов под автоматы

Как правильно подключить питание к автомату

Как правильно подключить УЗО

Как подключать автоматы и УЗО гребенками Hager

Как правильно подсоединить автомат в электрощиток? – Tokzamer

Подключение автоматов в щитке: снизу или сверху?

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс. Дзен
  • TikTok

На самом деле можно встретить оба варианта подключения питающих линий к автоматическим выключателям – к нижним или к верхним контактам. То, как на самом деле должно выполняться подключение автоматов, является предметом непрекращающихся дискуссий, потому как явных, на первый взгляд, недостатков нет.

Чтобы разобраться в этом вопросе, необходимо более подробно изучить доступную для всех информацию. Ведь путаница возникает из-за того, что вроде как автоматический выключатель в обоих вариантах исполняет свои функции исправно.

Итак, обратимся для начала к актуальной версии нормативной документации. В п. 3.1.6 раздела 3 «Защита и автоматика» Правил устройства электроустановок (ПУЭ) говорится следующее: «при одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам». Соответственно, следует понимать, с какой стороны этот неподвижный контакт находится.

У представленного ниже аппарата ВА 47-29 видно, что на электрической схеме и конструктивно неподвижный контакт находится сверху.

Справедлива ли эта схема подключения автоматов для разных производителей? Давайте посмотрим. Как видно на рисунке, у приведенных однотипных выключателей разных производителей на схеме неподвижный контакт располагается сверху.

Теперь обратимся к заводской документации на некоторые типы приведенных выключателей. Уточним, какое подключение считает возможным сам производитель. Рассмотрим модульный выключатель Legrand серии TX3. Как видно, на приведенном фрагменте из инструкции указано, что подключение автоматического выключателя можно выполнить

как сверху, так и снизу.

А что нам рекомендует известная во всем мире компания ABB по монтажу своих модульных выключателей серии SH 200L? А, собственно, также допускается монтаж питающих линий любым удобным способом.

Ну и рассмотрим популярный из-за своей дешевизны тип выключателя IEK ВА 47-29. В соответствии с электрической схемой и маркировкой, выполненной на корпусе выключателя, нумерация контактов 1,3,5,7 относится к верхним неподвижным контактам, а 2,4,6,8 – к нижним подвижным. И опять, ознакомившись с инструкцией, мы видим, что производитель не предъявляет каких-либо требований по рассматриваемым типам подключения.

На основании приведенной информации можно сделать однозначный вывод, что рассмотренные производители одинаково допускают подключение автомата снизу или сверху без нарушения функционала или какого-либо ухудшения характеристик своих аппаратов.

Да и сам пункт 3.1.6 ПУЭ, приведенный выше, вроде как делает оговорку «как правило», которая означает, что вариант подключения к неподвижному контакту является обычным, преобладающим решением при монтаже защитных аппаратов.Отступление от него должно быть обоснованным. То есть в сухом остатке – это элементарная «культура» и «однотипность» технологии производства электромонтажных работ. Ведь традиционно принято, что при электромонтаже производится подача питания на автоматические выключатели сверху.

В любом случае, рекомендуется безоговорочное соблюдение установленных правилами требований, так как это поможет впоследствии избежать ошибок при работах в электрических сетях и даже исключить электротравматизм. И только в самых крайних случаях можно рассмотреть вариант с нижним подключением, например при особенностях компоновки монтажных щитов или при недостаточной длине кабелей питающих и отходящих линий.

Как в щитке подключить автомат – несем знания в массы

Распределительный щит содержит в себе целый набор модульных устройств, отвечающих за защиту всей электрической сети дома. В состав такой сборной входят всевозможные реле, автоматические выключатели, автоматы защиты и многое другое.

Для установки всего этого мы приглашаем электриков, на которых надеемся, как на профессионалов, однако далеко не все мастера производят установку правильно. На практике встречается множество ошибок.

Сегодня мы с вами обсудим, как подключить автомат в щитке. Эта информация пригодится не столько для того, чтобы делать работу своими руками (для этого нужен доступ), а для контроля над деятельностью нанимаемых специалистов.

Порядок подключения автоматов – что нужно помнить всегда

Казалось бы, что может пойти не так при подключении однополюсного автомата?

Задача мастера – зачистить провод от изоляции, продеть его внутрь клеммы и затянуть ее! Однако у нас полно людей с руками, растущими не от туда, откуда следует.

Простите за такое откровенное возмущение, но иногда по-другому просто не скажешь. А иногда ошибки случаются и у профессионалов (это реже), так как все мы люди, можем болеть, уставать, быть заваленными проблемами и прочим, что будет нам мешать выполнять свою работу качественно.

Итак, что-то мы увлеклись. Давайте переходить к делу. Начнем мы с самого важного – правильности подключения автоматов в щитке. У такого выключателя идет два контакта, через которые он подключается к сети.

Один из них подвижный, а второй неподвижный, располагаются они сверху и снизу устройства. Вы знаете, на какой из них необходимо подавать питание? Представьте себе, знает об этом очень мало людей, так как на «электрических» форумах постоянно ведутся споры на эту тему.

Мы не будем заниматься самоанализом и обратимся напрямую к ПУЭ, 7-е издание, пункт 3.1.6. Там говорится следующее. Если питание устройства одностороннее, то питающий проводник должен подключаться к неподвижному контакту.

Однако стоит заметить, что есть там оговорка в виде словосочетания «как правило», это немного сбивает с толку, как будто бывают случаи, допускающие исключение из этой рекомендации. Но пояснений больше никаких не прилагается.

Это же правило распространяется на все защитные устройства, диавтоматы и УЗО. Чтобы понять, где у автомата, какой контакт находится, нужно знать, как он устроен изнутри. Давайте погрузимся в мир электротехники чуть глубже и рассмотрим строение простого однополюсного автомата.

  • Не нужно быть инженером, чтобы заметить, что верхний контакт у такого автомата является неподвижным, а нижний – подвижным. Чтобы распознать типы контактов, вовсе необязательно разбирать устройство. Вы также можете воспользоваться маркировкой на его корпусе. Посмотрите следующий снимок.

Маркировка на выключателях других фирм может немного отличаться, но, в общем, там тоже все предельно понятно. На крайний случай, вы всегда сможете найти информацию в интернете, сделав запрос по конкретной модели. В целом, практически все современные однополюсные автоматы имею точно такое же расположение контактов, однако в этом нужно обязательно удостовериться.

Теперь давайте попробуем разобраться в вопросе с чисто техническим подходом. Итак, сверху или снизу?

  • Назначение автоматического выключателя заключается в протекции подключенной к нему линии от коротких замыканий и перегрузок. Работает он так – при появлении в цепи сверхтоков происходит реакция теплового и магнитного расцепителей, которые находятся внутри корпуса устройства. При этом никакой разницы в том, с какой стороны подключен силовой кабель, нет, устройство будет срабатывать в любом случае.
  • Это подтверждается тем, что некоторые производители, например, Hager или ABB допускают обратное подключение питания к автомату. Для этих целей на них специально установлены зажимы для гребенчатых шин.

  • Тогда почему в ПУЭ указывается другая информация, не с потолка же они ее взяли? Данное утверждение установлено в общем порядке. Любой электрик с соответствующим образованием вам скажет, что перед выполнением работ необходимо снимать напряжение с оборудования, с которым предстоит работать. Когда мастер, выполняющий такую работу регулярно, подходит к щитку, он на интуитивном уровне, так сказать – машинально, считает, что фаза находится сверху. Отсоединив клеммы, он будет думать, что на нижних проводах напряжения нет.
  • В итоге, если какой-то горе электрик, пусть будет дядя Ваня, при установке действовал не по такому принципу, то ситуация чревата несчастным случаем, иногда со смертельным исходом. Конечно, никто не освобождает электричка, тем более профессионального от необходимости знания техники безопасности, но все же изначально нужно делать так, как заведено стандартом. Это и безопаснее и быстрее по времени в итоге.
  • Суть проблемы также кроется в том, что раньше у всех автоматов неподвижный контакт всегда был сверху, но сейчас, когда на рынках представлена продукция производителей разных стран, а, как видите, нет строгого регламента, попасться под руки может все что угодно. То есть, фактически, норма ПУЭ регламентирует не техническую часть, а «эстетическую», и от расположения контактов никак не зависит строение цепи подключения.

Если вы не согласны с данным утверждением, по попробуйте с технической точки зрения описать необходимость подключения питающего провода к любому из контактов. Нам, если честно, в голову ничего не приходит.

Подключение к автомату проводов

В этой главе давайте попробуем составить хит-парад ошибок, которые допускают неопытные электрики при подключении автоматов в щитке. Их не так много, но все оны важны для обеспечения надежной работы устройств и безопасности вашего дома.

  • Первая ошибка, наверное, самая распространенная – это попадание под контакт изоляции провода.

  1. Все прекрасно осведомлены, что перед подключением к контакту с провода нужно счистить изоляционный слой. После этого оголенный конец проводника погружается в клемму, и та затягивается до полной его фиксации. Все легко и просто, но, тем не менее, ошибки здесь допускаются постоянно.
  2. Если у вас в доме с новой проводкой внезапно пропало электричество или выгорел совершенно новый автомат, то причиной может стать банальное зажатие клеммой слоя изоляции. Такая ситуация приводит к существенному нагреву контакта, и есть риск оплавления изоляции самого автомата, что уже чревато пожаром. Почему так происходит? Дело в том, что изоляция будет препятствовать нормальному контакту металлов, растет сопротивление, что и вызывает нагрев. При неплотном касании постоянно возникает искрение, и большие нагрузки на цепь могут привести к появлению дугового разряда.
  • Вторая ошибка, когда мастера используют для подключения к одной клемме провода разного сечения.

Нередко автоматы устанавливаются в количестве нескольких штук в ряду. Они, как правило, запитываются от одного источника, и чтобы не тянуть огромное количество проводов и не создавать сложных соединений, питание передают от одного к другому при помощи небольших перемычек.

Лучшим решением для такого подключения будет гребенчатая шина, показанная на фотографии выше. Такое соединение будет правильным, безопасным и монтируется быстрее всего. Однако под рукой шины в нужный момент может не оказаться, а может просто кто-то решит сэкономить и обойтись проводом. Вот тут и начинается все «веселье».

В ход идут кусочки проводов нужной длины для создания самодельной шины. Нередко берутся провода разные по сечению, что недопустимо.

Причина такая же, как и в случае с изоляцией. Клемма хорошо прижмет проводник большего размера, тогда как меньший будет зафиксирован плохо, что приводит к росту сопротивления на контакте. Начнет плавиться изоляция, что в итоге также может привести к пожару.

Поэтому используем только одинаковые провода. А еще лучше будет, если деталь сделать неразрывной. Для этого формируем из провода перемычку нужной формы, не снимая с него изоляции. Как закончите, с перегибов убирается изоляция и самоделку можно использовать.

На следующем снимке показано, что случается с автоматами, работающими в таком режиме.

По фотографии сразу видно, что мастер работал неаккуратно, изоляция зачищена плохо и висит кусками. Поэтому, если видите, что электрик сделал вам нечто подобное, немедленно заставьте его переделать работу, а еще лучше привезите ему шину, чтобы вопрос не возникал вообще.

  • Следующая распространенная ошибка – это неправильное формирование концов кабелей и жил. Точнее это не столько ошибка, сколько рекомендация к действию.
  1. Большинство электриков при создании контакта действую следующим образом. С конца провода снимается изоляция где-то на 1 см, потом конец вставляется в автомат и затягивается винт фиксации. Такое соединение будет надежным, но почему бы его не улучшить, тем более что для этого не потребуется никаких дополнительных затрат.
  2. Для этого зачистите не 1, а 2 см изоляции, после чего сделайте U-образный загиб конца проволоки. Далее вставляем провод в клемму и зажимаем его. В результате вы получаете большую площадь прикосновения элементов на контакте, а значит, уменьшаете на нем сопротивление.

Как присоединить к автомату многожильный провод

Частенько для соединения устройств в щитке используют гибкие многожильные провода. Их проще гнуть, но вот добиться хорошего контакта на клеммах несколько сложнее.

Основная ошибка – монтаж без оконцевания. Если вы попробуете зажать такой провод в клемме, то с ним произойдет следующее. Внутри контактная площадка клеммы имеет острые насечки, которые при затягивании «вгрызаются» в металл, что обеспечивает более качественное соединение.

Когда пережимаешь многожильные провода, тоненькие проволочки начинают обламываться. Как следствие – уменьшение площади контакта, увеличение сопротивления, искрение.

Чтобы такого не происходило предварительно зачищенные концы проводов нужно оконцевать при помощи специальных наконечников типа НШВИ или НШВ. Их примеры показаны на фото выше.

Совет! Если нужно к одной клемме подключить два провода, то используются сдвоенные наконечники. С их помощью очень удобно формировать перемычки.

Допускается ли пайка проводов при подключении автомата

Многожильные провода и провода разного сечения для качественного контакта иногда могут оконцовываться при помощи пайки. Как ни крути, а желание сэкономить у людей иногда преодолевает здравый смысл. На практике автоматы подключенные таким образом иногда встречаются. Чем опасно такое соединение?

Согласно тому же ПУЭ, многожильную проводку при подключении в щитке не допускается облуживать и опаивать. Тут не нужно быть физиком, чтобы понимать весь процесс.

При нагревании контакта до высокой температуры, припой начинает плавиться, соответственно, конец провода уже не будет таким же жестким, как изначально, и он начинает болтаться в зажиме. Если контакт не подтянуть… Вы уже знаете, что может случиться. Припой может растечься внутри автомата, что приведет к его неработоспособности.

Порядок установки устройств в щитке

Итак, мы с вами разобрали все общие моменты, касающиеся самих соединений. Теперь давайте посмотрим, в каком порядке, по какой схеме устройства подключаются в одну систему в щитке. Далее идет пошаговая инструкция.

Как подключить автомат в щитке своими руками — схема монтажа и выбора места установки автомата при входе сверху или снизу

Неправильное соединение автоматов в щите часто приводят к опасным последствиям, либо к порче оборудования и электропроводки помещений. Подход к этой работе требует особой усидчивости и неоднократной проверки своих действий.

В этой статье разберем последовательность и правильность монтажа кабеля, соединение разных элементов и подключение автоматов в электрическом щите. В наше время электричество применяется везде, поэтому навыки в электрике всегда пригодятся.

Перед началом проводимых работ необходимо составить схему электропроводки помещения, подобрать безопасное место установки электрического щита, выбрать типы автоматов в соответствии с вашими требованиями.

После вышеперечисленных подготовительных работ приступают к монтажу оборудования. При правильности соединения всех автоматов можно подключать электрический щит к основному кабелю, подающему ток в помещение.

Содержимое обзора

Расположение электрощита в помещении

Важно определится с местом установки щита. Его расположение требует постоянный доступ, нельзя загораживать дверку щита посторонними предметами.

В большинстве случаев щит крепят недалеко от входа в дом, либо уже внутри, но сразу в коридоре дома или квартиры. Это упрощает монтаж кабеля подающего напряжение в помещение.

  • Высота щитка определяется на уровне глаз постояльцев жилья. Такое расположение нужно для удобства снятия показаний счетчика при оплате электроэнергии.
  • Раньше, в недалекие времена, ставили счетчики с автоматами на деревянной планке на стене.
  • Хоть и расположение их было как правило под потолком, так делать нежелательно. В щитке вся конструкция будет в более безопасном положении.

Современные электрические щиты имеют высокие классы защиты, хорошее прочное основание, а также замок с ключом. Что является препятствием для проникновения туда маленьких домочадцев.

В частном доме при расположении щитка учитывается расположение высоковольтной линии, откуда будет подача кабеля в помещение.

Производственный или самодельный щиток?

Сейчас продаются разные щитки. Всевозможные формы и размеры. Они имеют как металлическое грунтованное, окрашенное основание либо пластмассовое. Также идут щетки с внутренней заводской начинкой. Есть конструкции имеющие индивидуальный заказ.

Но, если есть у мастера установки щитка определенные навыки, то внутренние детали лучше установить самостоятельно, по своему усмотрению. Чем больше опыт – тем грамотнее будет выполнен монтаж конструкции в определенный объем электрического щитка.

Соединительная схема автоматических выключателей.

Перед началом работ по монтажу автоматов, нужно подробно ознакомиться с их схематичными данными. Разные элементы конструкции в щитке имеют свои собственные обозначения.

Основные детали, используемые в щитке

Автомат вводной. Используется для защиты всего контура проводов.

  • К его контактам подводят основной кабель.
  • Возможен вариант установки рубильника впереди автомата.
  • При размыкании рубильника всегда можно произвести ремонт или замену какого-либо узла в электрическом щите.

Не забываем подвести кабель питания к рубильнику при этом.

Счетчик

Этот прибор ставится после автоматов по схеме. Его основная задача – это отображение количества потребляемой энергии. При необходимости его можно разместить отдельно от электрического щита.

Устройство защитного отключения

Назначением этого прибора является защита от воспламенения и ударов током. В обычных, небольших домах или квартирах ставится один УЗО. Его хватает справится со всей нагрузкой электрического тока в помещении. Но в случае, когда расчет потребления энергии большой, ставят дополнительно до нескольких таких устройств.

Линейные автоматы

Они осуществляют свою работу в каждом отдельном секторе общего помещения. При коротком замыкании или высоком напряжении они автоматически срабатывают, отключая от основной электрической цепи. Часто они спасают от большой нагрузки в комнатной проводке, при включении большого количества электроприборов.

Дифференциальные автоматы.

Они используются для защиты электроприборов на отдельных линиях, вместо нескольких основных автоматических выключателей.

Монтажная рейка.

Она имеет вид металлической планки. Крепеж осуществляется к задней части щитка. От конструкции электрического щитка зависит количество реек. Чем вместительнее ящик, тем больше модулей и реек возможно установить в него. Для правильного выбора его, изучается предварительно схема соединений деталей.

Гребенка.

Несет функцию расключения в щитке. Заземление и нуль соединяет между собой.

Шина распределения.

Эта деталь имеет надежную изоляцию. Благодаря особой конструкции она связывает между собой автоматы разного назначения. Имеют хорошую фиксацию, что позволяет качественно крепить концы проводов. Они применяются и для нуля и для фазы.

Общее назначение автомата

Автоматический выключатель – прибор, функцией которого является защита от пожара. Возникающего от возгорания проводки испытующей перегрузки в сети.

Срабатывание автомата приводит к разрыву цепи. Он отключает питание в следующих случаях:

  • Замыкание проводки
  • Внезапный скачок напряжения в сети ( в каждом автомате свой порог превышения напряжения)

При разной по сечению проводке применяются разные по мощности автоматы, что позволяет контролировать нагрузку на определенный участок проводки.

Сайт про изобретения своими руками

МозгоЧины

Сайт про изобретения своими руками

Способы подключения автоматов в электрощите

Способы подключения автоматов в электрощите

Автоматические выключатели еще называют пакетниками или автоматами, они подают ток в электросеть, а в случае неисправности моментально ее обесточивают. Их устанавливают в распределительном щитке, чтобы защитить цепь от перегрузов, короткого замыкания или скачка напряжения.

Особенности и разновидности устройств

Автоматические выключатели отличаются друг от друга по способу управления, виду расцепителя, методу монтажа, материалам корпуса и величине рабочего тока. Современные модели выделяются еще и тем, что в них есть сигнальные контакты групп, возможность прерывания электроцепи на расстоянии, а также автоматическое срабатывание в критической ситуации. Автоматы используются не только в жилых помещениях, но и на производственных объектах для обеспечения безопасности.

Основной характеристикой, на которую ориентируются при выборе прибора, является номинальный ток. С целью определения критерия сначала устанавливается сила тока, которая требуется для обеспечения питанием всех устройств в квартире. В связи с этим существуют устройства с разным количеством полюсов:

  • Один. Подходит для цепей с освещением и розеткам с простыми приборами.
  • Два. Прибор необходим для защиты проводки, которая идет к водонагревателю, отопительным элементам, кухонной плите и пр.
  • Три. Используется для трехфазных цепей. Применяется только в крупных промышленных помещениях, мастерских или на производстве.

Устанавливают пакетники всегда от большего к меньшему, по уменьшению мощности.

Схема подключения

Чтобы во время монтажа автоматического выключателя не возникли сложности, рекомендуется заранее познакомиться с составом всей схемы. Обычно в щитке находятся следующие элементы:

  • Вводной автомат. Он необходим для контроля качества проводки по контуру. К нему подсоединяются жилы кабеля, а перед ним обычно ставят рубильник.
  • Счетчик. Располагается за автоматом и контролирует расход энергии. В многоквартирных домах его иногда располагают отдельно.
  • УЗО. Это устройство предотвращает пожары и вовремя отключает ток. Его ставят после счетчика или выносят на отдельную линию.
  • Автомат. Каждый ставят на отдельную линию для разных помещений. Правильно установленный прибор вовремя обнаружит перегруз замыкание, защитив технику и проводку.
  • Диффавтомат. Ставится на отдельной линии, иногда им заменяют пакетники с УЗО.
  • DIN-рейка. Это монтажный элемент, который ставится на задней стенке щитка.
  • Соединительные и распределительные шины. Они соединяют через входную клемму ряд пакетников.

Установка устройства

После выбора и покупки автоматического выключателя, появляется вопрос о том, где именно необходимо его подключать: сверху или снизу. Заблуждения появляются из-за того, что на автоматических модулях имеет несколько пар соединительных контактов. Некоторые из них фиксированные, а другие подвижные. Однако, согласно правилам установки электронного оборудования, подводка цепи выполняется только к неподвижным контактам, они располагаются внизу. Это требование относится ко всем защитным модулям.

Перед установкой пакетника следует определить количество проводов, которые разрешается подключать, и метод соединения питательных жил. После решения этих вопросов переходят к установке. Если все же остались какие-то вопросы, то изучите требования ПУЭ.

Для монтажных работ потребуется следующее:

  • кусачки;
  • изолента;
  • кабели одного сечения, если планируется монтаж нескольких автоматов;
  • удобный нож для устранения изоляции;
  • крестовая и шлицевая отвертка;
  • мультиметр.

Последовательность действий в зависимости от выбора одно- или двухполюсного автомата отличается, поэтому мы рассмотрим каждый из них.

Однополюсный

Для такого устройства понадобится минусовой и силовой проводник. Раньше этот способ монтажа считался стандартным, во время него фазная жила проходила через входной контакт, затем на выходе шла к счетчику и разветвлялась по устройству дифференциального тока. Нулевой проводник при этом запитывается через счетчик.

Некоторые люди устанавливают пакетник на ноль, но делают это на свой страх и риск, поскольку так нарушаются правила ПУЭ. Согласно документации, в таком случае есть риск несрабатывания оборудования. Иногда ставится сразу два автоматических выключателя на плюс и минус.

Двухполюсный

В однофазной сети такого типа необходимо заземление, питание, нейтраль. На входных контактах всегда маркируются нечетные числа, они располагаются сверху. У выхода написаны четные значения.

Жила соединяется с первым входом, а потом ее зажимают в клемму. Таким же образом присоединяют нейтраль к третьей клемме. Далее жила идет через учетный прибор и переходит на все группы включателей. С четвертого контакта привод идет к заземляющему элементу, при этом проходит защитные блоки.

Подключение проводов

После покупки автоматического выключателя необходимо изучить паспорт изделия. В нем указываются правила подключения проводов к клеммам. Также в документе прописывается сечение кабеля, его тип и длина зачищаемой части. Указанные там сведения позволят предотвратить ошибку.

Для зачистки удобнее всего брать небольшой монтажный нож. Провода при этом отличают по цвету маркировки. У фазного кабеля обычно белый или коричневый цвет. Проводник бывает только зеленого, а нулевой провод синего или черного оттенка.

После зачистки конца, его вставляют в зажим контакта и фиксируют с помощью винта. Если при этом у пакетника есть гибкий провод, то следует взять профильный наконечник.

Очень часто прибор работает неисправно из-за того, что под контактный зажим попало слишком много изоляции. Также проблемы бывают в случаях, когда во время затягивания произошла деформация корпуса, обычно после этого прибор ломается. Необходимо обращать на эти моменты внимание, чтобы по неосторожности не испортить автомат.

Установка автоматического выключателя не считается сложной процедурой, поэтому допустимо ее самостоятельное выполнение даже при отсутствии должного опыта. Главное, не нарушать при этом правила ПУЭ и позаботиться о собственной безопасности.

Как правильно подключить автоматы в электрическом щите

Каждый дом или квартира требует подключения к электроснабжению, осуществляемого посредством установки распределительных коробок. С целью безопасности и учета электроэнергии в щитках устанавливаются различные модули — приборы контроля, автоматы и другие средства защитного отключения. Существует множество различных вариантов, как можно подключить автоматический выключатель в цепь электрощита.

Как подключить автомат в щитке без ошибок

Современные распределительные электрощиты оснащаются различными модулями учета и защиты. Таковыми являются системы защитного отключения, различные реле, автоматические выключатели и многофункциональные автоматы. Часто происходит их ошибочное подключение, вследствие чего нарушается работоспособность целого устройства.

При техобслуживании щитов неоднократно замечались нарушения монтажа сторонних модулей, приводивших к нестабильности работы системы. Подсоединение автоматических устройств не подразумевает особых знаний, тем более многие оснащены инструкцией или схемой подключения. Теоретически электрики знают, как правильно подключить автомат в электрическом щите, но в практике по невнимательности либо в спешке часто допускают ошибки.

Подключение автоматов в щитке вход сверху или снизу

Перед тем как подключать автомат сверху или снизу, рекомендуется осмотреть соединительные гнезда. Автоматические модули отключения имеют одну или несколько пар соединительных контактов. Одни являются фиксированными, другие подвижными, что часто приводит к заблуждению. Согласно пункту 3.1.6 правил установки электрооборудования, при одностороннем включении, подводка цепи на распределительную коробку должна осуществляться к неподвижным контактам.

Данное условие распространяется как на подключение автоматов, так и сторонние модули защиты. Иногда встречаются исключения, зависящие от марки, даты изготовления и других технических факторов. Чтобы верно смонтировать автомат в щиткесвоими руками, нужно разобраться, где находиться подвижный и неподвижный контакты.

На примере АВ серии ВА47-29, изготавливаемых фирмой Iek, можно убедиться, что верхний контакт является фиксированным, соответственно нижний будет подвижным. Это определяется по маркировке на самом тумблере. Идентичное расположение клемм имеют многие изготовители. На них устанавливают условное обозначение, подтверждающее назначение и расположение соединительных клемм. Аналогичными изготовителями являются компании Schneider Electric и Hager.

Средства УЗО предназначены для предотвращения коротких замыканий или перегрузок цепи. При возникновении угрозы скачков напряжения, срабатывает специальный разъединитель, локализующийся внутри блока. Его действие основано на тепловой или электромагнитной индукции. При этом неважно, к какой клемме будет подключена фаза. Поэтому включение автомата сверху или снизу не имеет существенной разницы, и в обоих случаях произойдет его отключение.

Почему не рекомендуется подключать АВ снизу

Некоторые модели современных изготовителей допускают подключение автоматов в распределительных щитах к нижним клеммам. Они оснащены специальными фиксирующими рейкамиили шинами.

Такое подключение к автоматам в щитке перечит правилам ПУЭ, но не запрещает осуществлять соединение на нижний контакт. Данное правило работает как общепринятый порядок, благодаря которому, опытный электрик понимает, что перед обслуживанием электрощита необходимо обесточить его. Первое, что он сделает — отключит автомат, предполагая, что фаза находитсясверху. Следовательно, после отключения на нижних контактах и отходящих цепях, напряжение отключится.

Если представить ситуацию, когда нижняя клемма используются для подключения фазных проводов, электриком, который не счел нужным соблюдать правила подключения согласно ПУЭ. Когда пришло время заменить автомат, другой специалист по привычке отключает питание верхнего контакта и пытается отсоединить автомат, касаясь нижних контактов голыми руками. В результате получает поражение электрическим током. Вот почему принято соблюдать правила, установленные в ПУЭ.

При Союзе все автоматические выключатели имели один стандарт, который предполагал расположение неподвижных клемм сверху. Теперь, учитывая разнообразие и широкий ассортимент АВ импортных производителей, трудно сказать, где какой расположен контакт. Одни компании придерживаются общепринятых правил, другие наоборот пытаются разнообразить свою продукцию, внося свои новшества.

На промышленных предприятиях вместо обычных автоматов защиты ставят рубильники, питание которых подключается по всем правилам ПУЭ. Если же сделать наоборот и перевернуть РБ, то его положение будет выглядеть непривычным и даже быть неудобным. Если посмотреть опытным глазом сразу видно правильность подключения. Если рубильник выставлен правильно, то, отключив его, можно быть уверенным, что нижние контакты остались без напряжения.

Подключаем провода к автомату кабель с монолитной жилой

При установке предохранительных устройств, нередко совершаются идентичные ошибки при подключении автомата. Чтобы не повторить их в будущем, стоит рассмотреть конкретныепримеры, которые совершаются намного чаще других.

Попадание изоляции под контакт — ошибка?

Самой частой ошибкой при установке автомата в электрощитке является наличие изоляции, попавшей под крепление контакта. Часто случается так, что при установке автоматических выключателей либо смены коробки, спустя время, внутри него происходит выгорание проводки. Это случается, когда концы проводов плохо зачищены и частицы изоляции попадают под фиксатор, тем самым ухудшая плотность соединения. В связи с этим и происходит плавление изолирующего слоя электропроводкии изоляции автомата, что может вызвать возгорание.

Чтобы не сделать подобных ошибок, необходимо тщательно очистить концы проводов подсоединяемых к автоматической защите, после чего убедиться, что на зачищенных концах не осталось изолирующих частиц. Очистив изоляцию, формируетесоединения, хорошо затянув винтовым зажимом.

Почему нельзя подключать несколько жил разных сечений на одну клемму?

Иногда возникает потребность установки нескольких автоматов, питаемых одной жилой и для этого целесообразно употреблять специальные рейки или гребенчатые шины. Однако они редкооказываются в наличии, поэтому приходится воспользоваться обычными перемычками — кусочками проводов, соединяющих питание с АВ.

Такое соединение можно осуществить в щитке своими руками. Для этого потребуются перемычки из электропровода идентичной площади поперечного сечения. Чтобы изготовить перемычку необязательно обрезать, очищать и соединять каждый кусочекмежду собой. Достаточно отмерить необходимую длину, чтобы хватило объединить все контакты АВ, а затем, придав необходимую форму, зачистить провод на изгибах, вставляющихся в зажимы автоматов. Таким образом, выходит целостная, непрерывная перемычка.

Не рекомендуется соединять автоматы посредством жил различного сечения. Когда концы будут фиксироваться в клеммах, толстые жилы затянутся хорошо, а жилы меньшего сечения, расположенные рядом окажутся ослабленными. Впоследствии, на этом месте начнет плавиться оболочка проводов и контактов АВ, что может спровоцировать возгорание.

При установке АВ в квартире или частном доме, применяют проводку сечением 2.5 мм2. Это обуславливается нагрузкой, объемом затрачиваемой энергии, а также указывает, на сколько ампер нужно ставить автомат.

Монтаж

Перед монтажом защитных устройств необходимо заранее определить, сколько проводов можно подключить к автомату, как будут соединяться питательные жилы, только после этого думать о подсоединении АВ к электроцепи. Если есть какие-то сомнения, то лучше обратится к основам установки электрооборудования. В них подробно описано, как правильно подключать автоматы в электрическом щите, подготавливать провода и осуществлять обслуживание электрощитов.

Для установки автомата в электрощит потребуются некоторые инструменты и материалы:

  1. Кабели одного сечения для основной цепи и перемычек при монтаже нескольких АВ.
  2. Изоляционная лента.
  3. Нож для очистки концов от изоляции.
  4. Отвертки различных типов — крестовая или шлицевая.
  5. Приборы для определения фазы — индикатор или мультиметр.
  6. Пассатижи или обычные кусачки.

Для того чтобы понять какие действия необходимо выполнять в разных ситуациях, нужно рассмотреть разные способы подключения — однополюсный и двухполюсный.

Однополюсный

При однополюсном подключении, необходимо наличие минусового и силового проводника. Такой способ использовался ранее и являлся единым стандартом, где фазная жила соединялась с входным контактом АВ, затем проходила сквозь выходной контакт, шла к электросчетчику и разводилась по УЗО. Нулевой проводник также запитывается посредством подключения через счетчик.

Иногда допускается монтаж АВ на нулевой проводник, хотя это перечит правилам, указанным в ПУЭ, где сказано, что расцепители ставятся тогда, когда при срабатывании будут обесточиваться всепроводники относящиеся к данной цепи. Многие устанавливают два автомата, один на плюс, второй на минус. Поэтому стоит задуматься, нужно ли ставить автоматы на ноль, когда существуетугроза несработки оборудования согласно описанию ПУЭ.

Двухполюсный

При таком подключении АВ в однофазных сетях, применяют три типа проводника — заземление, питание и нейтраль. Входные контакты, расположенные на верхней части АВ, маркированы нечетными числами, а выход — четными.

Питающая жила соединяется с входом 1, после чего плотно зажимается в клемме. Идентичным способом подсоединяется нейтраль, подходящая к клемме 3. Затем силовая жила проводится через прибор учета и равномерно разводится по всем группам включателей. С контакта 4, желто-зеленый провод присоединяется к заземляющей шине, посредством прохождения через трехфазные считывающие и защитные блоки.

Особенности схем подключения

Для подключения домов к электросети обычно используют самонесущие изолированные провода, отходящие от воздушных линий электропередач. Несмотря на преимущественные характеристики СИП, не рекомендуется их подключение и установка автоматов напрямую. Это объясняется тем, что в процессе длительной эксплуатации алюминиевые жилы начинают перегреваться. При этом происходит плавление изолирующего слоя, приводящее к возгоранию или неисправности АВ.

Во избежание подобных случаев используют специальные переходники, соединяющие медный и алюминиевый провода. Такая схема подключения автоматов обезопасит дальнейшее обслуживание электрощита и увеличит эксплуатационный период УЗО.

Исходя из вышеописанного, можно сказать, что монтаж автоматов не имеет особой сложности, поэтому его вполне можно осуществить самостоятельно. Главное не забывать основные правила подключения АВ: использовать проводники одинакового сечения, не ставить автомат на нулевую жилу и осуществлять подключение согласно ПУЭ. Также стоит учесть распространенные ошибки и соблюдать меры безопасности при работе с электрическим током.

Автоматический выключатель подключение снизу или сверху

Распределительный щит трудно представить без современных модульных устройств защиты, таких как автоматические выключатели, устройств защитного отключения, дифференциальных автоматов и всевозможных реле защиты. Но далеко не всегда эти модульные устройства подключаются правильно и надежно.

В виду обслуживания электрических щитков мне иногда приходится сталкиваться с ошибками подключения автоматических выключателей, которые в них установлены. Казалось бы, как можно неправильно подключить обычный однополюсный автомат? Зачистил кабель на определенную длину, вставил в клеммы, затянул надежно винты.

Но как бы это странно не звучало, большинство людей имеет «корявые» руки и качество сборки щитов оставляет желать лучшего. Хотя на самом деле все мы совершаем или совершали ошибки в той или иной отрасли, и как говорится в известной пословице: «не ошибается тот, кто ничего не делает».

Приветствую всех друзья на сайте « Электрик в доме ». В данной статье рассмотрим, как подключить автомат в щитке и разберем несколько вариантов самых распространенных и грубых ошибок.

Подключение автоматов в щитке – вход сверху или снизу?

Первое с чего бы хотел начать это правильность подключения автомата в принципе. Как известно автоматический выключатель имеет два контакта для подключения подвижный и неподвижный. На какой из контактов необходимо подключать питание к верхнему или нижнему? На сегодняшний день споров по этому поводу развелось очень много. На любом электротехническом форума куча вопросов и мнений на этот счет.

Обратимся за советом к нормативным документам. Что сказано в ПУЭ по этому поводу? В 7-м издании ПУЭ пункт 3.1.6. сказано:

Как видно в правилах сказано, что питающий провод при подключении автоматов в щитке должен присоединяться, как правило, к неподвижным контактам. Это также относится ко всем узо, дифавтоматам и прочих устройств защиты. Из всей этой вырезки непонятно выражение «как правило». То есть вроде, как и должно, но в некоторых случаях может быть и исключение.

Чтобы понимать, где расположен подвижный и неподвижный контакт нужно представлять внутреннее устройство автоматического выключателя. Давайте на примере однополюсного автомата рассмотрим, где находится неподвижный контакт.

Перед нами автомат серии ВА47-29 фирмы iek. Из фото понятно, что неподвижным контактом у него является верхняя клемма, а подвижным контактом – нижняя клемма. Если рассмотреть электрические обозначения на самом выключателе, то здесь тоже видно, что неподвижный контакт находится сверху.

У автоматических выключателей других фирм производителей аналогичные обозначения на корпусе. Взять, например автомат фирмы Schneider Electric Easy9, у него неподвижный контакт также находится сверху. Для УЗО Schneider Electric все аналогично сверху находятся неподвижные контакты, а снизу подвижные.

Другой пример, защитные устройства фирмы Hager. На корпусе автоматических выключателей и УЗО hager также можно увидеть обозначения, из которых понятно, что неподвижные контакты находятся сверху .

Давайте разберемся, с технической стороны есть ли значение, как подключить автомат сверху или снизу.

Автоматический выключатель защищает линию от перегрузок и коротких замыканий. При появлении сверхтоков реагируют тепловой и электромагнитный расцепитель, расположенные внутри корпуса. С какой стороны будет подключено питание сверху или снизу для срабатывания расцепителей разницы абсолютно нет. То есть с уверенностью можно сказать, что на работу автомата не влияет, на какой контакт будет подведено питание.

По правде говоря, должен отметить, что производители современных «брендовых» модульных устройств, такие как ABB, Hager и прочие допускают подключение питания к нижним клеммам. Для этого на автоматах имеются специальные зажимы, предназначенные под гребенчатые шины.

Почему же в ПУЭ советуют подключение выполнять на неподвижные контакты ( верхние )? Такое правило утверждено в целях общего порядка. Любой образованный электрик знает, что при выполнении работ необходимо снять напряжение с оборудования, на котором будет работать. «Залазя» в щиток человек интуитивно предполагает наличие фазы сверху на автоматах. Отключив АВ в щитке, он знает, что напряжения на нижних клеммах и все что от них отходит, нет.

Теперь представим, что подключение автоматов в распределительном щите Вам выполнял электрик дядя Вася, который подключил фазу к нижним контактам АВ. Прошло некоторое время (неделя, месяц, год) и у Вас появилась необходимость заменить один из автоматов (или добавить новый). Приходит электрик дядя Петя, отключает нужные автоматы и уверенно лезет голыми руками под напряжение.

В недалеком советском прошлом у всех автоматов неподвижный контакт располагался вверху (например, АП-50). Сейчас по конструкции модульных АВ не разберешь где подвижный, а где неподвижный контакт. У АВ которые мы рассматривали выше, неподвижный контакт был расположен сверху. А где гарантии, что у китайских автоматов неподвижный контакт будет расположен сверху.

Поэтому в правилах ПУЭ подключение питающего проводника к неподвижным контактам подразумевает лишь подключение на верхние клеммы в целях общего порядка и эстетики. Я сам сторонник подключения питания к верхним контактам автоматического выключателя.

Для тех, кто со мной не согласен вопрос на засыпку, почему на электрических схемах питание на автоматы подключают именно на неподвижные контакты.

Если взять, например обычный рубильник типа РБ, который установлен на каждом промышленном объекте, то его никогда не подключат верх ногами. Подключение питания к коммутационным аппаратам такого рода полагает только к верхним контактам. Отключил рубильник и ты знаешь, что нижние контакты без напряжения.

Подключаем провода к автомату – кабель с монолитной жилой

Как выполняет подключение автоматов в щитке большинство пользователей? Какие ошибки можно при этом допустить? Давайте разберем здесь ошибки, которые наиболее часто встречаются.

Ошибка – 1. Попадание изоляции под контакт.

Все знают, что перед тем как подключить автомат в щитке нужно снять изоляцию с подключаемых проводов. Казалось бы, здесь нет ничего сложного, зачистил жилу на нужную длину, затем вставляем ее в зажимную клемму автомата и затягиваем ее винтом, обеспечивая тем самым надежный контакт.

Но встречаются случаи, когда люди в недоумении, почему выгорает автомат, когда все правильно подключено. Или почему периодически пропадает питание в квартире, когда проводка и начинка в щитке абсолютно новые.

Одна из причин вышеописанного попадание изоляции провода под контактный зажим автоматического выключателя. Такая опасность в виде плохого контакта несет в себе угрозу оплавления изоляции, не только провода, но и самого автомата, что может привести к пожару.

Чтобы этого исключить нужно, следить и проверять, как затянут провод в гнезде. Правильное подключение автоматов в распределительном щите должно исключать такие ошибки.

Ошибка – 2. Нельзя подключать несколько жил разных сечений на одну клемму АВ.

Если возникла необходимость подключить несколько автоматов стоящих в одном ряду от одного источника (провода) для этой цели как невозможно лучше подойдет гребенчатая шина. Но такие шины не всегда есть под рукой. Как объединить несколько групповых автоматов в таком случае? Любой электрик, отвечая на этот вопрос, скажет сделать самодельные перемычки из жил кабеля.

Чтобы сделать такую перемычку используйте куски провода одинакового сечения, а лучше вообще не разрывайте его по всей длине. Как это сделать? Не снимая с провода изоляцию, формируете перемычку нужной формы и размеров (по количеству ответвлений). Затем зачищаем изоляцию с провода в месте перегиба на нужную длину, и у нас получается неразрывная перемычка из цельного куска провода.

Никогда не объединяйте автоматы перемычками кабелем разного сечения. Почему? При затягивании контакта хорошо зажмется жила с большим сечением, а та жила, у которой сечение меньше будет иметь плохой контакт. Как следствие оплавление изоляции не только на проводе, но и на самом автомата, что несомненно приведет к пожару.

Пример подключения автоматических выключателей перемычками из разных сечений кабеля. На первый автомат приходит «фаза» проводом 4 мм2, а на другие автоматы уже идут перемычки проводом 2.5 мм2. На фото видно, что перемычка из проводов разного сечения . Как следствие плохой контакт, повышение температуры, оплавление изоляции не только на проводах, но и на самом автомате.

Для примера попробуем затянуть в клемме автоматического выключателя две жили с сечением 2.5 мм2 и 1.5 мм2. Как бы я не старался обеспечить надежный контакт в этом случае, у меня ничего не получалось. Провод сечением 1.5 мм2 свободно болтался.

Еще один пример на фото дифавтомат, в клемму которого воткнули два провода разного сечения и попытались все это дело надежно затянуть. В результате чего провод с меньшим сечением болтается и искрит.

Ошибка – 3. Формирование концов жил проводов и кабелей.

Этот пункт, скорее всего, относится не к ошибке, а к рекомендации. Для подключения жил отходящих проводов и кабелей к автоматам мы снимаем с них изоляцию примерно на 1 см, вставляем оголенную часть в контакт и затягиваем винтом. По статистике 80 % электриков именно так и подключают.

Контакт в месте соединения получается надежный, но его дополнительно можно улучшить без лишних затрат времени и средств. При подключении к автоматам кабелей с монолитной жилой сделайте на концах U-образный загиб.

Такое формирование концов увеличит площадь соприкосновения провода с поверхностью зажима, а значит контакт будет лучше. P.S. Внутренние стенки контактных площадок АВ имеют специальные насечки. При затягивании винта эти насечки врезаются в жилу, благодаря чему надежность контакта увеличивается.

Присоединение к автомату многожильных проводов

Для разводки щитов электрики часто отдают предпочтение гибкому проводу с многопроволочной жилой типа ПВ-3 или ПуГВ. С ним легче и проще работать, чем с монолитной жилой. Но здесь есть одна особенность.

Основная ошибка, которую допускают новички в этом плане, подключают многожильный провод к автомату без оконцевания. Если обжать голый многожильный провод как он есть то при затягивании жилки передавливаются и обламываются, а это приводит к потере сечения и ухудшению контакта.

Опытные «спецы» знают, что затягивать голый многожильный провод в клемме нельзя. А для оконцевания многопроволочных жил нужно применять специальные наконечники НШВ или НШВИ.

Корме того если существует необходимость подключения двух многожильных провода к одному зажиму автомата для этого нужно использовать двойной наконечник НШВИ-2. С помощью НШВИ-2 очень удобно формировать перемычки для подключения нескольких групповых автоматов.

Пайка проводов под зажим автомата – ERROR (ошибка)

Отдельно хотел бы остановиться на таком способе оконцевания проводов в щите как пайка. Так уж устроена человеческая натура, что люди на всем стараются сэкономить и далеко не всегда хотят тратиться на всевозможные наконечники, инструменты и всякую современную мелочевку для монтажа.

Для примера рассмотрим случай, когда электрик из ЖЭКа дядя Петя выполняет разводку электрического щитка многожильным проводом (или подключает отходящие линии в квартиру). Наконечников НШВИ у него нет. Но под рукой всегда есть старый добрый паяльник. И электрик дядя Петя не находит другого выхода как облудить многопроволочную жилу, запихивает все это дело в контактный зажим автомата и затягивает от души винтом. Чем опасно такое подключение автоматов в распределительном щите?

При сборке распределительных щитов НЕЛЬЗЯ опаивать и облуживать многопроволочную жилу. Дело в том, что луженое соединение со временем начинает «плыть». И чтобы такой контакт был надежный его постоянно нужно проверять и подтягивать. А как показывает практика, про это всегда забывают. Пайка начинает перегреваться, припой плавится, место соединения еще больше ослабляется и контакт начинает «выгорать». В общем, такое соединение может привести к ПОЖАРУ.

Поэтому если при монтаже используется многожильный провод то для его оконцевания нужно применять наконечники НШВИ.

Т.к. вы неавторизованы на сайте. Войти.

Т.к. тема является архивной.

Я очень люблю расключать питание на автоматических выключателях снизу. На это есть ряд причин.

а) мне удобно
б) удобно закидывать на автомат сверху отходящие линии
в) экономия проводов в ущерб стоимости шин
г) меркантильный интерес
. ну и прочее.

И каждый раз слышу одно и тоже

– мы так 30 лет делаем, а почему не знаем
– вот сверху и табу
– про какие-то подвижные части . хотя в инструкциях написано черным по белому по фигу с какой стороны питание

Хотя я видел у педантных немцев расключение питания снизу, и тоже так делаю))). ¶

не вопрос
ПУЭ 7 3.1.6
Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

У большинства автоматических выключателей и узо, известных мне на сегодняшний день, расположение не подвижного контакта сверху. ¶

Хороший ответ . убил двух зайцев сразу (конкретный пункт в пуэ и про подвижные части).

Чуточку подкорректирую картинку насчет подвижных /не подвижных контактов. ¶

Не на всех АВ так можно. На автоматах советской промышленности например (КЭАЗ и Контактор до сих пор такие делают) на некоторых строго определено подводить сверху, на некоторых подводить можно снизу, но при этом динамическая стойкость к токам КЗ раза в 1,5 – 2 падает.
Так что вот откуда этот миф))), а на современных аппаратах вообще без разницы вроде, хотя думаю при таких вариантах расключения лучше все таки смотреть инструкцию.

P.S. С аккаунта супруги пишу))) ¶

давай-те чуть-чуть сузим круг

моя тема касается ТОЛЬКО АВ

1) модульного исполнения на дин-рейку
2) от 1 до 63 Ампер включительно
3) любого производителя ¶

Ну в таком «узком кругу» конечно без вариантов.

Я же просто написал предположение откуда миф пошел))) ¶

вниз головой тоже можно
также можно набросать миллион причин подводить питание сверху.
1.у нас даже схемы электрические рисуют сверху-вниз и слева -направо. и у фрицев также
2.те же шкафы распределения питания(возьмем на пост. ток): ввод сверху и пошло вниз деление на секции, отходящие присоединения. т.к. кабели заходят с кабельного полуэтажа снизу(редко сверху с полок).
3. у меня дома тоже приход-уход сверху(питание и отходящие), но ничто мне не помешало завести питание сверху на АВ))
и т.д.

30 лет делаем и не знаем: знаем. традиционно так сложилось, что при отключении автомата снизу не должно быть напряжения. можно спокойно работать. лень искать,но ПУЭ это еще не все нормативные документы, граждане электрики. это только общая часть

мне вот больше другая вещь «понравилась»: на одном военном объекте попались АВ отечественного производства, у которых блок-контакты состояния работают крест-накрест(Х). такое вижу в первый раз, даже на заводе люди накололись, кто собирал ячейки
да и сами АВ – ГО..О редкостное, работают через раз и не в своем номинале. теперь в каждом селе делают ¶

Установить и правильно подключить автомат в распределительном шкафу – не проблема. С этим может справиться даже обычный человек, который с электричеством сталкивается только, когда вставляет в розетку штепсельную вилку от бытового прибора или включает освещение. Но вопрос, как правильно подключить автомат, все равно часто звучит от обывателей. Все дело в том, что даже среди электриков происходят споры о способах подсоединения. То есть, подводить питающий провод к автоматическому выключателю сверху или снизу.

Давайте не будем спорить здесь, а просто обратимся к правилам устройства электроустановок (ПУЭ), где в одном из пунктов, а, точнее, в пункте 3.1.6, четко все описано. Ни фото ниже нами сделана выписка из этого пункта ПУЭ.

Итак, правила рекомендуют подключать питающий провод к неподвижному контакту в автомате. А он расположен именно сверху. Но давайте до конца быть честными, и еще раз прочитаем правило. В нем нет строго ограничения, то есть, оно носит только рекомендательный характер. Поэтому отвечая на вопрос, как подключить автоматический выключатель снизу или сверху, можно использовать два варианта. Тем более, прибор будет отключать сеть от перегрузок и короткого замыкания в любом случае в независимости от схемы подключения.

И все же, почему в ПУЭ этот пункт присутствует? Чтобы ответить на этот вопрос, необходимо рассмотреть устройство автоматического выключателя.

Устройство автомата

Чтобы перейти к схемам подключения автомата, необходимо разобраться в первую очередь с его конструкцией. А так как нас интересует именно подключение проводов к нижним или верхним контактам прибора, то надо понимать, что оба контакта (подвижный и неподвижный) изготавливаются из разных металлических сплавов.

Когда дело касается сети переменного тока, то при коммутации автомата его контакты выгорают равномерно, и здесь разницы, куда подключать провода, нет никакой. Если автомат располагается в схеме с постоянным током, то выбор контакта подключения – важная составляющая правильной и долгосрочной работы самого прибора. При высокой величине силы тока наблюдается перенос металлов с одного контакта на другой, поэтому в таких сетях подключение питающих проводов надо производить только сверху, то есть, через неподвижный контакт.

Теперь переходим непосредственно к самому устройству автомата. Чтобы вы поняли, что находится внутри этого прибора, рекомендуем ознакомиться с рисунком ниже.

Два основных элемента, которые выполняют защитные функции автомата – это расцепители электромагнитный и тепловой.

Электромагнитный расцепитель

Этот элемент является защитным, который срабатывает в том случае, если в электрической цепи, куда был установлен сам автомат, появилось короткое замыкание. Именно в этот момент в цепи появляются токи огромной величины (практически превышающие номинальное значение тока в тысячи раз). Чтобы не сгорела проводка и бытовые приборы, включенные в розетки, расцепитель мгновенно отключает подающую сеть. Время отключения – это миллисекунды. Кстати, существует определенная маркировка по времятоковым характеристикам. Обозначается она буквами латинского алфавита и наносится на корпус самого автоматического выключателя. В быту чаще используются типы «А», «В», и «С».

Сама конструкция электромагнитного расцепителя – это сердечник (соленоид), вокруг которого расположены витки пружины. Соленоид связан напрямую с подвижным контактом автомата. А вот пружина соединяется последовательно с силовыми контактами и тепловым расцепителем. Номинальный ток слишком мал, чтобы созданный внутри катушки магнитный поток, смог втянуть сердечник и тем самым разомкнуть контакты. Как только в сети возникает короткое замыкание, то есть, появляется тог огромной величины, внутри катушки (пружины) возникают большие магнитные потоки, пружина сжимается и втягивает в себя сердечник, который в свою очередь тут же размыкает силовые контакты. А, значит, сеть будет обесточена.

Тепловой расцепитель

Этот элемент предназначается для защиты электрической цепи, если в ней начинают действовать большие нагрузки, отличные от номинальной. Это расцепитель, так сказать, замедленного действия. Он будет определенное время держать перегруз, и если последний не снизится до номинального значения, то отключит питание. Сразу оговоримся, что тепловой расцепитель не будет реагировать на скачки тока кратковременного действия.

Чисто конструктивно тепловой расцепитель представляет собой биметаллическую пластину, которая, по сути, является консолью. Ее свободный конец соединен с механизмом, который и будет разъединять контакты. При номинальном токе свободный конец пластины располагается близко к рычагу расцепительного механизма. Как только в цепи начнется перегрузка, пластина начинает нагреваться и изгибаться, тем самым действуя на рычаг, тот в свою очередь на механизм, а последний на контакты, размыкая их.

Вот такое достаточно сложное устройство автоматического выключателя и принцип действия.

Схемы подключения

Итак, принцип работы автоматического выключателя теперь понятен, можно переходить непосредственно к схемам его подключения. Начнем с того, что автоматы могут подключаться в однофазные и трехфазные сети. Какие автоматы для этого необходимы? Если разговор вести от однофазных сетях с напряжением в 220 вольт, то в них обычно устанавливается или однополюсный прибор, или двухполюсный. Сама схема будет зависеть от того, используется ли в ней заземляющий контур или нет.

Если в дом входят два провода (ноль и фаза), то в распределительный шкаф можно ставить однополюсный вариант. При этом фазный контур будет проходить именно через сам автомат. Если внутрь дома входит три провода (фаза, ноль и заземление), то общий автомат должен быть двухполюсным. То есть, к первой клемме прибора подключается фаза, ко второй ноль. Заземление через отдельную клеммную коробку разводится до потребителей (светильники и розетки). Далее, провода от автоматического выключателя проводятся до счетчика, затем к однополюсным автоматам, установленных по группам, но уже как было описано в первом случае. Кстати, вот ниже данная система подключения автомата.

Что касается трехфазной сети, то в данном случае лучше всего ставить трехполюсные или четырехполюсные конструкции. Здесь все точно так же, как и в случае с однофазным подключением. То есть, если в доме используется разводка без заземления, то к неподвижным контактам подключаются три фазы питающей сети. Нулевой провод разводится как отдельный контур до потребителей (розетки и лампы). Если в доме присутствует система заземления, то устанавливается четырехполюсная модель, то есть, к прибору будут подключаться три фазы и ноль, а контур заземления пойдет отдельной линией до потребителей.

Полезные советы

Иногда подключение автоматического выключателя связано с правильным проведением некоторых нюансов всего процесса. А именно подсоединением проводов к прибору. На что необходимо обязательно обратить внимание?

  • У каждой модели есть свои требования относительно сечения вставляемого провода и длины изоляционной оболочки. Это обязательно указывается в паспорте изделия.
  • Чаще всего зачищать провод надо на длину от 0,8 до 1,0 см.
  • Важно понимать, что ставить провод с изоляцией в зажим недопустимо, потому что диаметр изоляции больше диаметра самой жилы, поэтому контакт между зажимом и жилой или будет слабым, или будет полностью отсутствовать.
  • Фиксация провода в автомате производится винтом, который закручивается отверткой. После фиксации необходимо проверить качество зажима, для этого сам провод надо слегка подергать.
  • Если для подключения автомата используется многожильный проводник, то на его конец лучше всего надеть наконечник.

Заключение по теме

Итак, в этой статье мы постарались ответить на вопрос, который интересует многих, как подключить автомат правильно? Надеемся, что из предоставленной информации все понятно. И как уже было сказано выше, этот процесс не самый сложный, главное разобраться в схемах подключения.

Можно ли подключать автоматический выключатель снизу

Содержание

Каждый дом или квартира требует подключения к электроснабжению, осуществляемого посредством установки распределительных коробок. С целью безопасности и учета электроэнергии в щитках устанавливаются различные модули — приборы контроля, автоматы и другие средства защитного отключения. Существует множество различных вариантов, как можно подключить автоматический выключатель в цепь электрощита.

Как подключить автомат в щитке без ошибок

Современные распределительные электрощиты оснащаются различными модулями учета и защиты. Таковыми являются системы защитного отключения, различные реле, автоматические выключатели и многофункциональные автоматы. Часто происходит их ошибочное подключение, вследствие чего нарушается работоспособность целого устройства.

При техобслуживании щитов неоднократно замечались нарушения монтажа сторонних модулей, приводивших к нестабильности работы системы. Подсоединение автоматических устройств не подразумевает особых знаний, тем более многие оснащены инструкцией или схемой подключения. Теоретически электрики знают, как правильно подключить автомат в электрическом щите, но в практике по невнимательности либо в спешке часто допускают ошибки.

Подключение автоматов в щитке вход сверху или снизу

Перед тем как подключать автомат сверху или снизу, рекомендуется осмотреть соединительные гнезда. Автоматические модули отключения имеют одну или несколько пар соединительных контактов. Одни являются фиксированными, другие подвижными, что часто приводит к заблуждению. Согласно пункту 3.1.6 правил установки электрооборудования, при одностороннем включении, подводка цепи на распределительную коробку должна осуществляться к неподвижным контактам.

Данное условие распространяется как на подключение автоматов, так и сторонние модули защиты. Иногда встречаются исключения, зависящие от марки, даты изготовления и других технических факторов. Чтобы верно смонтировать автомат в щиткесвоими руками, нужно разобраться, где находиться подвижный и неподвижный контакты.

На примере АВ серии ВА47-29, изготавливаемых фирмой Iek, можно убедиться, что верхний контакт является фиксированным, соответственно нижний будет подвижным. Это определяется по маркировке на самом тумблере. Идентичное расположение клемм имеют многие изготовители. На них устанавливают условное обозначение, подтверждающее назначение и расположение соединительных клемм. Аналогичными изготовителями являются компании Schne >Средства УЗО предназначены для предотвращения коротких замыканий или перегрузок цепи. При возникновении угрозы скачков напряжения, срабатывает специальный разъединитель, локализующийся внутри блока. Его действие основано на тепловой или электромагнитной индукции. При этом неважно, к какой клемме будет подключена фаза. Поэтому включение автомата сверху или снизу не имеет существенной разницы, и в обоих случаях произойдет его отключение.

Почему не рекомендуется подключать АВ снизу

Некоторые модели современных изготовителей допускают подключение автоматов в распределительных щитах к нижним клеммам. Они оснащены специальными фиксирующими рейкамиили шинами.

Такое подключение к автоматам в щитке перечит правилам ПУЭ, но не запрещает осуществлять соединение на нижний контакт. Данное правило работает как общепринятый порядок, благодаря которому, опытный электрик понимает, что перед обслуживанием электрощита необходимо обесточить его. Первое, что он сделает — отключит автомат, предполагая, что фаза находитсясверху. Следовательно, после отключения на нижних контактах и отходящих цепях, напряжение отключится.

Если представить ситуацию, когда нижняя клемма используются для подключения фазных проводов, электриком, который не счел нужным соблюдать правила подключения согласно ПУЭ. Когда пришло время заменить автомат, другой специалист по привычке отключает питание верхнего контакта и пытается отсоединить автомат, касаясь нижних контактов голыми руками. В результате получает поражение электрическим током. Вот почему принято соблюдать правила, установленные в ПУЭ.

При Союзе все автоматические выключатели имели один стандарт, который предполагал расположение неподвижных клемм сверху. Теперь, учитывая разнообразие и широкий ассортимент АВ импортных производителей, трудно сказать, где какой расположен контакт. Одни компании придерживаются общепринятых правил, другие наоборот пытаются разнообразить свою продукцию, внося свои новшества.

На промышленных предприятиях вместо обычных автоматов защиты ставят рубильники, питание которых подключается по всем правилам ПУЭ. Если же сделать наоборот и перевернуть РБ, то его положение будет выглядеть непривычным и даже быть неудобным. Если посмотреть опытным глазом сразу видно правильность подключения. Если рубильник выставлен правильно, то, отключив его, можно быть уверенным, что нижние контакты остались без напряжения.

Подключаем провода к автомату кабель с монолитной жилой

При установке предохранительных устройств, нередко совершаются идентичные ошибки при подключении автомата. Чтобы не повторить их в будущем, стоит рассмотреть конкретныепримеры, которые совершаются намного чаще других.

Попадание изоляции под контакт — ошибка?

Самой частой ошибкой при установке автомата в электрощитке является наличие изоляции, попавшей под крепление контакта. Часто случается так, что при установке автоматических выключателей либо смены коробки, спустя время, внутри него происходит выгорание проводки. Это случается, когда концы проводов плохо зачищены и частицы изоляции попадают под фиксатор, тем самым ухудшая плотность соединения. В связи с этим и происходит плавление изолирующего слоя электропроводкии изоляции автомата, что может вызвать возгорание.

Чтобы не сделать подобных ошибок, необходимо тщательно очистить концы проводов подсоединяемых к автоматической защите, после чего убедиться, что на зачищенных концах не осталось изолирующих частиц. Очистив изоляцию, формируетесоединения, хорошо затянув винтовым зажимом.

Почему нельзя подключать несколько жил разных сечений на одну клемму?

Иногда возникает потребность установки нескольких автоматов, питаемых одной жилой и для этого целесообразно употреблять специальные рейки или гребенчатые шины. Однако они редкооказываются в наличии, поэтому приходится воспользоваться обычными перемычками — кусочками проводов, соединяющих питание с АВ.

Такое соединение можно осуществить в щитке своими руками. Для этого потребуются перемычки из электропровода идентичной площади поперечного сечения. Чтобы изготовить перемычку необязательно обрезать, очищать и соединять каждый кусочекмежду собой. Достаточно отмерить необходимую длину, чтобы хватило объединить все контакты АВ, а затем, придав необходимую форму, зачистить провод на изгибах, вставляющихся в зажимы автоматов. Таким образом, выходит целостная, непрерывная перемычка.

Не рекомендуется соединять автоматы посредством жил различного сечения. Когда концы будут фиксироваться в клеммах, толстые жилы затянутся хорошо, а жилы меньшего сечения, расположенные рядом окажутся ослабленными. Впоследствии, на этом месте начнет плавиться оболочка проводов и контактов АВ, что может спровоцировать возгорание.

При установке АВ в квартире или частном доме, применяют проводку сечением 2.5 мм2. Это обуславливается нагрузкой, объемом затрачиваемой энергии, а также указывает, на сколько ампер нужно ставить автомат.

Монтаж

Перед монтажом защитных устройств необходимо заранее определить, сколько проводов можно подключить к автомату, как будут соединяться питательные жилы, только после этого думать о подсоединении АВ к электроцепи. Если есть какие-то сомнения, то лучше обратится к основам установки электрооборудования. В них подробно описано, как правильно подключать автоматы в электрическом щите, подготавливать провода и осуществлять обслуживание электрощитов.

Для установки автомата в электрощит потребуются некоторые инструменты и материалы:

  1. Кабели одного сечения для основной цепи и перемычек при монтаже нескольких АВ.
  2. Изоляционная лента.
  3. Нож для очистки концов от изоляции.
  4. Отвертки различных типов — крестовая или шлицевая.
  5. Приборы для определения фазы — индикатор или мультиметр.
  6. Пассатижи или обычные кусачки.

Для того чтобы понять какие действия необходимо выполнять в разных ситуациях, нужно рассмотреть разные способы подключения — однополюсный и двухполюсный.

Однополюсный

При однополюсном подключении, необходимо наличие минусового и силового проводника. Такой способ использовался ранее и являлся единым стандартом, где фазная жила соединялась с входным контактом АВ, затем проходила сквозь выходной контакт, шла к электросчетчику и разводилась по УЗО. Нулевой проводник также запитывается посредством подключения через счетчик.

Иногда допускается монтаж АВ на нулевой проводник, хотя это перечит правилам, указанным в ПУЭ, где сказано, что расцепители ставятся тогда, когда при срабатывании будут обесточиваться всепроводники относящиеся к данной цепи. Многие устанавливают два автомата, один на плюс, второй на минус. Поэтому стоит задуматься, нужно ли ставить автоматы на ноль, когда существуетугроза несработки оборудования согласно описанию ПУЭ.

Двухполюсный

При таком подключении АВ в однофазных сетях, применяют три типа проводника — заземление, питание и нейтраль. Входные контакты, расположенные на верхней части АВ, маркированы нечетными числами, а выход — четными.

Питающая жила соединяется с входом 1, после чего плотно зажимается в клемме. Идентичным способом подсоединяется нейтраль, подходящая к клемме 3. Затем силовая жила проводится через прибор учета и равномерно разводится по всем группам включателей. С контакта 4, желто-зеленый провод присоединяется к заземляющей шине, посредством прохождения через трехфазные считывающие и защитные блоки.

Особенности схем подключения

Для подключения домов к электросети обычно используют самонесущие изолированные провода, отходящие от воздушных линий электропередач. Несмотря на преимущественные характеристики СИП, не рекомендуется их подключение и установка автоматов напрямую. Это объясняется тем, что в процессе длительной эксплуатации алюминиевые жилы начинают перегреваться. При этом происходит плавление изолирующего слоя, приводящее к возгоранию или неисправности АВ.

Во избежание подобных случаев используют специальные переходники, соединяющие медный и алюминиевый провода. Такая схема подключения автоматов обезопасит дальнейшее обслуживание электрощита и увеличит эксплуатационный период УЗО.

Исходя из вышеописанного, можно сказать, что монтаж автоматов не имеет особой сложности, поэтому его вполне можно осуществить самостоятельно. Главное не забывать основные правила подключения АВ: использовать проводники одинакового сечения, не ставить автомат на нулевую жилу и осуществлять подключение согласно ПУЭ. Также стоит учесть распространенные ошибки и соблюдать меры безопасности при работе с электрическим током.

Т.к. вы неавторизованы на сайте. Войти.

Т.к. тема является архивной.

Я очень люблю расключать питание на автоматических выключателях снизу. На это есть ряд причин.

а) мне удобно
б) удобно закидывать на автомат сверху отходящие линии
в) экономия проводов в ущерб стоимости шин
г) меркантильный интерес
. ну и прочее.

И каждый раз слышу одно и тоже

— мы так 30 лет делаем, а почему не знаем
— вот сверху и табу
— про какие-то подвижные части . хотя в инструкциях написано черным по белому по фигу с какой стороны питание

Хотя я видел у педантных немцев расключение питания снизу, и тоже так делаю))). ¶

не вопрос
ПУЭ 7 3.1.6
Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

У большинства автоматических выключателей и узо, известных мне на сегодняшний день, расположение не подвижного контакта сверху. ¶

Хороший ответ . убил двух зайцев сразу (конкретный пункт в пуэ и про подвижные части).

Чуточку подкорректирую картинку насчет подвижных /не подвижных контактов. ¶

Не на всех АВ так можно. На автоматах советской промышленности например (КЭАЗ и Контактор до сих пор такие делают) на некоторых строго определено подводить сверху, на некоторых подводить можно снизу, но при этом динамическая стойкость к токам КЗ раза в 1,5 — 2 падает.
Так что вот откуда этот миф))), а на современных аппаратах вообще без разницы вроде, хотя думаю при таких вариантах расключения лучше все таки смотреть инструкцию.

P.S. С аккаунта супруги пишу))) ¶

давай-те чуть-чуть сузим круг

моя тема касается ТОЛЬКО АВ

1) модульного исполнения на дин-рейку
2) от 1 до 63 Ампер включительно
3) любого производителя ¶

Ну в таком «узком кругу» конечно без вариантов.

Я же просто написал предположение откуда миф пошел))) ¶

вниз головой тоже можно
также можно набросать миллион причин подводить питание сверху.
1.у нас даже схемы электрические рисуют сверху-вниз и слева -направо. и у фрицев также
2.те же шкафы распределения питания(возьмем на пост. ток): ввод сверху и пошло вниз деление на секции, отходящие присоединения. т.к. кабели заходят с кабельного полуэтажа снизу(редко сверху с полок).
3. у меня дома тоже приход-уход сверху(питание и отходящие), но ничто мне не помешало завести питание сверху на АВ))
и т. д.

30 лет делаем и не знаем: знаем. традиционно так сложилось, что при отключении автомата снизу не должно быть напряжения. можно спокойно работать. лень искать,но ПУЭ это еще не все нормативные документы, граждане электрики. это только общая часть

мне вот больше другая вещь «понравилась»: на одном военном объекте попались АВ отечественного производства, у которых блок-контакты состояния работают крест-накрест(Х). такое вижу в первый раз, даже на заводе люди накололись, кто собирал ячейки
да и сами АВ — ГО..О редкостное, работают через раз и не в своем номинале. теперь в каждом селе делают ¶

Подключение автомата. Сверху? Снизу? Из покон веков принято подсоединять сверху.

1. Основная причина — когда вследствие КЗ автомат разлетится в щепки, под напряжением останутся только верхние губки (неподвижные контакты), а весь остальной механизм остаётся обесточенным. Речь идёт о «советских» АВ, например АП50, АЕ20 и т. п.

Такая же ситуация с рубильниками (например, РБ) — там такое подключение задано конструкцией, а устанавливать вверх ногами его нельзя.

2. Дополнительная причина — т. н. унификация, т. е. порядок в щитках. Любой электрик, залазя в щит, «по умолчанию» предполагает наличие фазы сверху АВ.

Конструкция модульных АВ — хрен разберёшься, где там подвижный контакт, а где неподвижный. Поэтому пункт 1 отпадает, остаётся лишь вопрос «эстетики». И как правильно выше сказали, производители допускают любой вариант подключения АВ.

Ясное дело, что при токе КЗ автомат отключится независимо от стороны подключения.

PS: никто не задумывался, почему в схемах изображают АВ именно так? (неподвижный контакт на стороне источника тока).

Автоматические выключатели, известные так же, как пакетники или автоматы, представляют собой устройства коммутации, задача которых состоит в подаче тока к элементам электросети, а при нарушении ее работы – в автоматическом обесточивании. Монтируются они, как правило, в распределительном щитке, и позволяют защитить цепь от повреждений, вызванных чрезмерными нагрузками, падением напряжения, а также коротким замыканием. В этом материале мы расскажем о том, как классифицируются это оборудование, каковы особенности его работы и как правильно подключить автоматы в электрическом щите.

Классификация автоматических выключателей

Сегодня эти устройства продаются в огромном ассортименте. Между собой они различаются по нижеперечисленным характеристикам:

  • Ток главной цепи. Он может быть переменным, постоянным или же комбинированным.
  • Способ управления. Оборудование может управляться вручную или с помощью моторного привода.
  • Метод монтажа. Устройства бывают втычными, выдвижными или стационарными.
  • Вид расцепителя. Эти элементы могут быть электронными, электромагнитными и тепловыми, а также полупроводниковыми.

  • Тип корпусной части. Она может быть модульной, литой или открытой.
  • Показатель рабочего тока. Его величина может составлять от 1,6 А до 6,3 кА.

Современные автоматы отличаются сложным механизмом защиты сети. Они обладают дополнительными возможностями, к которым относятся:

  • Возможность размыкания электроцепи на расстоянии.
  • Присутствие сигнальных контактных групп.
  • Автоматическое срабатывание защитного устройства в случае падения напряжения до критической величины.

Пошаговая схема выбора автоматического выключателя на видео:

Пакетники могут иметь различные типоразмеры, и с их помощью можно защищать электрические сети не только в квартирах и частных домах, но и на крупных объектах. Производятся эти устройства как в России, так и за рубежом.

В бытовых условиях чаще всего применяются модульные автоматические выключатели, маленькие и легкие. Название «модульные» они получили благодаря своей стандартной ширине, которая составляет 1 модуль (1,75 см).

С целью защиты электрических цепей зданий устанавливаются выключатели следующих типов:

  • Дифференциальные.
  • Автоматические.
  • УЗО.

УЗО, как сокращенно называются устройства защитного отключения, предотвращают поражение электрическим током человека, прикоснувшегося к проводнику, и не допускают возгорания окружающих предметов при утечке электричества, что может произойти в случае повреждения изоляции кабелей.

Автоматические выключатели защищают цепи от КЗ и позволяют включать и отключать питание вручную. Самым совершенным защитным устройством является дифференциальный автомат. Он сочетает в себе возможности устройства защитного отключения и обычного автоматического выключателя. Этот пакетник оборудован встроенной защитой от слишком мощного потока электронов. Управление им осуществляется за счет дифференциального тока.

В однофазных электросетях могут устанавливаться однополюсные и двухполюсные автоматы. На выбор пакетника влияет количество проводов в электрической проводке.

Защитные автоматы: устройство и принцип работы

Перед тем, как рассмотреть порядок подключения защитных автоматов в электрическом щитке, разберемся, как они устроены и по какому принципу происходит их срабатывание.

В состав изделия входят такие элементы:

  • Корпус.
  • Система управления.
  • Верхние и нижние клеммы.
  • Устройство коммутации.
  • Дугогасительная камера.

В качестве материала для изготовления корпусной части и системы управления используется пластмасса, устойчивая к возгоранию. В составе устройства коммутации имеются подвижные контакты, а также неподвижные.

На паре контактов, являющихся полюсом пакетника, установлена дугогасительная камера. При разрыве контактов под нагрузкой возникает электрическая дуга, которая гасится камерой. Последняя состоит из стальных пластин, изолированных меж собой и находящихся на одинаковом расстоянии. Пластины камеры способствуют охлаждению и угасанию электрической дуги, которая появляется при неисправностях. Автоматы могут иметь одну, две или четыре пары контактов.

У двухполюсных автоматов имеется две пары контактов: одна – подвижная, вторая – неподвижная.

Такой выключатель оборудован индикатором положения, который позволяет легко узнать, включен автомат (красная лампочка) или выключен (зеленая).

Наглядно принцип работы автоматических выключателей на видео:

Расцепитель

Для отключения автомата при возникновении аварийных ситуаций устройство комплектуется расцепителем. Существует несколько типов этих механизмов, конструктивно отличающихся друг от друга и работающих по различным принципам.

Тепловой расцепитель

Конструктивно этот элемент включает в себя спрессованную из двух разных металлов с неодинаковым коэффициентом нелинейного расширения пластину, которая подключается в цепь под нагрузкой и называется биметаллической. При работе расцепителя проходящий через пластину поток электронов нагревает ее.

Поскольку коэффициент расширения металла меньше, чем у пластины, она выгибается в его сторону. Когда номинал тока превышает допустимую величину, изогнутая пластина, воздействуя на спусковой механизм, отключает автомат. Если температура окружающего воздуха отклоняется от нормы, выключатель также срабатывает.

Магнитный расцепитель

Расцепитель этого типа представляет собой катушку, в состав которой входит изолированная обмотка из меди и сердечник. Так как по ней протекает нагрузочный ток, подключаться в цепь она должна последовательно с контактами. Если ток нагрузки превысит допустимый номинал, сердечник переместится под воздействием магнитного поля расцепителя и посредством отключающего устройства разомкнет контакты пакетника.

Селективные автоматы с полупроводниковым расцепителем

Эти устройства оборудованы специальной панелью, на которой устанавливается время отключения автомата. Они обеспечивают временную задержку в случае короткого замыкания, что позволяет при возникновении нештатной ситуации отключить аварийный участок, не прекращая при этом подачи питания на объект.

Автоматический выключатель без расцепителя называется разъединителем.

Как выбрать автомат?

Перед тем, как начинать монтаж защитных автоматических выключателей, нужно выбрать их, а также разобраться в тонкостях подсоединения. Люди, которые хотят узнать, как подключить автоматический выключатель, задаются различными вопросами. Например, до или после счетчика подключаются автоматы в распределительном щите? Должен ли ставиться автомат ввода? Эти и другие нюансы подключения интересуют пользователей.

Основные параметры автоматических выключателей

К характеристикам защитных автоматов относятся:

  • Номинальная величина тока (в Амперах).
  • Рабочее напряжение электросети (в Вольтах).
  • Максимальный ток короткого замыкания.
  • Предельная коммутационная способность.
  • Число полюсов.

Предельная коммутационная способность характеризуется максимально допустимой величиной, при которой выключатель способен работать. ПКС бытовых устройств может составлять 4,5, 6 или 10 кА.

При выборе чаще всего руководствуются такими основными показателями, как ток отключения при КЗ, а также ток перегрузки.

Причиной возникновения перегрузки становится подключение к электросети устройств с чрезмерно высокой суммарной мощностью, что приводит к превышению допустимой температуры контактных соединений и кабелей.

Учитывая это, нужно устанавливать в цепь пакетник, величина тока отключения которого не меньше расчетной, а лучше – если несколько превышает ее. Чтобы определить расчетный ток, нужно суммировать мощность приборов, которые предполагается подключить к цепи (для каждого из них этот показатель имеется в паспорте). Полученное число нужно разделить на 220 (стандартная величина напряжения в бытовой сети). Полученный результат и будет величиной тока перегрузки. Следует также учитывать, что он не должен превышать номинал тока, который способен выдержать провод.

Величина тока отключения при КЗ – это показатель, при котором защитный автомат отключается. Расчет тока КЗ производится при проектировании линии по формулам и справочным таблицам, а также с использованием специальной аппаратуры. Исходя из полученной величины, определяется тип защиты. На небольших объектах и в бытовых сетях используются автоматы типа B или C.

Установка защитного автомата в электрощитке своими руками

В первую очередь нужно определиться с подсоединением проводов питания, и лишь после этого разбираться, как подключить к сети автомат. Если вы не знаете, сверху или снизу пакетника должны подключаться питающие проводники, обратитесь к требованиям ПУЭ, которые являются основным руководящим документом при проведении электромонтажных работ.

В Правилах четко оговорено, что кабель питания должен присоединяться к неподвижным контактам, и это требование должно выполняться в любой схеме подключения защитных автоматов. В любом современном устройстве неподвижные контакты расположены сверху.

Для установки понадобятся контрольные приборы и инструмент, в который входят:

  • Монтажный нож.
  • Отвертки (крестовая и шлицевая).
  • Мультиметр или индикаторная отвертка.

Итак, как же правильно подключить автомат? Рассмотрим установку защитных автоматов в однофазных сетях.

Двухфазное и трехфазное подключение более сложное, и желательно, чтобы оно выполнялось специалистом.

Однополюсный автомат

Установка производится в сети, где для выполнения ввода задействовано два кабеля: нулевой (PEN) и фазный (L). Такая система существует в зданиях старой постройки. Питающий проводник подсоединяется к входной клемме автомата, затем с выходной он проходит через счетчик, после чего разводится по защитным устройствам конкретных групп. К PEN запитывающий нулевой кабель также подводится через электрический счетчик.

Применение одно, двух и трехполюсных автоматов на видео:

Двухполюсный автомат

Рассматриваем установку защитного устройства в однофазной сети, где для ввода задействовано три проводника: фазовый, нулевой и кабель заземления. Входные клеммы, обозначенные на устройстве цифрами 1 и 3, расположены в верхней части автомата, а выходные (2 и 4) – в нижней.

Питающий кабель подходит к входной клемме 1 и надежно фиксируется на ней. Аналогичным образом нулевой провод крепится на клемме 3. Фаза проходит через счетчик электричества. Питание равномерно распределяется по группам выключателей. С клеммы 4 нулевой кабель подключается к шине N, проходя через счетчик и УЗО.

Подсоединение проводов

К любому автоматическому выключателю прилагается паспорт, в котором прописано, как правильно подключать провода к его клеммам. В документе имеются все нужные сведения – от сечения кабелей и типа их соединения до длины зачищаемой части проводника.

Зачистка концов проводов для подсоединения бытовых автоматов производится монтажным ножом примерно на 1 см. Различить проводники можно по их цветовой маркировке:

  • Фазный кабель – белый или коричневый.
  • Нулевой провод – черный, синий или голубой.
  • Проводник заземления – зеленый.

Зачистив ножом конец провода, его нужно вставить в зажим контакта и закрепить с помощью фиксирующего винта. Винты закручиваются отверткой. После закрепления провод нужно немного подергать, чтобы убедиться в надежности фиксации. Если для подключения к пакетнику используется гибкий провод, то, чтобы увеличить надежность соединения, следует использовать специальные наконечники.

Чтобы установка автоматов в электрощитке и подсоединение к ним кабелей были выполнены правильно, нужно помнить о распространенных ошибках и не допускать их при работе:

  • Попадание изоляционного слоя под контактный зажим.
  • Слишком большое усилие при затягивании, которое может привести к деформации корпуса и, как следствие, к поломке автомата.

Нередко в распределительном щите монтируется сразу несколько защитных устройств. Для их соединения неопытные специалисты используют перемычки.

В принципе, это не является ошибкой, но все же в этом случае лучше использовать специальную шину, нарезанную по нужному размеру – так называемую гребенку. С ее помощью провода подключаются к пакетникам в нужной последовательности.

Особенности подключения СИП к вводному автомату

Самонесущий изолированный провод широко используется для передачи электричества в домашнюю сеть от воздушных ЛЭП вместо обычного кабеля. При всех достоинствах этого проводника подключение СИП к защитному автомату напрямую производить не следует, поскольку в ходе эксплуатации алюминий начинает «плыть», а изоляция обгорает. В конечном итоге это приводит в лучшем случае к выходу автомата из строя, а в худшем – к возгоранию. Проще всего избежать такой неприятности, подключив СИП к автомату через специальную переходную гильзу.

Такое приспособление обеспечивает переход с алюминиевого провода на медь. Купить его можно в специализированном магазине.

Пошагово монтаж автомата – на следующем видео:

Заключение

В этой статье мы разобрались с вопросом, как правильно подключить защитные автоматы в электрическом щите, а также рассмотрели разновидности этих устройств и особенности их работы. Воспользовавшись изложенной информацией, вы сможете самостоятельно произвести установку пакетника и подключение его к домашней сети. Естественно, при этой процедуре нужно строго соблюдать правила электробезопасности, как и при любых работах, связанных с электричеством.

Что такое соединение?

Обновлено: 05.12.2021 автором Computer Hope

Соединение — это термин, описывающий связь между вилкой или разъемом и портом или разъемом. Например, ваш монитор, мышь и клавиатура должны быть подключены к компьютеру, прежде чем они начнут работать.

  • Различные формы слова соединяются.
  • Примеры подключения к компьютеру.
  • Соединения на задней панели компьютера.
  • Почему цвета соединений отличаются?
  • Внутренние соединения.
  • Как проверить соединения?
  • Какое соединение соединяет компьютеры?
  • Связанная информация.

Различные формы слова соединяются

Слово «подключение» может использоваться по-разному при описании разъема и способа его подключения. Ниже приведен список всех форм слова с дополнительной информацией о каждой.

Соединение и соединение, а также соединение — Описание двух или более устройств, успешно отправляющих и принимающих информацию. Например, если вы читаете веб-страницу, ваш компьютер подключен к Интернету и имеет хорошее соединение.

Если связь прервалась у вас дома или в офисе, ничего в интернете работать не будет. Если не удастся установить соединение с сервером, на котором размещена веб-страница, вы не сможете просматривать веб-страницу, но все остальное в Интернете будет работать.

Подключение — описывает подключение вилки, провода или другого устройства к компьютеру. Например, я подключаю свой монитор к компьютеру, чтобы получить изображение и посмотреть, что происходит.

Соединение также описывает два или более устройств, устанавливающих соединение. Например, когда модем удаленного доступа подключается к интернет-провайдеру, вы сначала услышите, как телефон набирает номер, а затем квитирует.

Рукопожатие (слышимое при воспроизведении вышеприведенного аудиофайла) — это взаимодействие двух компьютеров и установление соединения. Как только соединение установлено, шум больше не слышен.

Соединения — Общее описание всех доступных слотов расширения, портов и разъемов (более одного) на компьютере или другом устройстве. Например, мой USB-концентратор имеет три доступных USB-подключения.

Разъем — Описание конца кабеля, соединяющего кабель с портом. Centronics, DB, DIN, мини-штекер и USB — все это примеры типов разъемов.

Примеры подключения к компьютеру

Ниже показано изображение задней панели настольного компьютера и каждого из соединений и портов. Хотя компоновка вашего настольного компьютера может отличаться, эта схема поможет вам лучше понять, где все соединяется.

Ниже приведены связанные страницы для каждого из соединений, показанных выше, и некоторые связанные термины. Нажав на каждую ссылку, вы получите дополнительные сведения о каждом подключении и связанную с ним информацию.

Соединения на задней панели компьютера

  • В
  • БНК
  • Композитный
  • DisplayPort
  • ДВИ
  • eSATA
  • FireWire (IEEE-1394)
  • HDMI
  • МИДИ
  • Модем (RJ-11 он же телефон)
  • Сеть (RJ-45)
  • Параллельный порт
  • Порт PS/2
  • РКА
  • S-видео
  • С/PDIF
  • SCSI
  • Последовательный порт (RS-232)
  • Звуковая карта (звуковой или линейный выход, звуковой или линейный вход, микрофон и MIDI (джойстик).
  • USB
  • ВГА/СВГА

Почему цвета соединений отличаются?

Соединения на задней панели компьютера могут иметь цветовую маркировку, чтобы облегчить поиск соответствующего порта для периферийного устройства. Список ниже включает в себя множество портов и связанных с ними цветов.

  • Клавиатура (PS/2) — фиолетовая
  • Мышь (PS/2) — зеленая
  • Серийный номер
  • — голубой
  • Принтер — Фиолетовый
  • Монитор (VGA) — синий
  • Монитор (DVI) — белый
  • Линейный выход (для наушников) — Зеленый лайм
  • Линейный вход (микрофон) — Розовый
  • Аудиовход — серый
  • Джойстик — желтый

Примечание

Многие современные порты разъемов (HDMI, USB, FireWire, Ethernet и т. д.) имеют черный цвет, и их нужно идентифицировать по форме, а не по цвету.

Внутренние соединения

  • АТА
  • Слоты расширения
  • ИДЕ/ЭИДЕ
  • САТА
  • SCSI

Как проверить соединения?

Компьютер Хоуп или другой специалист могут попросить вас «проверить соединения» при устранении неполадок. Это предложение относится к проверке правильности подключения кабеля на обоих концах кабеля. Например, при устранении неполадок монитора проверьте правильность подключения кабелей на задней панели монитора, задней панели компьютера и кабеля питания. Если все кабели надежно подключены, также рекомендуется отсоединить кабель, убедиться, что с кабелем или портом все в порядке, и снова подключить кабель.

Какое соединение соединяет компьютеры?

Сегодня наиболее распространенным способом соединения компьютеров друг с другом является сеть. Для подключения к сети компьютер использует сетевую интерфейсную карту для подключения либо с помощью кабеля, такого как кабель Cat 5, либо по беспроводной сети с использованием Wi-Fi.

  • Как скопировать информацию с одного компьютера на другой.
  • В чем разница между разъемом, разъемом, штекером и портом?
  • Как настроить новый компьютер.

Задняя панель, Кабель, Компьютер, Без подключения, Прямое подключение, Термины оборудования, Установка, Материнская плата, Параллельный порт, VIA, Провод

Основы работы в сети | IBM

Автор: IBM Cloud Education

Из этого введения в сеть вы узнаете, как работают компьютерные сети, какова архитектура, используемая для проектирования сетей, и как обеспечить их безопасность.

Что такое компьютерная сеть?

Компьютерная сеть состоит из двух или более компьютеров, которые соединены либо кабелями (проводными), либо WiFi (беспроводными) с целью передачи, обмена или совместного использования данных и ресурсов. Вы строите компьютерную сеть, используя оборудование (например, маршрутизаторы, коммутаторы, точки доступа и кабели) и программное обеспечение (например, операционные системы или бизнес-приложения).

Географическое положение часто определяет компьютерную сеть. Например, LAN (локальная сеть) соединяет компьютеры в определенном физическом пространстве, например в офисном здании, тогда как WAN (глобальная сеть) может соединять компьютеры на разных континентах. Интернет является крупнейшим примером глобальной сети, соединяющей миллиарды компьютеров по всему миру.

Вы можете дополнительно определить компьютерную сеть по протоколам, которые она использует для связи, физическому расположению ее компонентов, способу управления трафиком и ее назначению.

Компьютерные сети позволяют общаться в любых деловых, развлекательных и исследовательских целях. Интернет, онлайн-поиск, электронная почта, обмен аудио и видео, онлайн-торговля, прямые трансляции и социальные сети — все это существует благодаря компьютерным сетям.

Типы компьютерных сетей

По мере развития сетевых потребностей менялись и типы компьютерных сетей, обслуживающие эти потребности. Вот наиболее распространенные и широко используемые типы компьютерных сетей:

  • LAN (локальная сеть):  Локальная сеть соединяет компьютеры на относительно небольшом расстоянии, позволяя им обмениваться данными, файлами и ресурсами. Например, локальная сеть может соединять все компьютеры в офисном здании, школе или больнице. Как правило, локальные сети находятся в частной собственности и под управлением.

  • WLAN (беспроводная локальная сеть):  WLAN похожа на локальную сеть, но соединения между устройствами в сети осуществляются по беспроводной сети.

  • WAN (глобальная сеть):  Как видно из названия, глобальная сеть соединяет компьютеры на большой территории, например, из региона в регион или даже из одного континента в другой. Интернет — это крупнейшая глобальная сеть, соединяющая миллиарды компьютеров по всему миру. Как правило, для управления глобальной сетью используются модели коллективного или распределенного владения.

  • MAN (городская сеть): MAN обычно больше, чем локальные сети, но меньше, чем глобальные сети. Города и правительственные учреждения обычно владеют и управляют MAN.

  • PAN (персональная сеть):  PAN обслуживает одного человека. Например, если у вас есть iPhone и Mac, вполне вероятно, что вы настроили PAN, которая обменивается и синхронизирует контент — текстовые сообщения, электронные письма, фотографии и многое другое — на обоих устройствах.

  • SAN (сеть хранения данных):  SAN — это специализированная сеть, обеспечивающая доступ к хранилищу на уровне блоков — общей сети или облачному хранилищу, которое для пользователя выглядит и работает как накопитель, физически подключенный к компьютеру. (Дополнительную информацию о том, как SAN работает с блочным хранилищем, см. в разделе «Блочное хранилище: полное руководство».)

  • CAN (сеть кампуса):  CAN также известна как корпоративная сеть. CAN больше, чем LAN, но меньше, чем WAN. CAN обслуживают такие объекты, как колледжи, университеты и бизнес-кампусы.

  • VPN (виртуальная частная сеть): VPN — это безопасное двухточечное соединение между двумя конечными точками сети (см. «Узлы» ниже). VPN устанавливает зашифрованный канал, который сохраняет личность пользователя и учетные данные для доступа, а также любые передаваемые данные, недоступные для хакеров.

Важные термины и понятия

Ниже приведены некоторые общие термины, которые следует знать при обсуждении компьютерных сетей:

  • IP-адрес : IP-адрес — это уникальный номер, присваиваемый каждому устройству, подключенному к сети, которая использует для связи Интернет-протокол. Каждый IP-адрес определяет хост-сеть устройства и местоположение устройства в хост-сети. Когда одно устройство отправляет данные другому, данные включают «заголовок», который включает IP-адрес отправляющего устройства и IP-адрес устройства назначения.

  • Узлы : Узел — это точка подключения внутри сети, которая может получать, отправлять, создавать или хранить данные. Каждый узел требует, чтобы вы предоставили некоторую форму идентификации для получения доступа, например IP-адрес. Несколько примеров узлов включают компьютеры, принтеры, модемы, мосты и коммутаторы. Узел — это, по сути, любое сетевое устройство, которое может распознавать, обрабатывать и передавать информацию любому другому сетевому узлу.

  • Маршрутизаторы : Маршрутизатор — это физическое или виртуальное устройство, которое отправляет информацию, содержащуюся в пакетах данных, между сетями. Маршрутизаторы анализируют данные в пакетах, чтобы определить наилучший способ доставки информации к конечному получателю. Маршрутизаторы пересылают пакеты данных до тех пор, пока они не достигнут узла назначения.

  • Коммутаторы : Коммутатор — это устройство, которое соединяет другие устройства и управляет обменом данными между узлами в сети, гарантируя, что пакеты данных достигают конечного пункта назначения. В то время как маршрутизатор отправляет информацию между сетями, коммутатор отправляет информацию между узлами в одной сети. При обсуждении компьютерных сетей «коммутация» относится к тому, как данные передаются между устройствами в сети. Три основных типа переключения следующие:

    • Коммутация каналов , которая устанавливает выделенный канал связи между узлами в сети. Этот выделенный путь гарантирует, что во время передачи будет доступна вся полоса пропускания, что означает, что никакой другой трафик не может проходить по этому пути.

    • Коммутация пакетов предполагает разбиение данных на независимые компоненты, называемые пакетами, которые из-за своего небольшого размера предъявляют меньшие требования к сети. Пакеты проходят через сеть к конечному пункту назначения.

    • Коммутация сообщений отправляет сообщение целиком с узла-источника, перемещаясь от коммутатора к коммутатору, пока не достигнет узла назначения.

  • Порты : Порт идентифицирует конкретное соединение между сетевыми устройствами. Каждый порт идентифицируется номером. Если вы считаете IP-адрес сопоставимым с адресом отеля, то порты — это номера люксов или комнат в этом отеле. Компьютеры используют номера портов, чтобы определить, какое приложение, служба или процесс должны получать определенные сообщения.

  • Типы сетевых кабелей : Наиболее распространенными типами сетевых кабелей являются витая пара Ethernet, коаксиальный и оптоволоконный кабель. Выбор типа кабеля зависит от размера сети, расположения сетевых элементов и физического расстояния между устройствами.

Примеры компьютерных сетей

Проводное или беспроводное соединение двух или более компьютеров с целью обмена данными и ресурсами образует компьютерную сеть. Сегодня почти каждое цифровое устройство принадлежит к компьютерной сети.

В офисе вы и ваши коллеги можете иметь общий доступ к принтеру или системе группового обмена сообщениями. Вычислительная сеть, которая позволяет это, вероятно, представляет собой локальную сеть или локальную сеть, которая позволяет вашему отделу совместно использовать ресурсы.

Городское правительство может управлять общегородской сетью камер наблюдения, которые отслеживают транспортный поток и происшествия. Эта сеть будет частью MAN или городской сети, которая позволит персоналу городских экстренных служб реагировать на дорожно-транспортные происшествия, советовать водителям альтернативные маршруты движения и даже отправлять дорожные билеты водителям, проезжающим на красный свет.

The Weather Company работала над созданием одноранговой ячеистой сети, которая позволяет мобильным устройствам напрямую связываться с другими мобильными устройствами, не требуя Wi-Fi или сотовой связи. Проект Mesh Network Alerts позволяет доставлять жизненно важную информацию о погоде миллиардам людей даже без подключения к Интернету.

Компьютерные сети и Интернет

Интернет представляет собой сеть сетей, которая соединяет миллиарды цифровых устройств по всему миру. Стандартные протоколы обеспечивают связь между этими устройствами. Эти протоколы включают протокол передачи гипертекста («http» перед всеми адресами веб-сайтов). Интернет-протокол (или IP-адреса) — это уникальные идентификационные номера, необходимые для каждого устройства, имеющего доступ в Интернет. IP-адреса сопоставимы с вашим почтовым адресом, предоставляя уникальную информацию о местоположении, чтобы информация могла быть доставлена ​​правильно.

Поставщики услуг Интернета (ISP) и поставщики сетевых услуг (NSP) предоставляют инфраструктуру, позволяющую передавать пакеты данных или информации через Интернет. Каждый бит информации, отправленной через Интернет, не поступает на каждое устройство, подключенное к Интернету. Это комбинация протоколов и инфраструктуры, которая точно сообщает информации, куда идти.

Как они работают?

Компьютерные сети соединяют такие узлы, как компьютеры, маршрутизаторы и коммутаторы, с помощью кабелей, оптоволокна или беспроводных сигналов. Эти соединения позволяют устройствам в сети обмениваться информацией и ресурсами.

Сети следуют протоколам, которые определяют способ отправки и получения сообщений. Эти протоколы позволяют устройствам обмениваться данными. Каждое устройство в сети использует интернет-протокол или IP-адрес, строку цифр, которая однозначно идентифицирует устройство и позволяет другим устройствам распознавать его.

Маршрутизаторы — это виртуальные или физические устройства, облегчающие связь между различными сетями. Маршрутизаторы анализируют информацию, чтобы определить наилучший способ доставки данных к конечному пункту назначения. Коммутаторы соединяют устройства и управляют связью между узлами внутри сети, гарантируя, что пакеты информации, перемещающиеся по сети, достигают своего конечного пункта назначения.

Архитектура

Архитектура компьютерной сети определяет физическую и логическую структуру компьютерной сети. В нем описывается, как компьютеры организованы в сети и какие задачи возлагаются на эти компьютеры. Компоненты сетевой архитектуры включают аппаратное обеспечение, программное обеспечение, средства передачи (проводные или беспроводные), топологию сети и протоколы связи.

Основные типы сетевой архитектуры

Существует два типа сетевой архитектуры: одноранговая (P2P) и клиент/сервер . В архитектуре P2P два или более компьютеров связаны как «равноправные», что означает, что они имеют равную мощность и привилегии в сети. Сеть P2P не требует центрального сервера для координации. Вместо этого каждый компьютер в сети действует как клиент (компьютер, которому требуется доступ к службе), так и сервер (компьютер, который обслуживает потребности клиента, обращающегося к службе). Каждый одноранговый узел делает некоторые из своих ресурсов доступными для сети, разделяя хранилище, память, пропускную способность и вычислительную мощность.

В сети клиент/сервер центральный сервер или группа серверов управляют ресурсами и предоставляют услуги клиентским устройствам в сети. Клиенты в сети общаются с другими клиентами через сервер. В отличие от модели P2P, клиенты в архитектуре клиент/сервер не делятся своими ресурсами. Этот тип архитектуры иногда называют многоуровневой моделью, поскольку он разработан с несколькими уровнями или уровнями.

Топология сети

Топология сети относится к тому, как организованы узлы и каналы в сети. Сетевой узел — это устройство, которое может отправлять, получать, хранить или пересылать данные. Сетевой канал соединяет узлы и может быть кабельным или беспроводным каналом.

Понимание типов топологии обеспечивает основу для построения успешной сети. Существует несколько топологий, но наиболее распространенными являются шина, кольцо, звезда и ячеистая сеть:

  • Топология шинной сети — это когда каждый сетевой узел напрямую подключен к основному кабелю.

  • В кольцевой топологии узлы соединены в петлю, поэтому каждое устройство имеет ровно двух соседей. Соседние пары соединяются напрямую; несмежные пары связаны косвенно через несколько узлов.

  • В топологии сети «звезда» все узлы подключены к одному центральному концентратору, и каждый узел косвенно подключен через этот концентратор.

  • Топология сетки определяется перекрывающимися соединениями между узлами. Вы можете создать полносвязную топологию, в которой каждый узел в сети соединен со всеми остальными узлами. Вы также можете создать топологию частичной сетки, в которой только некоторые узлы соединены друг с другом, а некоторые связаны с узлами, с которыми они обмениваются наибольшим количеством данных. Полноячеистая топология может быть дорогостоящей и трудоемкой для выполнения, поэтому ее часто используют для сетей, требующих высокой избыточности. Частичная сетка обеспечивает меньшую избыточность, но является более экономичной и простой в реализации.

Безопасность

Безопасность компьютерной сети защищает целостность информации, содержащейся в сети, и контролирует доступ к этой информации. Политики сетевой безопасности уравновешивают необходимость предоставления услуг пользователям с необходимостью контроля доступа к информации.

Существует много точек входа в сеть. Эти точки входа включают аппаратное и программное обеспечение, из которых состоит сама сеть, а также устройства, используемые для доступа к сети, такие как компьютеры, смартфоны и планшеты. Из-за этих точек входа сетевая безопасность требует использования нескольких методов защиты. Средства защиты могут включать брандмауэры — устройства, которые отслеживают сетевой трафик и предотвращают доступ к частям сети на основе правил безопасности.

Процессы аутентификации пользователей с помощью идентификаторов пользователей и паролей обеспечивают еще один уровень безопасности. Безопасность включает в себя изоляцию сетевых данных, чтобы доступ к служебной или личной информации был сложнее, чем к менее важной информации. Другие меры сетевой безопасности включают обеспечение регулярного обновления и исправления аппаратного и программного обеспечения, информирование пользователей сети об их роли в процессах безопасности и информирование о внешних угрозах, осуществляемых хакерами и другими злоумышленниками. Сетевые угрозы постоянно развиваются, что делает сетевую безопасность бесконечным процессом.

Использование общедоступного облака также требует обновления процедур безопасности для обеспечения постоянной безопасности и доступа. Для безопасного облака требуется безопасная базовая сеть.

Ознакомьтесь с пятью основными соображениями (PDF, 298 КБ) для обеспечения безопасности общедоступного облака.

Ячеистые сети

Как отмечалось выше, ячеистая сеть — это тип топологии, в котором узлы компьютерной сети соединяются с максимально возможным количеством других узлов. В этой топологии узлы взаимодействуют друг с другом, чтобы эффективно направлять данные к месту назначения. Эта топология обеспечивает большую отказоустойчивость, поскольку в случае отказа одного узла существует множество других узлов, которые могут передавать данные. Ячеистые сети самонастраиваются и самоорганизуются в поисках самого быстрого и надежного пути для отправки информации.

Тип ячеистых сетей

Существует два типа ячеистых сетей — полная и частичная:

  • В полноячеистой топологии каждый узел сети соединяется с каждым другим узлом сети, обеспечивая высочайший уровень отказоустойчивости. . Однако его выполнение обходится дороже. В топологии с частичной сеткой подключаются только некоторые узлы, обычно те, которые чаще всего обмениваются данными.
  • Беспроводная ячеистая сеть может состоять из десятков или сотен узлов. Этот тип сети подключается к пользователям через точки доступа, разбросанные по большой территории.

Балансировщики нагрузки и сети

Балансировщики нагрузки эффективно распределяют задачи, рабочие нагрузки и сетевой трафик между доступными серверами. Думайте о балансировщиках нагрузки как об управлении воздушным движением в аэропорту. Балансировщик нагрузки отслеживает весь трафик, поступающий в сеть, и направляет его на маршрутизатор или сервер, которые лучше всего подходят для управления им. Целями балансировки нагрузки являются предотвращение перегрузки ресурсов, оптимизация доступных ресурсов, сокращение времени отклика и максимизация пропускной способности.

Полный обзор балансировщиков нагрузки см. в разделе Балансировка нагрузки: полное руководство.

Сети доставки контента

Сеть доставки контента (CDN) — это сеть распределенных серверов, которая доставляет временно сохраненные или кэшированные копии контента веб-сайта пользователям в зависимости от их географического положения. CDN хранит этот контент в распределенных местах и ​​предоставляет его пользователям, чтобы сократить расстояние между посетителями вашего сайта и сервером вашего сайта. Кэширование контента ближе к вашим конечным пользователям позволяет вам быстрее обслуживать контент и помогает веб-сайтам лучше охватить глобальную аудиторию. CDN защищают от всплесков трафика, сокращают задержки, снижают потребление полосы пропускания, ускоряют время загрузки и уменьшают влияние взломов и атак, создавая слой между конечным пользователем и инфраструктурой вашего веб-сайта.

Потоковое мультимедиа, мультимедиа по запросу, игровые компании, создатели приложений, сайты электронной коммерции — по мере роста цифрового потребления все больше владельцев контента обращаются к CDN, чтобы лучше обслуживать потребителей контента.

Компьютерные сетевые решения и IBM

Компьютерные сетевые решения помогают предприятиям увеличить трафик, сделать пользователей счастливыми, защитить сеть и упростить предоставление услуг. Лучшее решение для компьютерной сети, как правило, представляет собой уникальную конфигурацию, основанную на вашем конкретном типе бизнеса и потребностях.

Сети доставки контента (CDN), балансировщики нагрузки и сетевая безопасность — все, что упоминалось выше, — это примеры технологий, которые могут помочь предприятиям создавать оптимальные компьютерные сетевые решения. IBM предлагает дополнительные сетевые решения, в том числе:

  • Устройства шлюза — это устройства, которые обеспечивают улучшенный контроль над сетевым трафиком, позволяют повысить производительность вашей сети и повысить ее безопасность. Управляйте своими физическими и виртуальными сетями для маршрутизации нескольких VLAN, для брандмауэров, VPN, формирования трафика и многого другого.
  • Direct Link обеспечивает безопасность и ускоряет передачу данных между частной инфраструктурой, мультиоблачными средами и IBM Cloud.
  • Облачные интернет-сервисы — это функции безопасности и производительности, предназначенные для защиты общедоступного веб-контента и приложений до того, как они попадут в облако. Получите защиту от DDoS-атак, глобальную балансировку нагрузки и набор функций безопасности, надежности и производительности, предназначенных для защиты общедоступного веб-контента и приложений до того, как они попадут в облако.

Сетевые сервисы в IBM Cloud предоставляют вам сетевые решения для улучшения вашего трафика, обеспечения удовлетворенности ваших пользователей и легкого выделения ресурсов по мере необходимости.

Приобретите навыки работы с сетью и получите профессиональную сертификацию IBM, пройдя курсы в рамках программы Professional Cloud Site Reliability Engineers (SRE).

Подпишитесь на IBMid и создайте учетную запись IBM Cloud.

Рекомендуемые продукты
  • Сетевая безопасность
  • Балансировщик нагрузки
  • Сеть доставки контента

Ричард Фейнман и машина связи

Подпишитесь на наш блог для получения более интересных статей

У. Дэниела Хиллиса для Physics Today

Перепечатано с разрешения Phys. Сегодня 42 (2), 78 (1989). Авторское право 1989 г., Американский институт физики.


Photo by Faustin Bray

Однажды, когда я обедал с Ричардом Фейнманом, я упомянул ему, что планирую основать компанию по созданию параллельного компьютера с миллионом процессоров. Его реакция была однозначной: «Это определенно самая глупая идея, которую я когда-либо слышал». Для Ричарда безумная идея была возможностью либо доказать ее ошибочность, либо доказать ее правоту. В любом случае, ему было интересно. К концу обеда он согласился провести лето, работая в компании.

Интерес Ричарда к компьютерам восходит к его дням в Лос-Аламосе, где он руководил «компьютерами», то есть людьми, которые управляли механическими калькуляторами. Там он сыграл важную роль в настройке некоторых из первых табулирующих машин с программируемыми подключаемыми модулями для физического моделирования. Его интерес к этой области возрос в конце 1970-х годов, когда его сын Карл начал изучать компьютеры в Массачусетском технологическом институте.

Я познакомился с Ричардом через его сына. Я был аспирантом в лаборатории искусственного интеллекта Массачусетского технологического института, и Карл был одним из студентов, помогавших мне с моим дипломным проектом. Я пытался спроектировать компьютер, достаточно быстрый для решения задач здравого смысла. Машина, как мы предполагали, будет содержать миллион крошечных компьютеров, соединенных коммуникационной сетью. Мы назвали это «Машина связи». Ричард, всегда интересовавшийся деятельностью своего сына, внимательно следил за проектом. Он скептически отнесся к этой идее, но всякий раз, когда мы встречались на конференции или я приезжал в Калифорнийский технологический институт, мы не спали до утра, обсуждая детали планируемой машины. Первый раз, когда он, казалось, поверил, что мы действительно собираемся его построить, было собрание за обедом.

Ричард прибыл в Бостон на следующий день после регистрации компании. Мы были заняты сбором денег, поиском помещения для аренды, выпуском акций и т. д. Мы обосновались в старом особняке недалеко от города, и когда появился Ричард, мы все еще оправлялись от шока, вызванного получением первых нескольких миллионов долларов. долларов в банке. Никто не думал ни о чем техническом в течение нескольких месяцев. Мы спорили о том, как должна называться компания, когда Ричард вошел, отсалютовал и сказал: «Ричард Фейнман приступает к исполнению своих обязанностей. Хорошо, босс, какое у меня задание?» Собравшаяся группа не совсем окончивших Массачусетский технологический институт была поражена.

После спешной частной беседы («Я не знаю, вы его наняли…») мы сообщили Ричарду, что его заданием будет консультирование по применению параллельной обработки в научных задачах.

«Похоже на бред, — сказал он. «Дайте мне что-нибудь реальное».

Итак, мы отправили его купить канцтовары. Пока его не было, мы решили, что часть машины, о которой мы больше всего беспокоимся, — это маршрутизатор, доставляющий сообщения от одного процессора к другому. Мы не были уверены, что наш дизайн сработает. Когда Ричард вернулся с покупки карандашей, мы дали ему задание проанализировать роутер. 9{12]$ провода. Вместо этого мы планировали соединить процессоры в 20-мерный гиперкуб, чтобы каждому процессору нужно было напрямую общаться только с 20 другими. Поскольку многие процессоры должны обмениваться данными одновременно, многие сообщения будут конкурировать за одни и те же провода. Задача маршрутизатора состояла в том, чтобы найти свободный путь через эту 20-мерную пробку или, если он не мог, удержать сообщение в буфере, пока путь не освободится. Наш вопрос к Ричарду Фейнману заключался в том, предоставили ли мы достаточно буферов для эффективной работы маршрутизатора.

В течение первых нескольких месяцев Ричард начал изучать принципиальные схемы маршрутизаторов, как если бы они были объектами природы. Он был готов выслушать объяснения того, как и почему все работает, но в основном предпочитал разбираться во всем сам, моделируя работу каждой из цепей с помощью карандаша и бумаги.

Тем временем остальные из нас, счастливые, что нашли, чем занять Ричарда, занялись заказом мебели и компьютеров, наняли первых инженеров и договорились с Агентством перспективных исследовательских проектов Министерства обороны (DARPA) оплатить разработку первого прототипа. Ричард проделал замечательную работу, сосредоточившись на своем «задании», лишь изредка останавливаясь, чтобы помочь с проводкой в ​​компьютерном зале, настроить механический цех, пожать руку инвесторам, установить телефоны и весело напомнить нам, какие мы все сумасшедшие. Когда мы наконец выбрали название компании Thinking Machines Corporation, Ричард был в восторге. «Это хорошо. Теперь мне не нужно объяснять людям, что я работаю с кучей психов. Я могу просто сказать им название компании».

Техническая сторона проекта явно напрягала наши возможности. Мы решили упростить ситуацию, начав с 64 000 процессоров, но даже тогда объем работы был огромным. Нам пришлось разработать собственные кремниевые интегральные схемы с процессорами и маршрутизатором. Нам также приходилось изобретать механизмы упаковки и охлаждения, писать компиляторы и ассемблеры, придумывать способы одновременного тестирования процессоров и так далее. Даже такие простые проблемы, как соединение плат вместе, приобрели совершенно новый смысл при работе с десятками тысяч процессоров. Оглядываясь назад, если бы мы хоть немного понимали, насколько сложным будет проект, мы бы никогда не начали.

‘Организуй этих парней’

Я никогда раньше не руководил большой группой, и я явно перестарался. Ричард вызвался помочь. «Мы должны организовать этих парней, — сказал он мне. «Позвольте мне рассказать вам, как мы это сделали в Лос-Аламосе».

У каждого великого человека, которого я знал, было определенное время и место в их жизни, которые они использовали в качестве точки отсчета; время, когда все работало так, как предполагалось, и совершались великие дела. Для Ричарда это время было в Лос-Аламосе во время Манхэттенского проекта. Всякий раз, когда что-то шло не так, Ричард оглядывался назад и пытался понять, чем сейчас отличается от того, что было тогда. Используя этот подход, Ричард решил, что мы должны выбрать эксперта в каждой важной области машины, такой как программное обеспечение, упаковка или электроника, чтобы стать «лидером группы» в этой области, аналогично лидерам групп в Лос-Аламосе.

Вторая часть кампании Фейнмана «Давайте организуемся» заключалась в том, что мы должны начать серию регулярных семинаров с приглашенными докладчиками, у которых может быть интересное отношение к нашей машине. Идея Ричарда заключалась в том, что мы должны сосредоточиться на людях с новыми приложениями, потому что они будут менее консервативны в отношении того, какой компьютер они будут использовать. На наш первый семинар он пригласил Джона Хопфилда, своего друга из Калифорнийского технологического института, чтобы он рассказал нам о своей схеме построения нейронных сетей. В 19В 83 году изучение нейронных сетей было таким же модным, как изучение экстрасенсорного восприятия, поэтому некоторые люди считали Джона Хопфилда немного сумасшедшим. Ричард был уверен, что отлично впишется в Thinking Machines Corporation.

То, что изобрел Хопфилд, было способом построения [ассоциативной памяти], устройства для запоминания паттернов. Чтобы использовать ассоциативную память, ее тренируют на серии паттернов, таких как изображения букв алфавита. Позже, когда в памяти появляется новый паттерн, она способна вспомнить аналогичный паттерн, который она видела в прошлом. Новое изображение буквы «А» будет «напоминать» память о другой «А», которую оно видело ранее. Хопфилд понял, как такую ​​память можно построить из устройств, похожих на биологические нейроны.

Похоже, что метод Хопфилда не только работал, но и хорошо работал на Connection Machine. Фейнман выяснил детали того, как использовать один процессор для имитации каждого из нейронов Хопфилда, с силой связей, представленной в виде чисел в памяти процессоров. {-k]$ могла использоваться всеми процессорами. Все вычисления заняли меньше времени, чем деление.

Концентрация на алгоритме базовой арифметической операции была типичной для подхода Ричарда. Он любил детали. При изучении маршрутизатора он обращал внимание на действие каждого отдельного вентиля и при написании программы настаивал на понимании выполнения каждой инструкции. Он не доверял абстракциям, которые не могли быть напрямую связаны с фактами. Когда несколько лет спустя я написал статью о Connection Machine для журнала Scientific American, он был разочарован тем, что в ней упущено слишком много деталей. Он спросил: «Как кто-то должен знать, что это не просто куча дерьма?»

Настойчивое внимание Фейнмана к деталям помогло нам раскрыть потенциал машины для численных вычислений и физического моделирования. В то время мы были убеждены, что Connection Machine не будет эффективна при «обработке чисел», потому что первый прототип не имел специального оборудования для векторов или арифметики с плавающей запятой. Оба они были «известны» как требования для обработки чисел. Фейнман решил проверить это предположение на проблеме, с которой он был хорошо знаком: квантовой хромодинамике.

Квантовая хромодинамика — это теория внутренней работы атомных частиц, таких как протоны. Используя эту теорию, в принципе можно вычислить значения измеримых физических величин, таких как масса протона. На практике для таких вычислений требуется столько арифметических операций, что самые быстрые компьютеры в мире могут работать годами. Один из способов сделать это вычисление — использовать дискретную четырехмерную решетку для моделирования сечения пространства-времени. Поиск решения включает в себя суммирование вкладов всех возможных конфигураций определенных матриц на звеньях решетки или, по крайней мере, некоторой большой репрезентативной выборки. (По сути, это интеграл Фейнмана по траекториям.) Сложность этого заключается в том, что вычисление вклада даже одной конфигурации включает в себя умножение матриц вокруг каждой маленькой петли в решетке, а количество петель растет пропорционально четвертой степени размер решетки. Поскольку все эти умножения могут выполняться одновременно, существует множество возможностей, чтобы все 64 000 процессоров были заняты.

Чтобы выяснить, насколько хорошо это будет работать на практике, Фейнману пришлось написать компьютерную программу для КХД. Поскольку единственным компьютерным языком, с которым Ричард действительно был знаком, был Basic, он создал параллельную версию Basic, на которой написал программу, а затем смоделировал ее вручную, чтобы оценить, насколько быстро она будет работать на Connection Machine.

Он был взволнован результатами. «Эй, Дэнни, ты не поверишь, но твоя машина действительно может сделать что-то [полезное]!» Согласно расчетам Фейнмана, машина соединений, даже без специального оборудования для арифметики с плавающей запятой, превзошла бы машину, которую Калифорнийский технологический институт создавал для выполнения вычислений КХД. С этого момента Ричард все больше и больше подталкивал нас к рассмотрению численных приложений машины.

К концу лета 1983 года Ричард завершил свой анализ поведения маршрутизатора и, к нашему большому удивлению и удовольствию, представил свой ответ в виде набора дифференциальных уравнений в частных производных. Для физика это может показаться естественным, но для компьютерного разработчика рассматривать набор логических схем как непрерывную дифференцируемую систему немного странно. Уравнения маршрутизатора Фейнмана были в терминах переменных, представляющих непрерывные величины, такие как «среднее число битов 1 в адресе сообщения». Я гораздо больше привык рассматривать анализ с точки зрения индуктивного доказательства и анализа случаев, чем брать производную от «числа единиц» по времени. Наш дискретный анализ показал, что нам нужно семь буферов на чип; Уравнения Фейнмана предполагали, что нам нужно всего пять. Мы решили перестраховаться и проигнорировать Фейнмана.

Решение игнорировать анализ Фейнмана было принято в сентябре, но следующей весной мы уперлись в стену. Чипы, которые мы разработали, были слишком велики для производства, и единственным способом решить проблему было сократить количество буферов на чип до пяти. Поскольку уравнения Фейнмана утверждали, что мы можем сделать это безопасно, его нетрадиционные методы анализа становились все лучше и лучше для нас. Мы решили пойти дальше и сделать чипы с меньшим количеством буферов.

К счастью, он был прав. Когда мы собрали чипы, машина заработала. Первой программой, запущенной на машине в апреле 1985 года, была игра Конвея «Жизнь».

Клеточные автоматы

Игра «Жизнь» является примером интересующего Фейнмана класса вычислений, названного [клеточными автоматами]. Подобно многим физикам, посвятившим свою жизнь последовательному переходу на все более низкие уровни атомарной детализации, Фейнман часто задавался вопросом, что находится на самом дне. Одним из возможных ответов был клеточный автомат. Идея состоит в том, что «континуум» на своих самых низких уровнях может быть дискретным как в пространстве, так и во времени, и что законы физики могут быть просто макро-следствием среднего поведения крошечных клеток. Каждая ячейка может быть простым автоматом, который подчиняется небольшому набору правил и общается только со своими ближайшими соседями, как вычисление решетки для КХД. Если бы Вселенная действительно работала таким образом, то, по-видимому, это имело бы проверяемые последствия, такие как верхний предел плотности информации на кубический метр пространства.

Понятие клеточных автоматов восходит к фон Нейману и Уламу, которых Фейнман знал в Лос-Аламосе. Недавний интерес Ричарда к этому предмету был вызван его друзьями Эдом Фредкиным и Стивеном Вольфрамом, оба из которых были очарованы клеточно-автоматными моделями физики. Фейнман всегда спешил указать им, что он считает их конкретные модели «чудаковатыми», но, как и в случае с Connection Machine, он считал эту тему достаточно сумасшедшей, чтобы вложить в нее немного энергии.

Существует много потенциальных проблем с клеточными автоматами как моделью физического пространства и времени; например, найти набор правил, который подчиняется специальной теории относительности. Одна из самых простых задач — просто сделать физику такой, чтобы все выглядело одинаково во всех направлениях. Наиболее очевидный образец клеточных автоматов, такой как фиксированная трехмерная сетка, имеет предпочтительные направления вдоль осей сетки. Можно ли реализовать даже ньютоновскую физику на фиксированной решетке автоматов?

У Фейнмана было предложенное решение проблемы анизотропии, которое он пытался (безуспешно) разработать в деталях. Его идея заключалась в том, что лежащие в основе автоматы могут быть связаны не в регулярной решетке, такой как сетка или узор из шестиугольников, а в случайном порядке. Волны, распространяющиеся через эту среду, будут в среднем распространяться с одинаковой скоростью во всех направлениях.

Клеточные автоматы начали привлекать внимание Thinking Machines, когда Стивен Вольфрам, который также работал в компании, предложил использовать такие автоматы не как модель физики, а как практический метод моделирования физических систем. В частности, мы могли бы использовать один процессор для моделирования каждой ячейки и правил, которые были выбраны для моделирования чего-то полезного, например гидродинамики. Для двумерных задач существовало изящное решение проблемы анизотропии, поскольку [Фриш, Хаслахер, Помо] показали, что гексагональная решетка с простым набором правил обеспечивает изотропное поведение на макроуровне. Вольфрам использовал этот метод на Connection Machine для создания прекрасного фильма о турбулентном потоке жидкости в двух измерениях. Просмотр фильма заставил всех нас, особенно Фейнмана, увлечься физической симуляцией. Мы все начали планировать дополнения к оборудованию, такие как поддержка арифметики с плавающей запятой, которая позволила бы нам выполнять и отображать различные симуляции в реальном времени.

Объяснитель Фейнман

Тем временем у нас было много проблем с объяснением людям, что мы делаем с клеточными автоматами. Глаза, как правило, тускнели, когда мы начинали говорить о диаграммах переходов состояний и конечных автоматах. Наконец, Фейнман предложил нам объяснить это так:

«Мы заметили, что в природе поведение жидкости очень мало зависит от природы отдельных частиц в этой жидкости. Например, течение песка очень похоже на движение песка. поток воды или поток шарикоподшипников. Поэтому мы воспользовались этим фактом, чтобы изобрести тип воображаемой частицы, которую нам особенно легко смоделировать. Эта частица представляет собой совершенный шарикоподшипник, который может двигаться за одну скорость в одном из шести направлений. Течение этих частиц в достаточно большом масштабе очень похоже на течение природных жидкостей».

Это было типичное объяснение Ричарда Фейнмана. С одной стороны, это приводило в ярость экспертов, работавших над проблемой, потому что в ней даже не упоминались все остроумные проблемы, которые они решили. С другой стороны, это радовало слушателей, поскольку они могли уйти от него с реальным пониманием явления и того, как оно связано с физической реальностью.

Мы попытались воспользоваться талантом Ричарда к ясности, заставив его критически оценить технические презентации, которые мы сделали в представлении наших продуктов. Перед коммерческим анонсом Connection Machine CM-1 и всех наших будущих продуктов Ричард критически оценивал запланированную презентацию предложение за предложением. «Не говорите «отраженная акустическая волна». Скажи [эхо]». Или: «Забудьте обо всех этих «локальных минимумах». Просто скажите, что в кристалле застрял пузырь, и вам нужно его вытряхнуть». Ничто не злило его больше, чем то, что простое казалось сложным.

Иногда трудно было заставить Ричарда дать такой совет. Он притворялся, что ему не нравится работать над любой проблемой, выходящей за рамки его заявленной области знаний. Часто в Thinking Machines, когда его просили дать совет, он грубо отказывался со словами: «Это не мой отдел». Я так и не смог понять, что это был за его отдел, но это и не имело значения, так как большую часть времени он тратил на решение проблем «не моего отдела». Иногда он действительно сдавался, но чаще всего возвращался через несколько дней после своего отказа и замечал: «Я думал о том, о чем вы спрашивали на днях, и мне кажется…» Это срабатывало лучше всего. если бы вы были осторожны, чтобы не ожидать этого.

Я не хочу сказать, что Ричард не решался делать «грязную работу». На самом деле, он всегда был добровольцем для этого. Многие посетители Thinking Machines были шокированы, увидев, что у нас есть нобелевский лауреат, паяющий печатные платы или красящий стены. Но что Ричард ненавидел или, по крайней мере, делал вид, что ненавидит, так это то, что его просили дать совет. Так почему люди всегда просили его об этом? Потому что даже когда Ричард ничего не понимал, казалось, он всегда понимал лучше, чем остальные из нас. И все, что он понимал, он мог заставить понять и других. Ричард заставил людей почувствовать себя ребенком, когда взрослый впервые обращается с ним как со взрослым. Он никогда не боялся говорить правду, и каким бы дурацким ни был твой вопрос, он никогда не заставлял тебя чувствовать себя дураком.

Очаровательная сторона Ричарда помогла людям простить его непривлекательность. Например, во многом Ричард был сексистом. Всякий раз, когда приходило время для его ежедневной тарелки супа, он оглядывался в поисках ближайшей «девушки» и спрашивал, не принесет ли она его ему. Неважно, была ли она поваром, инженером или президентом компании. Однажды я спросил женщину-инженера, которая только что стала жертвой этого, беспокоит ли ее это. «Да, это действительно меня раздражает», — сказала она. «С другой стороны, он единственный, кто когда-либо объяснял мне квантовую механику так, как будто я мог ее понять». В этом заключалась суть обаяния Ричарда.

Своеобразная игра

Следующие пять лет Ричард работал в компании время от времени. Со временем к машине были добавлены аппаратные средства с плавающей запятой, и по мере того, как машина и ее преемники пошли в коммерческое производство, они все больше и больше использовались для задач численного моделирования, которые Ричард впервые применил в своей программе QCD. Интерес Ричарда сместился с конструкции машины на ее применение. Как оказалось, создание большого компьютера — хороший повод поговорить с людьми, которые работают над одними из самых интересных научных проблем. Мы начали работать с физиками, астрономами, геологами, биологами, химиками — каждый из них пытался решить какую-то проблему, которую раньше было невозможно решить. Выяснение того, как выполнять эти вычисления на параллельной машине, требует понимания деталей приложения, а это как раз то, чем любил заниматься Ричард.

Для Ричарда решение этих проблем было чем-то вроде игры. Он всегда начинал с самых простых вопросов, например: «Какой самый простой пример?» или «Как узнать, правильный ли ответ?» Он задавал вопросы до тех пор, пока не сводил проблему к какой-то важной головоломке, которую, как он думал, он сможет решить. Затем он принимался за работу, строчил в блокноте и смотрел на результаты. Пока он был в процессе решения такого рода головоломок, его невозможно было прервать. «Не надоедай мне. Я занят», — говорил он, даже не поднимая глаз. В конце концов он либо решал, что проблема слишком сложна (в этом случае он терял интерес), либо находил решение (в этом случае он проводил следующий день или два, объясняя ее всем, кто слушал). Таким образом, он работал над проблемами поиска в базе данных, геофизического моделирования, сворачивания белков, анализа изображений и чтения страховых форм.

Последний проект, над которым я работал с Ричардом, касался имитации эволюции. Я написал программу, моделирующую эволюцию популяций существ, размножающихся половым путем, на протяжении сотен тысяч поколений. Результаты были неожиданными, поскольку приспособленность популяции прогрессировала внезапными скачками, а не ожидаемым устойчивым улучшением. В палеонтологической летописи есть некоторые свидетельства того, что реальная биологическая эволюция также может проявлять такое «прерывистое равновесие», поэтому мы с Ричардом решили более внимательно изучить, почему это произошло. К тому времени он почувствовал себя плохо, поэтому я отправился и провел с ним неделю в Пасадене, и мы разработали модель эволюции конечных популяций, основанную на уравнениях Фоккера-Планка. Когда я вернулся в Бостон, я пошел в библиотеку и нашел книгу Кимуры на эту тему, и, к моему большому разочарованию, все наши «открытия» были изложены на первых нескольких страницах. Когда я перезвонила и рассказала Ричарду, что нашла, он был в восторге. «Эй, мы поняли это правильно!» он сказал. «Неплохо для любителей».

Оглядываясь назад, я понимаю, что почти во всем, над чем мы работали вместе, мы оба были любителями. В цифровой физике, нейронных сетях, даже параллельных вычислениях мы никогда не понимали, что делаем. Но вещи, которые мы изучали, были настолько новыми, что никто другой точно не знал, что они делают. Успеха добились любители.

Рассказывать хорошие вещи, которые вы знаете

На самом деле, я сомневаюсь, что Ричарда больше всего интересовал «прогресс». Он всегда искал закономерности, связи, новый взгляд на что-то, но я подозреваю, что его мотивация была не столько в том, чтобы понять мир, сколько в том, чтобы найти новые идеи для объяснения. Акт открытия не был для него завершен, пока он не научил ему кого-то другого.

Я помню наш разговор примерно за год до его смерти, когда мы гуляли по холмам над Пасаденой. Мы шли по незнакомой тропе, и Ричард, восстанавливающийся после серьезной операции по поводу рака, шел медленнее, чем обычно. Он рассказывал длинную и забавную историю о том, как он читал о своей болезни и удивлял своих врачей, предсказывая их диагноз и свои шансы на выживание. Я впервые услышал, как далеко зашел его рак, поэтому шутки не казались такими забавными. Должно быть, он заметил мое настроение, потому что вдруг прервал рассказ и спросил: «Эй, в чем дело?»

Я колебался. «Мне грустно, потому что ты умрешь».

— Да, — вздохнул он, — меня это тоже иногда раздражает. Но не так сильно, как ты думаешь. И после еще нескольких шагов: «Когда вы станете такими же старыми, как я, вы начнете понимать, что все равно рассказали большую часть хороших вещей, которые вы знаете, другим людям».

Несколько минут мы шли молча. Потом мы подошли к месту, где пересекалась еще одна тропа, и Ричард остановился, чтобы осмотреть окрестности. Внезапно улыбка осветила его лицо. «Эй, — сказал он, забыв все следы печали, — держу пари, я могу показать тебе лучшую дорогу домой».

Так он и сделал.

Посетите главную страницу или подпишитесь на наш блог. Чип от соединительной машины 1 или 2

Спасибо Брюстеру Кале за пожертвование в виде чипа от Connection Machine 1 или 2. Теперь мне просто нужно найти целую машину (см. выше)! Если у вас есть CM, который вы хотите пожертвовать Digibarn, , свяжитесь с нами!


DSC08108.JPG

DSC08109.JPG

DSC08110.JPG

DSC08112.JPG

Специальное посещение Digibarn Тамико Тиль
(друг, который оказался конструктор пакетов Connection Machine (1/2))
(июль 2006 г.)


Тамико держит чип CM, пока
стоя перед Cray-1

(якобы конкуренты Thinking Machines)

Крупный план чипа CM

Со страницы Тамико на Connection Machine:

Connection Machine был первым коммерческим компьютером, специально разработанным для моделирования разума и жизни. Массивно-параллельный суперкомпьютер с 65 536 процессорами был детищем Дэнни Хиллиса, задуманным, когда он был аспирантом Марвина Мински в Лаборатории искусственного интеллекта Массачусетского технологического института.

В отличие от традиционной компьютерной архитектуры того времени, он был смоделирован на основе структуры человеческого мозга: вместо того, чтобы полагаться на один мощный процессор для выполнения вычислений один за другим, данные были распределены по десяткам тысяч процессоров, все из которых которые могли бы выполнять вычисления одновременно. Структуры для связи и передачи данных между процессорами могут изменяться по мере необходимости в зависимости от характера проблемы, что делает изменчивость соединений между процессорами более важной, чем сами процессоры, отсюда и название «Connection Machine».

С 1983 по 1985 год я руководил упаковкой и промышленным дизайном Connection Machine CM-1 в Thinking Machines Corporation, работая с консультантами по промышленному дизайну Алленом Хоторном и Гордоном Брюсом, а также с инженером-механиком Тедом Билодо. CM-2, выпущенный в 1987 году, был более совершенным преемником, заключенным в тот же физический корпус.

Форма машины должна была отражать как ее функции, так и увлечения ее создателей: мечта о создании «Machina Sapiens», нового рода живых, мыслящих машин.

На пике своего развития Connection Machines работала на 70 объектах по всему миру.

Дополнительные слова Тамико из выступления в Массачусетском технологическом институте в ноябре 2004 г.:

Поиск формы для электронного мозга: машины связи CM-1/CM-2
(Или: «Как у Connection Machine загорелись красные лампочки»)

В 1983 году Тамико Тиль присоединилась к начинающей Thinking Machines Corporation, чтобы руководить дизайном упаковки Connection Machine CM-1 / CM-2. Докторская диссертация В. Дэниела Хиллиса, затем доктора философии. кандидат под руководством Марвина Мински в лаборатории искусственного интеллекта Массачусетского технологического института, Connection Machine была первым коммерчески доступным суперкомпьютером с массовым параллелизмом и в свое время одним из самых быстрых компьютеров в мире. Задача Тиля заключалась в том, чтобы найти форму для своей 12-мерной сети из 65 536 процессоров, которая была бы не только пригодна для сборки, но и передала бы страсть и убежденность ее создателей в том, что это действительно первая машина нового поколения.

Она расскажет об образах из истории и научной фантастики, повлиявших на дизайн, и о том, как ее желание использовать физическую форму в символической манере привело ее к отходу от модернистской догмы «Форма следует за функцией». На самом деле она заново открывала для себя первоначальный смысл, заложенный архитектором Луи Салливаном, который считал, что «функция» включает в себя «стремления, ценности, идеалы и духовные потребности людей».


Биография для Тамико:

Тамико Тиль имеет степень бакалавра. в области проектирования продуктов Стэнфордского университета, степень магистра. получил степень бакалавра машиностроения в Массачусетском технологическом институте и диплом в области прикладной графики Академии изящных искусств в Мюнхене. Она считает, что «Машина связи» была ее первым произведением искусства, и с тех пор она завоевала международную репутацию в области медиаискусства. В настоящее время она является научным сотрудником Центра перспективных визуальных исследований Массачусетского технологического института, где развивает повествовательный потенциал интерактивной виртуальной реальности как художественного средства для решения культурных и социальных проблем.

Куратор: Спасибо Тамико!

Что-нибудь знаете о Connection Machine (или у вас есть такая, которой вы хотели бы пожертвовать?), свяжитесь с нами!

См. также:

Запись из Википедии на Connection Machine

Наши Суперкомпьютеры Cray

Пожалуйста, присылайте комментарии к сайту нашему веб-мастеру.
Пожалуйста, ознакомьтесь с нашими уведомлениями о содержании этого сайта и его использовании.
(куб.см) 1998- Digibarn Computer Museum, некоторые права защищены по этой лицензии Creative Commons.

Основы работы с компьютером: подключение к Интернету

Урок 13: подключение к Интернету

/en/computerbasics/getting-to-know-the-os/content/

Как подключиться к Интернету?

После того, как вы настроите свой компьютер, вы можете приобрести домашний доступ в Интернет , чтобы вы могли отправлять и получать электронную почту, просматривать веб-страницы, транслировать видео и многое другое. Возможно, вы даже захотите настроить домашнюю беспроводную сеть , широко известную как Wi-Fi , чтобы вы могли одновременно подключать несколько устройств к Интернету.

Посмотрите видео ниже, чтобы узнать о подключении к Интернету.

Ищете старую версию этого видео? Вы все еще можете просмотреть его здесь.

Типы интернет-услуг

Тип выбранной вами интернет-службы во многом зависит от того, какие поставщики интернет-услуг (ISP) обслуживают ваш район, а также от типов услуг, которые они предлагают. Вот некоторые распространенные типы интернет-услуг.

  • Dial-up : Как правило, это самый медленный тип подключения к Интернету, и вам, вероятно, следует избегать его, если только это не единственная услуга, доступная в вашем регионе. Коммутируемый доступ в Интернет использует ваши , телефонная линия , поэтому, если у вас нет нескольких телефонных линий, вы не сможете одновременно пользоваться своим стационарным телефоном и Интернетом.
  • DSL : Услуга DSL использует широкополосное соединение , что делает ее намного быстрее, чем коммутируемое соединение. DSL подключается к Интернету через телефонную линию , но не требует наличия стационарного телефона дома. И в отличие от коммутируемого доступа, вы сможете одновременно пользоваться Интернетом и телефонной линией.
  • Кабель : Кабельная служба подключается к Интернету через кабельное телевидение , хотя вам не обязательно иметь кабельное телевидение, чтобы получить его. Он использует широкополосное соединение и может быть быстрее, чем коммутируемое соединение и услуга DSL; однако он доступен только там, где доступно кабельное телевидение.
  • Спутник : Спутниковое соединение использует широкополосный доступ, но не требует кабельных или телефонных линий; он подключается к Интернету через спутники, вращающиеся вокруг Земли . В результате его можно использовать практически в любой точке мира, но на соединение могут влиять погодные условия. Спутниковые соединения также обычно медленнее, чем DSL или кабель.
  • 3G и 4G : услуги 3G и 4G чаще всего используются с мобильными телефонами, и они соединяют по беспроводной сети через сеть вашего интернет-провайдера. Однако эти типы соединений не всегда такие же быстрые, как DSL или кабель. Они также будут ограничивать объем данных, которые вы можете использовать каждый месяц, что не относится к большинству планов широкополосного доступа.

Выбор поставщика услуг Интернета

Теперь, когда вы знаете о различных типах услуг Интернета, вы можете провести небольшое исследование, чтобы выяснить, какие интернет-провайдеры доступны в вашем районе. Если у вас возникли проблемы с началом работы, мы рекомендуем поговорить с друзьями, членами семьи и соседями о интернет-провайдерах, которыми они пользуются. Обычно это дает вам хорошее представление о типах Интернет-услуг, доступных в вашем районе.

Большинство интернет-провайдеров предлагают несколько уровней обслуживания с различной скоростью Интернета, обычно измеряемой в Мбит/с (сокращение от мегабит на секунд ). Если вы в основном хотите использовать Интернет для электронной почты и социальных сетей , более медленное соединение (от 2 до 5 Мбит/с) может быть всем, что вам нужно. Однако, если вы хотите загружать музыку или транслировать видео , вам потребуется более быстрое соединение (не менее 5 Мбит/с или выше).

Вы также захотите рассмотреть стоимость услуги , включая плату за установку и ежемесячную плату. Вообще говоря, чем быстрее подключение, тем дороже будет в месяц.

Хотя коммутируемое соединение традиционно было наименее дорогим вариантом , многие интернет-провайдеры повысили цены на коммутируемое соединение до , равного широкополосному . Это призвано побудить людей перейти на широкополосную связь. Мы не рекомендуем коммутируемый доступ в Интернет, если это не единственный вариант.

Необходимое аппаратное обеспечение

Модем

Когда у вас есть компьютер, вам действительно не нужно много дополнительного оборудования для подключения к Интернету. Основное аппаратное обеспечение, которое вам нужно, — это модем .

Тип выбранного вами доступа в Интернет будет определять тип необходимого вам модема. Dial-up доступ использует телефонный модем , DSL услуга использует DSL модем , кабельный доступ использует кабельный модем и спутниковый сервис использует спутниковый адаптер . Ваш интернет-провайдер может предоставить вам модем — часто за определенную плату — когда вы подписываете контракт, что помогает гарантировать, что у вас есть модем правильного типа . Однако, если вы предпочитаете покупать модем лучше или менее дорогой модем , вы можете купить его отдельно.

Маршрутизатор

Маршрутизатор — аппаратное устройство, позволяющее соединить несколько компьютеров и других устройств к одному интернет-соединению, известному как домашняя сеть . Многие маршрутизаторы являются беспроводными , что позволяет создавать домашнюю беспроводную сеть , , широко известную как сеть Wi-Fi .

Вам не обязательно покупать маршрутизатор для подключения к Интернету. Компьютер можно подключить напрямую к модему с помощью кабеля Ethernet. Кроме того, многие модемы включают встроенный маршрутизатор , поэтому у вас есть возможность создать сеть Wi-Fi без покупки дополнительного оборудования.

Настройка подключения к Интернету

После того, как вы выбрали поставщика услуг Интернета, большинство провайдеров направят к вам на дом специалиста для подключения. Если нет, вы сможете использовать инструкции, предоставленные вашим интернет-провайдером или прилагаемые к модему, для настройки подключения к Интернету.

После того, как вы все настроите, вы можете открыть веб-браузер и начните пользоваться Интернетом. Если у вас возникли проблемы с подключением к Интернету, вы можете позвонить в службу технической поддержки вашего интернет-провайдера по номеру .

Домашняя сеть

Если у вас дома несколько компьютеров и вы хотите использовать их все для доступа в Интернет, вы можете создать домашнюю сеть , также известную как a Wi-Fi сеть . В домашней сети все ваши устройства подключаются к маршрутизатору , который подключен к модем . Это означает, что все члены вашей семьи могут одновременно пользоваться Интернетом .

Ваш специалист интернет-провайдера может настроить домашнюю сеть Wi-Fi при установке службы Интернета. Если нет, вы можете просмотреть наш урок «Как настроить сеть Wi-Fi», чтобы узнать больше.

Если вы хотите подключить компьютер без встроенного модуля Wi-Fi, вы можете приобрести адаптер Wi-Fi , который подключается к USB-порту вашего компьютера.

Продолжать

Предыдущий: Знакомство с ОС

Далее:Начало работы в Интернете

/en/computerbasics/getting-start-with-the-internet/content/

I.—ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНТЕЛЛЕКТ | Разум

1. Игра в имитацию

Предлагаю рассмотреть вопрос «Могут ли машины мыслить?» Начать следует с определения значения терминов «машина» и «думать». Определения могут быть составлены таким образом, чтобы, насколько это возможно, отражать нормальное употребление слов, но такое отношение опасно. Если значение слов «машина» и «думать» должно быть найдено путем изучения того, как они обычно используются, трудно избежать вывода о том, что значение и ответ на вопрос «Могут ли машины мыслить?» заключаются в следующем. ищут в статистическом обзоре, таком как опрос Гэллапа. Но это абсурд. Вместо того, чтобы пытаться дать такое определение, я заменю этот вопрос другим, тесно связанным с ним и выраженным в относительно недвусмысленных словах.

Новая форма задачи может быть описана в терминах игры, которую мы называем «имитационной игрой». В нее играют три человека: мужчина (А), женщина (В) и следователь (С), которые могут быть любого пола. Следователь остается в комнате отдельно от двух других. Цель игры следователя состоит в том, чтобы определить, кто из двух других является мужчиной, а кто женщиной. Он знает их по ярлыкам X и Y, а в конце игры говорит либо «X есть A, а Y есть B», либо «X есть B и Y есть A». Следователю разрешается задавать вопросы А и Б таким образом:

C: Скажите, пожалуйста, X, какой длины его или ее волосы? Теперь предположим, что X на самом деле является A, тогда A должен ответить. Цель игры А состоит в том, чтобы попытаться заставить С провести неправильную идентификацию. Таким образом, его ответ может быть таким:

«Мои волосы покрыты чешуей, а самые длинные пряди имеют длину около девяти дюймов». Идеальным вариантом является наличие телетайпа для связи между двумя комнатами. В качестве альтернативы вопрос и ответы могут быть повторены посредником. Цель игры для третьего игрока (В) — помочь следователю. Вероятно, лучшая стратегия для нее — давать правдивые ответы. Она может добавить к своим ответам такие вещи, как «Я женщина, не слушай его!», но это ничего не даст, поскольку мужчина может делать подобные замечания.

Теперь мы задаем вопрос: «Что произойдет, когда машина возьмет на себя роль А в этой игре?» Будет ли следователь принимать неверные решения так же часто, когда игра ведется таким образом, как он делает это, когда игра ведется между человеком а женщина? Эти вопросы заменяют наш первоначальный вопрос «Могут ли машины мыслить?»

2. Критика новой проблемы

Помимо вопроса «Каков ответ на эту новую форму вопроса?» вопрос, достойный исследования?» Этот последний вопрос мы исследуем без дальнейших церемоний, тем самым прервав бесконечный регресс.

Преимущество новой задачи заключается в том, что она проводит довольно резкую грань между физическими и интеллектуальными способностями человека. Ни один инженер или химик не претендует на способность производить материал, неотличимый от кожи человека. Возможно, когда-нибудь это удастся сделать, но даже если предположить, что это изобретение станет доступным, мы должны чувствовать, что нет смысла пытаться сделать «мыслящую машину» более человечной, облекая ее в такую ​​искусственную плоть. Форма, в которой мы поставили задачу, отражает этот факт в условиях, при которых исследователь не может видеть или прикасаться к другим участникам или слышать их голоса. Некоторые другие преимущества предложенного критерия могут быть показаны примерными вопросами и ответами. Таким образом:

  • Q :

    Пожалуйста, напишите мне сонет на тему Форт-Бридж.

  • A :

    Не считайте меня этим. Я никогда не умел писать стихи.

  • Q :

    Добавить 34957 к 70764

  • A :

    (Пауза около 30 секунд, а затем дать ответ) 105621.

  • Q :

    Вы играете в шахматы?

  • А :

    Да.

  • Q :

    У меня К1 на К1, других фигур нет. У вас есть только K на K6 и R на R1. Это ваш ход. Что вы играете?

  • A :

    (после 15-секундной паузы) R-R8 мат.

Метод вопросов и ответов кажется подходящим для ознакомления практически с любой из областей человеческой деятельности, которую мы хотим включить. Мы не хотим наказывать машину за ее неспособность блистать на конкурсах красоты или наказывать человека за поражение в гонке с самолетом. Условия нашей игры делают эти недостатки неактуальными. «Свидетели» могут сколько угодно хвастаться, если считают нужным, своим обаянием, силой или героизмом, но практических доказательств следователь требовать не может.

Возможно, игру можно раскритиковать на том основании, что шансы слишком высоки против машины. Если бы этот человек попытался притвориться машиной, он явно показал бы себя очень плохо. Его бы сразу выдали медлительность и неточность в арифметике. Не могут ли машины совершать нечто, что следует назвать мышлением, но что очень отличается от того, что делает человек? Это возражение очень сильное, но, по крайней мере, мы можем сказать, что если, тем не менее, можно сконструировать машину для удовлетворительной игры в имитацию, нас не должно беспокоить это возражение.

Можно возразить, что при игре в «имитационную игру» лучшей стратегией для машины может быть нечто иное, чем имитация поведения человека. Это может быть, но я думаю, что вряд ли есть большой эффект такого рода. В любом случае здесь нет намерения исследовать теорию игры, и предполагается, что наилучшая стратегия состоит в том, чтобы попытаться дать ответы, которые, естественно, дал бы человек.

3. Машины, задействованные в игре

Вопрос, поставленный нами в § 1, не будет вполне определенным, пока мы не уточним, что мы подразумеваем под словом «машина». Естественно, что мы хотели бы разрешить использование в наших машинах всех видов инженерной техники. Мы также хотим допустить возможность того, что инженер или команда инженеров могут построить машину, которая работает, но способ работы которой не может быть удовлетворительно описан ее конструкторами, потому что они применили метод, который в значительной степени является экспериментальным. Наконец, мы хотим исключить из машин людей, рожденных обычным образом. Трудно сформулировать определения так, чтобы они удовлетворяли этим трем условиям. Можно, например, настаивать на том, чтобы вся команда инженеров была одного пола, но на самом деле это было бы неудовлетворительно, поскольку вполне вероятно, что из одной клетки кожи, скажем, человека, можно вырастить целую особь. Сделать это было бы подвигом биологической техники, заслуживающим самой высокой похвалы, но мы не были бы склонны рассматривать это как случай «построения мыслящей машины». Это побуждает нас отказаться от требования, чтобы всякая техника была разрешена. Мы тем более готовы сделать это ввиду того факта, что нынешний интерес к «мыслящим машинам» вызван особым типом машин, обычно называемым «электронным компьютером» или «цифровым компьютером». Следуя этому предложению, мы разрешаем участвовать в нашей игре только цифровым компьютерам.

Это ограничение на первый взгляд кажется очень резким. Я попытаюсь показать, что в действительности это не так. Для этого необходимо кратко рассказать о природе и свойствах этих компьютеров.

Можно также сказать, что это отождествление машин с цифровыми компьютерами, как и наш критерий «мышления», будет неудовлетворительным только в том случае, если (вопреки моему убеждению) окажется, что цифровые компьютеры не могут хорошо себя показать в игра.

Уже имеется несколько цифровых компьютеров в рабочем состоянии, и может возникнуть вопрос: «Почему бы не провести эксперимент прямо сейчас?» Было бы легко удовлетворить условия игры. Можно было бы использовать несколько следователей и собрать статистику, чтобы показать, как часто давалась правильная идентификация». хорошо, но есть ли мыслимые компьютеры, которые бы преуспели. Но это только краткий ответ. Позже мы увидим этот вопрос в другом свете.

4. Цифровые компьютеры

Идея цифровых компьютеров может быть объяснена тем, что эти машины предназначены для выполнения любых операций, которые может выполнять человеческий компьютер. Предполагается, что человеческий компьютер следует установленным правилам; он не имеет права отклоняться от них в деталях. Мы можем предположить, что эти правила содержатся в книге, которая изменяется всякий раз, когда его переводят на новую работу. У него также есть неограниченный запас бумаги, на которой он делает свои расчеты. Он также может делать свои умножения и сложения на «настольной машине», но это не важно.

Если мы используем приведенное выше объяснение в качестве определения, мы рискуем зациклиться на рассуждениях. Мы избегаем этого, описывая средства, с помощью которых достигается желаемый эффект. Цифровой компьютер обычно можно рассматривать как состоящий из трех частей:

  • Магазин.

  • Исполнительный блок.

  • Контроль.

Хранилище является хранилищем информации и соответствует бумаге человеческого компьютера, будь то бумага, на которой он выполняет свои расчеты, или та, на которой напечатана его книга правил. Поскольку человеческий компьютер производит вычисления в своей голове, часть хранилища будет соответствовать его памяти.

Исполнительный блок — это часть, которая выполняет различные отдельные операции, связанные с вычислением. Что представляют собой эти отдельные операции, зависит от машины к машине. Обычно можно выполнять довольно длительные операции, такие как «Умножить 3540675445 на 7076345687», но на некоторых машинах возможны только очень простые, такие как «Записать 0».

Мы упоминали, что поставляемая компьютеру «книга правил» заменяется в машине частью магазина. Тогда она называется «таблицей инструкций». Контрольная служба обязана следить за тем, чтобы эти инструкции выполнялись правильно и в правильном порядке. Управление так построено, что это обязательно происходит.

Информация в магазине обычно разбита на пакеты умеренно небольшого размера. Например, на одной машине пакет может состоять из десяти десятичных цифр. Частям хранилища, в которых хранятся различные пакеты информации, присваиваются номера некоторым систематическим образом. Типичная инструкция может сказать:

«Сложите число, хранящееся в позиции 6809, с числом в позиции 4302 и поместите результат обратно в последнюю позицию хранения».

Излишне говорить, что это не произойдет в машине, выраженной на английском языке. Скорее всего, он будет закодирован в такой форме, как 6809.430217. Здесь 17 говорит, какую из различных возможных операций следует выполнить над двумя числами. В этом случае операция описана выше, , а именно . «Добавьте число…». Следует заметить, что инструкция занимает 10 цифр и, таким образом, формирует один пакет информации, что очень удобно. Обычно система управления воспринимает инструкции в том порядке, в котором они хранятся, но иногда может встречаться такая инструкция, как

«Теперь выполнить инструкцию, хранящуюся в позиции 5606, и продолжить оттуда», или снова

‘Если позиция 4505 содержит 0, выполните следующую инструкцию, хранящуюся в 6707, в противном случае продолжайте прямо.

Инструкции этих последних типов очень важны, поскольку они позволяют повторять последовательность операций снова и снова, пока какое-то условие выполняется, но при этом подчиняться не новым инструкциям при каждом повторении, а одним и тем же снова и снова. Возьмем бытовую аналогию. Предположим, мама хочет, чтобы Томми каждое утро по дороге в школу заходил к сапожнику, чтобы узнать, готова ли ее обувь, она может спрашивать его каждое утро заново. В качестве альтернативы она может раз и навсегда повесить объявление в холле, которое он увидит, уходя в школу, и которое предложит ему вызвать обувь, а также уничтожить объявление, когда он вернется, если туфли у него с собой. .

Читатель должен принять как факт, что цифровые компьютеры могут быть построены и действительно были построены в соответствии с описанными нами принципами, и что они могут фактически очень точно имитировать действия человеческого компьютера.

Книга правил, которую мы описали как использование человеческого компьютера, конечно же, удобная фикция. Настоящие человеческие компьютеры действительно помнят, что они должны делать. Если кто-то хочет заставить машину имитировать поведение человека-компьютера в какой-то сложной операции, нужно спросить его, как это делается, а затем перевести ответ в форму таблицы инструкций. Составление таблиц инструкций обычно называют «программированием». «Запрограммировать машину на выполнение операции А» означает поместить в машину соответствующую таблицу инструкций, чтобы она выполняла А.

Интересным вариантом идеи цифрового компьютера является «цифровой компьютер со случайным элементом». У них есть инструкции, связанные с бросанием игральной кости или каким-либо эквивалентным электронным процессом; одной из таких инструкций может быть, например, «Бросьте кубик и поместите полученное число в хранилище 1000». Иногда такую ​​машину описывают как обладающую свободой воли (хотя сам я бы не использовал эту фразу). Обычно невозможно определить, наблюдая за машиной, есть ли в ней случайный элемент, поскольку такие устройства могут производить аналогичный эффект, например, делая выбор в зависимости от цифр десятичной дроби для 9. 0277 π.

Большинство современных цифровых компьютеров имеют ограниченный объем памяти. В идее компьютера с неограниченным хранилищем нет теоретических трудностей. Конечно, в любой момент времени может быть использована только конечная часть. Точно так же может быть построено только конечное количество, но мы можем вообразить, что по мере необходимости будет добавляться все больше и больше. Такие компьютеры представляют особый теоретический интерес и будут называться компьютерами бесконечной мощности.

Идея цифрового компьютера старая. Чарльз Бэббидж , лукасов профессор математики в Кембридже с 1828 по 1839 год., планировал такую ​​машину, назвал Аналитическая машина, но она так и не была завершена. Хотя у Бэббиджа были все основные идеи, его машина не представляла в то время такой уж привлекательной перспективы. Скорость, которая была бы доступна, была бы определенно выше, чем у человеческого компьютера, но примерно в 100 раз медленнее, чем у манчестерской машины, которая сама по себе является одной из самых медленных современных машин. Хранение должно было быть чисто механическим, с использованием колес и карт.

Тот факт, что аналитическая машина Бэббиджа должна была быть полностью механической, поможет нам избавиться от суеверия. Часто придается большое значение тому факту, что современные цифровые компьютеры являются электрическими и что нервная система также является электрической. Поскольку машина Бэббиджа не была электрической и поскольку все цифровые компьютеры в некотором смысле эквивалентны, мы видим, что такое использование электричества не может иметь теоретического значения. Конечно, электричество обычно появляется там, где речь идет о быстрой передаче сигналов, так что неудивительно, что мы находим его в обоих этих соединениях. В нервной системе химические явления не менее важны, чем электрические. В некоторых компьютерах система хранения в основном акустическая. Таким образом, особенность использования электричества представляется лишь очень поверхностным сходством. Если мы хотим найти такие сходства, нам следует искать математические аналогии функций.

5. Универсальность цифровых компьютеров

Цифровые компьютеры, рассмотренные в последнем разделе, можно отнести к «дискретным конечным машинам». Это машины, которые внезапными скачками или щелчками переходят из одного вполне определенного состояния в другое. Эти состояния достаточно различны, чтобы можно было игнорировать возможность смешения между ними. Строго говоря, таких машин нет. Все действительно движется непрерывно. Но есть много видов машин, которые могут быть выгодно считал дискретными конечными автоматами. Например, при рассмотрении переключателей для системы освещения удобной фикцией является то, что каждый переключатель должен быть определенно включен или определенно выключен. Должны быть промежуточные позиции, но в большинстве случаев о них можно забыть. В качестве примера дискретного конечного автомата мы могли бы рассмотреть колесо, которое совершает оборот на 120° один раз в секунду, но может быть остановлено рычагом, которым можно управлять извне; кроме того, лампа должна гореть в одном из положений колеса. Абстрактно эту машину можно описать следующим образом. Внутреннее состояние машины (описываемое положением колеса) может быть q 1 , q 2 или q 3 . Есть входной сигнал i 0 или i 1 , (положение рычага). Внутреннее состояние в любой момент определяется по последнему состоянию и входному сигналу согласно таблице

Открыть в новой вкладкеСкачать слайд

Выходные сигналы, единственная внешне видимая индикация внутреннего состояния (свет) описаны таблицей

Открыть в новой вкладкеСкачать слайд

Этот пример типичен для автоматов с дискретными состояниями. Их можно описать такими таблицами при условии, что они имеют только конечное число возможных состояний.

Может показаться, что по начальному состоянию машины и входным сигналам всегда можно предсказать все будущие состояния. Это напоминает мнение Лапласа о том, что по полному состоянию Вселенной в один момент времени, описываемому положениями и скоростями всех частиц, можно предсказать все будущие состояния. Предсказание, которое мы рассматриваем, однако, гораздо ближе к осуществимости, чем предсказание Лапласа. Система «вселенная в целом» такова, что совсем небольшие ошибки в начальных условиях могут иметь подавляющее влияние в более позднее время. Смещение одного электрона на миллиардную долю сантиметра в один момент может иметь значение для человека, погибшего под лавиной год спустя, или для побега. Неотъемлемым свойством механических систем, которые мы назвали «дискретными конечными автоматами», этого явления не происходит. Даже когда мы рассматриваем реальные физические машины, а не идеализированные машины, достаточно точное знание состояния в один момент дает достаточно точное знание через любое количество шагов позже.

Как мы уже упоминали, цифровые компьютеры относятся к классу дискретных конечных автоматов. Но число состояний, на которое способна такая машина, обычно чрезвычайно велико. Например, номер машины, которая сейчас работает в Манчестере, это примерно 2 165 000, , т. е. примерно 10 50 000 . Сравните это с нашим примером щелкающего колеса, описанного выше, которое имело три состояния. Нетрудно понять, почему количество государств должно быть таким огромным. Компьютер включает в себя хранилище, соответствующее бумаге, используемой человеческим компьютером. Должна быть возможность записать в память любую из комбинаций символов, которые могли бы быть записаны на бумаге. Для простоты предположим, что только цифры от 0 до 9используются как символы. Изменения в почерке не учитываются. Предположим, что компьютеру разрешено 100 листов бумаги, каждый из которых содержит 50 строк и место для 30 цифр. Тогда количество состояний равно 10 100×50×30 , т.е. 10 150,000 . Это примерно равно числу состояний трех манчестерских машин вместе взятых. Логарифм числа состояний по основанию два обычно называют «емкостью памяти» машины. Таким образом, манчестерская машина имеет вместимость около 165 000, а колесная машина из нашего примера — около 1,6. Если объединить две машины, их мощности необходимо сложить, чтобы получить мощность результирующей машины. Это приводит к возможности таких утверждений, как «Манчестерская машина содержит 64 магнитных дорожки, каждая емкостью 2560, восемь электронных ламп емкостью 1280. Разное хранилище составляет около 300, что в сумме составляет 174 380».0003

Имея таблицу, соответствующую дискретному автомату, можно предсказать, что он будет делать. Нет никаких причин, по которым этот расчет не может быть выполнен с помощью цифрового компьютера. При условии, что это может быть выполнено достаточно быстро, цифровой компьютер может имитировать поведение любого дискретного конечного автомата. Затем можно было бы сыграть в имитирующую игру с рассматриваемой машиной (как B) и имитирующим цифровым компьютером (как A), и следователь не смог бы их различить. Конечно, цифровой компьютер должен иметь достаточную емкость памяти, а также работать достаточно быстро. Более того, его необходимо заново программировать для каждой новой машины, которую необходимо имитировать.

Это особое свойство цифровых компьютеров, заключающееся в том, что они могут имитировать любой дискретный конечный автомат, описывается тем, что они являются универсальными машинами. Существование машин с этим свойством имеет то важное следствие, что, помимо соображений скорости, нет необходимости разрабатывать различные новые машины для выполнения различных вычислительных процессов. Все это можно сделать с помощью одного цифрового компьютера, соответствующим образом запрограммированного для каждого случая. Мы увидим, что вследствие этого все цифровые компьютеры в некотором смысле эквивалентны.

Теперь мы можем снова рассмотреть вопрос, поднятый в конце § 3. Предварительно было предложено заменить вопрос «Могут ли машины думать?» вопросом «Существуют ли вообразимые цифровые компьютеры, которые хорошо бы справлялись с игрой в имитацию?» конечные автоматы, которые будут работать хорошо?» Но ввиду свойства универсальности мы видим, что любой из этих вопросов эквивалентен следующему: «Давайте сосредоточим наше внимание на одном конкретном цифровом компьютере 9». 0277 C. Верно ли, что, модифицировав этот компьютер, чтобы он имел достаточный объем памяти, соответствующим образом увеличив его скорость действия и снабдив его соответствующей программой, C можно заставить удовлетворительно играть роль A в имитационной игре?

6. Противоположные взгляды на основной вопрос

Теперь мы можем считать, что почва очищена, и мы готовы приступить к дискуссии по нашему вопросу: «Могут ли машины думаете?» и его вариант, процитированный в конце последнего раздела. Мы не можем полностью отказаться от первоначальной формы задачи, ибо мнения будут расходиться относительно уместности замены, и мы должны, по крайней мере, прислушаться к тому, что следует сказать по этому поводу.

Читателю будет проще, если я сначала объясню свои убеждения по этому поводу. Рассмотрим сначала более точную форму вопроса. Я полагаю, что примерно через пятьдесят лет можно будет запрограммировать компьютеры с емкостью памяти около 10 9 , чтобы заставить их играть в имитацию так хорошо, что у среднего следователя не будет более 70 процентов памяти. шанс сделать правильную идентификацию после пяти минут допроса. Первоначальный вопрос «Могут ли машины думать!» я считаю слишком бессмысленным, чтобы заслуживать обсуждения. Тем не менее я полагаю, что в конце века употребление слов и общее образованное мнение изменятся настолько, что можно будет говорить о машинном мышлении, не ожидая возражений. Я полагаю далее, что сокрытие этих верований не служит никакой полезной цели. Популярное мнение о том, что ученые неуклонно движутся от хорошо установленных фактов к хорошо установленным фактам, никогда не подвергаясь влиянию каких-либо недоказанных предположений, совершенно ошибочно. При условии, что будет ясно, какие факты являются доказанными, а какие предположениями, никакого вреда не может быть причинено. Гипотезы имеют большое значение, поскольку они предлагают полезные направления исследований.

Теперь я перехожу к рассмотрению мнений, противоположных моему собственному.

(1) Теологическое возражение

Мышление есть функция бессмертной души человека. Бог дал бессмертную душу каждому мужчине и женщине, но не любому другому животному или машине. Следовательно, ни животное, ни машина не могут мыслить.

Я не могу согласиться ни с одной частью этого, но попытаюсь ответить богословскими терминами. Я нашел бы этот аргумент более убедительным, если бы животных причисляли к людям, потому что, на мой взгляд, между типичными одушевленными и неодушевленными существует большее различие, чем между человеком и другими животными. Произвольный характер ортодоксального взгляда становится яснее, если мы рассмотрим, как он мог бы показаться члену какой-либо другой религиозной общины. Как христиане относятся к мусульманскому мнению о том, что у женщин нет души? Но оставим этот момент в стороне и вернемся к основному аргументу. Мне кажется, что приведенный выше аргумент предполагает серьезное ограничение всемогущества Всевышнего. Признано, что есть определенные вещи, которые Он не может сделать, например, сделать один равным двум, но не должны ли мы верить, что Он имеет свободу даровать душу слону, если Он сочтет нужным? Мы могли бы ожидать, что Он будет использовать эту силу только в сочетании с мутацией, которая снабдила слона должным образом улучшенным мозгом, чтобы служить нуждам этой души. Точно такой же аргумент можно привести и в случае машин. Это может показаться другим, потому что его труднее «глотать». Но на самом деле это означает только то, что мы считаем менее вероятным, что Он сочтет обстоятельства подходящими для дарования души. Обстоятельства, о которых идет речь, обсуждаются в остальной части этого документа. Пытаясь сконструировать такие машины, мы не должны безжалостно узурпировать Его власть создавать души, как и в рождении детей: скорее, в любом случае мы являемся инструментами Его воли, предоставляющими обители для душ, которые Он создает.

Однако это всего лишь предположение. Меня не очень впечатляют богословские аргументы, для чего бы они ни использовались. В прошлом такие аргументы часто оказывались неудовлетворительными. Во времена Галилея утверждалось, что тексты «И остановилось солнце… и не спешило заходить около целого дня» (Иисус Навин, X, 13) и «Он положил основания земли, чтобы она не двигаться в любое время» (Псалом cv. 5) были адекватным опровержением теории Коперника. С нашими нынешними знаниями такой аргумент кажется бесполезным. Когда этого знания не было, оно производило совсем другое впечатление.

(2) Возражение «головы в песке»

«Последствия машинного мышления были бы слишком ужасны. Будем надеяться и верить, что они не смогут этого сделать».

Этот аргумент редко выражается так открыто, как в приведенной выше форме. Но это затрагивает большинство из нас, кто вообще об этом думает. Нам нравится верить, что Человек каким-то неуловимым образом превосходит все остальное творение. Лучше всего, если можно показать, что он обязательно выше, ибо тогда нет опасности, что он потеряет свое командное положение. Популярность богословского аргумента явно связана с этим чувством. Она, вероятно, весьма сильна у интеллектуальных людей, так как они выше других ценят силу мышления и более склонны основывать на этой силе свою веру в превосходство человека.

Я не думаю, что этот аргумент достаточно существенен, чтобы требовать опровержения. Утешение было бы уместнее: может быть, его следует искать в переселении душ.

(3) Математическое возражение

Существует ряд результатов математической логики, которые можно использовать для демонстрации ограничений возможностей машин с дискретными состояниями. Самый известный из этих результатов известен как теорема Гёделя 1 и показывает, что в любой достаточно мощной логической системе могут быть сформулированы утверждения, которые нельзя ни доказать, ни опровергнуть внутри системы, если, возможно, сама система непротиворечива. Имеются и другие, в чем-то сходные результаты, связанные с Черч, Клини, Россер, и Тьюринг. Последний результат удобнее всего рассматривать, так как он относится непосредственно к машинам, в то время как другие могут быть использованы только в сравнительно косвенных рассуждениях: например, если нужно использовать теорему Гёделя, нам нужно вдобавок иметь некоторые средства описания логические системы с точки зрения машин и машины с точки зрения логических систем. Рассматриваемый результат относится к типу машины, которая по существу является цифровым компьютером с бесконечной производительностью. В нем говорится, что есть определенные вещи, которые такая машина не может делать. Если он настроен давать ответы на вопросы, как в имитационной игре, будут некоторые вопросы, на которые он либо даст неправильный ответ, либо вообще не даст ответа, сколько бы времени ни отводилось на ответ. Конечно, таких вопросов может быть много, и на вопросы, на которые не может ответить одна машина, может дать удовлетворительный ответ другая. Мы, конечно, предполагаем на данный момент, что вопросы относятся к типу, на который уместно ответить «Да» или «Нет», а не к таким вопросам, как «Что вы думаете о Пикассо?» Вопросы, которые мы знаем о машинах. должны завершаться ошибкой, относятся к этому типу: «Рассмотрите машину, указанную следующим образом… . Будет ли эта машина когда-нибудь отвечать «Да» на любой вопрос?» Точки следует заменить описанием какой-либо машины в стандартной форме, которая могла бы быть чем-то вроде используемой в § 5. Когда описываемая машина находится в некотором сравнительно простом отношении к изучаемой машине, можно показать что ответ либо неправильный, либо не ожидается. Это математический результат: утверждается, что он доказывает неспособность машин, которым не подвластен человеческий интеллект.

Краткий ответ на этот аргумент заключается в том, что, хотя установлено, что существуют ограничения мощности любой конкретной машины, было только заявлено без каких-либо доказательств, что такие ограничения не применимы к человеческому интеллекту. Но я не думаю, что эту точку зрения можно так легко отвергнуть. Всякий раз, когда одной из этих машин задают соответствующий критический вопрос и она дает определенный ответ, мы знаем, что этот ответ должен быть неверным, и это дает нам определенное чувство превосходства. Это чувство иллюзорно? Оно, без сомнения, вполне подлинное, но я не думаю, что ему следует придавать слишком большое значение. Мы слишком часто сами даем неправильные ответы на вопросы, чтобы иметь право быть очень довольными такими свидетельствами ошибочности со стороны машин. Кроме того, наше превосходство может ощущаться в таком случае только по отношению к той единственной машине, над которой мы добились нашего мелкого триумфа. Не может быть и речи о победе одновременно над все машины . Короче говоря, могут быть люди умнее любой данной машины, но опять же могут быть и другие машины, умнее, и так далее.

Те, кто придерживается математического аргумента, я думаю, в основном будут готовы принять игру-имитация в качестве основы для обсуждения. Те, кто верит в два предыдущих возражения, вероятно, не будут интересоваться никакими критериями.

(4) Аргумент от сознания

Этот аргумент очень хорошо выражен в Речь профессора Джефферсона Листера за 1949 год, которую я цитирую. «Пока машина не сможет написать сонет или сочинить концерт из-за переживаемых мыслей и эмоций, а не из-за случайного падения символов, мы можем согласиться, что машина равна мозгу, то есть не только писать, но и знать, что она написала. Это. Никакой механизм не мог бы чувствовать (а не только искусственно сигнализировать, легкое приспособление) удовольствие от своих успехов, огорчение, когда его клапаны сгорают, согреваться лестью, огорчаться от своих ошибок, очаровываться сексом, злиться или впадать в депрессию, когда не может. получить то, что он хочет».

Этот аргумент, по-видимому, отрицает достоверность нашего теста. Согласно самой крайней форме этого воззрения, единственный способ убедиться в том, что машина думает, — это быть машиной и чувствовать себя думающим. Тогда можно было бы описать эти чувства миру, но, конечно, никто не имел бы права обращать на них внимание. Точно так же, согласно этой точке зрения, единственный способ узнать, что думает человек , — это быть этим конкретным человеком. На самом деле это солипсистская точка зрения. Возможно, это самая логичная точка зрения, но она затрудняет обмен идеями. А склонен полагать, что «А думает, а Б нет», в то время как Б верит, что «Б думает, а А нет». Вместо того, чтобы постоянно спорить по этому поводу, обычно придерживаются вежливой условности, о которой думают все.

Я уверен, что профессор Джефферсон не хочет становиться на крайнюю и солипсистскую точку зрения. Вероятно, он был бы вполне готов принять игру в имитацию в качестве теста. Игра (с опущенным игроком B) часто используется на практике под названием viva voce , чтобы выяснить, действительно ли кто-то что-то понимает или «выучил как попугай». Давайте послушаем часть такого viva voce :

Следователь: В первой строке вашего сонета, которая гласит: «Сравню ли я тебя с летним днем», не годится ли «день весенний» или лучше?

Свидетель: Он не сканирует.

Следователь: А как насчет «зимнего дня». Это нормально сканирует.

Свидетель: Да, но никто не хочет, чтобы его сравнивали с зимним днем.

Следователь: Как вы думаете, мистер Пиквик напомнил вам о Рождестве?

Свидетель: В каком-то смысле.

Следователь: Однако Рождество — зимний день, и я не думаю, что мистер Пиквик будет возражать против сравнения.

Свидетель: Я не думаю, что вы серьезно. Под зимней шкурой подразумевается типичный зимний день, а не особый, как Рождество.

И так далее. Что сказал бы профессор Джефферсон, если бы машина, пишущая сонеты, могла ответить таким же голосом ? Я не знаю, расценил бы он машину как «просто искусственно сигнализирующую» эти ответы, но если бы ответы были столь же удовлетворительными и устойчивыми, как в приведенном выше отрывке, я не думаю, что он назвал бы ее «легким изобретением». Эта фраза, я думаю, предназначена для прикрытия таких приемов, как включение в машину записи о чтении кем-либо сонета с соответствующим включением время от времени.

Короче говоря, я думаю, что большинство тех, кто поддерживает аргумент сознания, можно было бы убедить отказаться от него, а не принуждать к солипсистской позиции. Тогда они, вероятно, захотят принять наш тест.

Я не хочу производить впечатление, что я думаю, что в сознании нет никакой тайны. Есть, например, некий парадокс, связанный с любой попыткой его локализации. Но я не думаю, что эти загадки обязательно нужно разгадывать, прежде чем мы сможем ответить на вопрос, который нас интересует в этой статье.

(5) Аргументы от различных физических недостатков

Эти аргументы принимают форму: «Я согласен с тем, что вы можете заставить машины делать все, что вы упомянули, но вы никогда не сможете заставить одну из них делать X». В этой связи предлагаются многочисленные особенности X. Предлагаю на выбор:

Быть добрым, находчивым, красивым, дружелюбным (с. 448), проявлять инициативу, иметь чувство юмора, отличать правильное от неправильного, ошибаться (с. 448), влюбляться, наслаждаться клубникой и сливок (стр. 448), влюбить в себя кого-нибудь, научиться на собственном опыте (стр. 456 f.), правильно использовать слова, быть предметом его собственной мысли (стр. 449), иметь такое же разнообразие поведения, как и человек, делать что-то действительно новое (с. 450). (Некоторым из этих видов инвалидности уделяется особое внимание, как указано в номерах страниц. )

Обычно эти заявления не поддерживаются. Я считаю, что они в основном основаны на принципе научной индукции. За свою жизнь человек повидал тысячи машин. Из того, что он видит о них, он делает ряд общих выводов. Они уродливы, каждая предназначена для очень ограниченной цели, когда требуется для совсем другой цели, они бесполезны, разнообразие поведения каждого из них очень мало и т. д. и т. д. Естественно, он заключает, что это необходимые свойства. машин вообще. Многие из этих ограничений связаны с очень маленькой емкостью памяти большинства машин. (Я предполагаю, что идея емкости памяти каким-то образом расширена для охвата машин, отличных от машин с дискретными состояниями. Точное определение не имеет значения, поскольку в настоящем обсуждении не претендует на математическую точность.) Несколько лет назад, когда очень мало что было слышно о цифровых компьютерах, можно было вызвать большое недоверие к ним, если упоминать их свойства, не описывая их конструкции. Предположительно, это произошло из-за аналогичного применения принципа научной индукции. Эти приложения принципа, конечно, в значительной степени бессознательны. Когда обожженный ребенок боится огня и показывает, что боится его, избегая его, я должен сказать, что он применял научную индукцию. (Конечно, я мог бы также описать его поведение многими другими способами.) Труды и обычаи человечества кажутся не очень подходящим материалом для применения научной индукции. Для получения надежных результатов необходимо исследовать очень большую часть пространства-времени. В противном случае мы можем (как и большинство английских детей) решить, что все говорят по-английски и что учить французский глупо.

Однако следует сделать особые замечания по поводу многих из упомянутых нарушений. Неспособность полакомиться клубникой со сливками могла показаться читателю легкомысленной. Возможно, машину можно было бы заставить наслаждаться этим восхитительным блюдом, но любая попытка заставить ее делать это была бы идиотизмом. Что важно в этой инвалидности, так это то, что она способствует некоторым другим инвалидностям, например. к трудности того же рода дружелюбия, возникающего между человеком и машиной, как между белым человеком и белым человеком или между черным человеком и черным человеком.

Заявление о том, что «машины не могут ошибаться», кажется любопытным. Возникает искушение возразить: «И что, им от этого хуже?» Но давайте займем более сочувственную позицию и попытаемся понять, что же имеется в виду на самом деле. Думаю, эту критику можно объяснить игрой в имитацию. Утверждается, что следователь мог отличить машину от человека, просто задав им ряд арифметических задач. Машина будет разоблачена из-за ее смертоносной точности. Ответ на это прост. Машина (запрограммированная для игры) не будет пытаться дать правильно ответы на арифметические задачи. Это преднамеренно вносило бы ошибки таким образом, чтобы сбить следователя с толку. Механическая ошибка, вероятно, проявилась бы в неподходящем решении относительно того, какую ошибку сделать в арифметике. Даже такая интерпретация критики недостаточно сочувственна. Но мы не можем позволить себе углубляться в это. Мне кажется, что эта критика основана на смешении двух видов ошибок. Мы можем назвать их «ошибками функционирования» и «ошибками заключения». Ошибки в работе возникают из-за какой-либо механической или электрической неисправности, из-за которой машина ведет себя не так, как было задумано. В философских дискуссиях любят игнорировать возможность таких ошибок; следовательно, речь идет об «абстрактных машинах». Эти абстрактные машины являются математическими фикциями, а не физическими объектами. По определению они не способны к ошибкам функционирования. В этом смысле мы действительно можем сказать, что «машины никогда не могут ошибаться». Ошибки вывода могут возникнуть только тогда, когда выходным сигналам машины придается какое-то значение. Машина может, например, печатать математические уравнения или предложения на английском языке. Когда печатается ложное предложение, мы говорим, что машина совершила ошибку вывода. Совершенно очевидно, что нет никаких оснований говорить, что машина не может совершать такого рода ошибки. Он может ничего не делать, кроме как многократно печатать «0 = 1». Если взять менее извращенный пример, у него может быть какой-то метод для получения выводов с помощью научной индукции. Мы должны ожидать, что такой метод будет иногда приводить к ошибочным результатам.

Утверждение, что машина не может быть предметом своего собственного мышления, конечно, можно ответить только в том случае, если можно показать, что машина имеет некоторых мыслей с некоторыми предметами. Тем не менее, кажется, что «предмет работы машины» что-то значит, по крайней мере, для людей, которые имеют с ним дело. Если бы, например, машина пыталась найти решение уравнения 90 277 x 90 278 91 110 2 91 111 — 40 90 277 x 90 278 — 11 = 0, у человека возникло бы искушение описать это уравнение как часть предмета, изучаемого машиной в данный момент. В этом смысле машина, несомненно, может быть своим собственным предметом. Его можно использовать для помощи в составлении собственных программ или для предсказания последствий изменений в его собственной структуре. Наблюдая за результатами своего собственного поведения, он может модифицировать свои собственные программы для более эффективного достижения какой-либо цели. Это возможности ближайшего будущего, а не утопические мечты.

Критика того, что машина не может иметь большого разнообразия поведения, — это просто способ сказать, что у нее не может быть большой емкости памяти. До недавнего времени емкость памяти даже в тысячу разрядов была большой редкостью.

Критика, которую мы здесь рассматриваем, часто представляет собой замаскированные формы аргументации от сознания. Обычно, если кто-то утверждает, что машина может делать одну из этих вещей, и описывает тип метода, который может использовать машина, это не произведет большого впечатления. Думается, что метод (каким бы он ни был, ибо он должен быть механическим) действительно довольно низок. Сравните скобки в утверждении Джефферсона, приведенном на с. 21.

(6) Возражение леди Лавлейс

Самая подробная информация об аналитической машине Бэббиджа взята из мемуаров леди Лавлейс. В нем она заявляет: «Аналитическая машина не претендует на то, чтобы что-либо породила . Он может делать все, что мы знаем, как приказать ему выполнять» (курсив ее). Это утверждение цитирует Hartree (стр. 70), который добавляет: «Это не означает, что невозможно сконструировать электронное оборудование, которое будет «думать само по себе» или в котором, с точки зрения биологии, можно было бы установить условный рефлекс, который служил бы основой для «обучения». Возможно ли это в принципе или нет, является стимулирующим и захватывающим вопросом, на который указывают некоторые из этих недавних событий. Но, похоже, машины, построенные или спроектированные в то время, не обладали этим свойством».

Я полностью согласен с Хартри по этому поводу. Следует заметить, что он не утверждает, что машины, о которых идет речь, не обладали имуществом, а скорее то, что доказательства, имевшиеся в распоряжении леди Лавлейс, не побудили ее поверить в то, что оно у них было. Вполне возможно, что рассматриваемые машины в некотором смысле обладали этим свойством. Предположим, что некоторый автомат с дискретными состояниями обладает этим свойством. Аналитическая машина была универсальным цифровым компьютером, так что, если бы ее объем памяти и скорость были адекватными, ее можно было бы с помощью соответствующего программирования заставить имитировать рассматриваемую машину. Вероятно, этот аргумент не пришел в голову ни графине, ни Бэббиджу. В любом случае они не были обязаны требовать все, что можно было потребовать.

Весь этот вопрос мы еще раз рассмотрим в рубрике обучающихся машин.

Вариант возражения леди Лавлейс гласит, что машина «никогда не может сделать ничего действительно нового». Это можно на мгновение парировать пилой: «Нет ничего нового под солнцем». Кто может быть уверен, что «первоначальная работа», которую он проделал, была не просто ростом семени, посаженного в него учением, или следствием следования общеизвестным общим принципам. Лучший вариант возражения гласит, что машина никогда не сможет «застигнуть нас врасплох». Это утверждение является более прямым вызовом, и на него можно ответить напрямую. Машины застают меня врасплох с большой частотой. Во многом это происходит потому, что я недостаточно рассчитываю, чтобы решить, чего от них ожидать, или, скорее, потому, что, хотя я и рассчитываю, делаю это торопливо, небрежно, рискуя. Возможно, я говорю себе: «Я полагаю, что напряжение здесь должно быть таким же, как и там: во всяком случае, допустим, что оно есть».0003

Естественно, я часто ошибаюсь, и результат оказывается для меня неожиданностью, поскольку к моменту завершения эксперимента эти предположения забываются. Эти признания делают меня открытым для лекций о моем порочном поведении, но не подвергайте сомнению мою достоверность, когда я свидетельствую о неожиданностях, которые я испытываю.

Я не думаю, что этот ответ заставит моего критика замолчать. Он, вероятно, скажет, что такие сюрпризы происходят из-за какого-то творческого умственного акта с моей стороны и не делают никакого кредита на машину. Это возвращает нас к аргументу сознания, а не к идее неожиданности. Это направление рассуждений мы должны считать завершенным, но, возможно, стоит отметить, что оценка чего-либо как удивительного требует такого же «творческого умственного акта», независимо от того, исходит ли неожиданное событие от человека, книги, машины или чего-то еще. еще.

Представление о том, что машины не могут преподносить сюрпризы, я полагаю, связано с заблуждением, которому особенно подвержены философы и математики. Это допущение, что как только факт представлен уму, все следствия этого факта возникают в уме одновременно с ним. Это очень полезное допущение во многих обстоятельствах, но слишком легко забывается, что оно ложно. Естественным последствием этого является предположение, что нет никакой ценности в простом выводе следствий из данных и общих принципов.

(7) Аргумент непрерывности в нервной системе

Нервная система определенно не является машиной с дискретными состояниями. Небольшая ошибка в информации о величине нервного импульса, воздействующего на нейрон, может иметь большое значение для величины исходящего импульса. Можно возразить, что если это так, то нельзя ожидать, что можно будет имитировать поведение нервной системы с помощью системы с дискретным состоянием.

Это правда, что машина с дискретными состояниями должна отличаться от машины непрерывного действия. Но если придерживаться условий игры в имитацию, то следователь не сможет воспользоваться этой разницей. Положение можно прояснить, если рассмотреть какую-нибудь другую более простую непрерывную машину. Дифференциальный анализатор подойдет очень хорошо. (Дифференциальный анализатор — это машина определенного типа, не относящаяся к типу с дискретным состоянием, используемая для некоторых видов вычислений.) Некоторые из них предоставляют свои ответы в типизированной форме и поэтому подходят для участия в игре. Цифровой компьютер не сможет точно предсказать, какие ответы даст дифференциальный анализатор на задачу, но он вполне способен дать правильный ответ. Например, если вас попросят указать значение π (на самом деле около 3,1416) разумно было бы выбирать наугад между значениями 3,12, 3,13, 3,14, 3,15, 3,16 с вероятностями 0,05, 0,15, 0,55, 0,19, 0,06 (скажем). В этих условиях следователю будет очень трудно отличить дифференциальный анализатор от цифрового компьютера.

(8) Аргумент, основанный на неформальном поведении

Невозможно составить набор правил, описывающих, что человек должен делать при каждом мыслимом наборе обстоятельств. Например, у человека может быть правило: останавливаться, когда видишь красный свет светофора, и ехать, если видишь зеленый, но что, если по какой-то ошибке оба сигнала появляются вместе? Возможно, кто-то решит, что безопаснее всего остановиться. Но впоследствии из этого решения вполне могут возникнуть дополнительные трудности. Попытка разработать правила поведения, охватывающие все возможные ситуации, даже возникающие в результате светофора, представляется невозможной. Со всем этим я согласен.

Отсюда утверждается, что мы не можем быть машинами. Я попытаюсь воспроизвести этот аргумент, но боюсь, что вряд ли смогу передать его правильно. Кажется, что-то вроде этого работает. «Если бы у каждого человека был определенный набор правил поведения, регулирующих его жизнь, он был бы не лучше машины. Но таких правил нет, поэтому люди не могут быть машинами». Нераспределенная середина бросается в глаза. Я не думаю, что аргумент когда-либо формулировался именно так, но я считаю, что этот аргумент тем не менее используется. Однако может возникнуть определенная путаница между «правилами поведения» и «законами поведения», чтобы затуманить проблему. Под «правилами поведения» я подразумеваю такие заповеди, как «Остановись, если увидишь красный свет», на основании которых можно действовать и которые можно осознавать. Под «законами поведения» я подразумеваю законы природы применительно к человеческому телу, такие как «если его ущипнуть, он завизжит». Если мы заменим «законами поведения, регулирующими его жизнь» на «законы поведения, которыми он регулирует свою жизнь» в приведенном аргументе, то нераспределенная середина перестанет быть непреодолимой. Ибо мы считаем, что верно не только то, что регулирование законами поведения подразумевает существование некоторого рода машины (хотя и не обязательно машины с дискретными состояниями), но, наоборот, существование такой машины подразумевает регулирование такими законами. Однако мы не можем так легко убедиться в отсутствии полных законов поведения, как полных правил поведения. Единственный известный нам способ найти такие законы — это научное наблюдение, и мы, конечно же, не знаем обстоятельств, при которых мы могли бы сказать: «Мы искали достаточно». Таких законов нет».

Мы можем более убедительно продемонстрировать, что любое такое заявление было бы необоснованным. Предположим, мы могли бы быть уверены, что найдем такие законы, если бы они существовали. Тогда, учитывая машину с дискретными состояниями, несомненно, можно было бы обнаружить путем наблюдения за ней достаточно, чтобы предсказать ее будущее поведение, и это в течение разумного времени, скажем, тысячи лет. Но, похоже, это не так. Я установил на манчестерском компьютере небольшую программу, использующую всего 1000 единиц памяти, в результате чего машина, снабженная одним шестнадцатизначным числом, отвечает другим в течение двух секунд. Я бы бросил вызов любому, кто узнает из этих ответов достаточно о программе, чтобы быть в состоянии предсказать любые ответы на непроверенные значения.

(9) Аргумент от экстрасенсорного восприятия

Я предполагаю, что читатель знаком с идеей экстрасенсорного восприятия и значением четырех его элементов, а именно. телепатия, ясновидение, предвидение и психокинез. Эти тревожные явления, кажется, опровергают все наши обычные научные идеи. Как бы нам хотелось дискредитировать их! К сожалению, статистических данных, по крайней мере, в отношении телепатии, очень много. Очень трудно перестроить свои идеи так, чтобы они соответствовали этим новым фактам. После того, как вы их приняли, поверить в привидения и привидения не так уж и сложно. Представление о том, что наши тела движутся просто по известным законам физики вместе с некоторыми другими, еще не открытыми, но в чем-то похожими, уйдет одной из первых.

Этот аргумент, на мой взгляд, довольно сильный. В ответ можно сказать, что многие научные теории, по-видимому, остаются применимыми на практике, несмотря на то, что они противоречат экстрасенсорному восприятию; что на самом деле можно очень хорошо поладить, если забыть об этом. Это довольно холодное утешение, и кто-то опасается, что мышление — это как раз тот феномен, при котором Э.С.П. может быть особенно актуальным.

Более конкретный аргумент, основанный на E.S.P. может звучать следующим образом: «Давайте сыграем в имитацию, используя в качестве свидетелей человека, который хорош в качестве телепатического приемника, и цифровой компьютер. Следователь может задавать такие вопросы, как «Какой масти карта в моей правой руке?» Человек с помощью телепатии или ясновидения дает правильный ответ 130 раз из 400 карт. Машина может только угадывать случайным образом и, возможно, правильно выдает 104, поэтому следователь делает правильную идентификацию». Здесь открывается интересная возможность. Предположим, что цифровой компьютер содержит генератор случайных чисел. Тогда будет естественно использовать это, чтобы решить, какой ответ дать. Но тогда генератор случайных чисел будет подчиняться психокинетическим силам следователя. Возможно, этот психокинез может привести к тому, что машина угадает чаще, чем можно было бы ожидать при расчете вероятности, так что следователь все равно не сможет правильно идентифицировать. С другой стороны, он мог бы угадать правильно без всякого вопроса, с помощью ясновидения. С Э.С.П. все может случиться.

Если телепатия будет допущена, то придется ужесточить наш тест. Ситуацию можно было бы рассматривать как аналогичную той, которая имела бы место, если бы следователь разговаривал сам с собой, а один из участников слушал бы ухом к стене. Помещение участников в «защищенную от телепатии комнату» удовлетворило бы всем требованиям.

7. Обучающие машины

Читатель должен был ожидать, что у меня нет очень убедительных аргументов положительного характера в поддержку моей точки зрения. Если бы я знал, я бы не стал так стараться указывать на ошибочность противоположных взглядов. Те доказательства, которые у меня есть, я сейчас приведу.

Вернемся ненадолго к возражению леди Лавлейс, утверждавшему, что машина может делать только то, что мы ей приказываем. Можно сказать, что человек может «внедрить» в машину идею, и она до определенной степени отреагирует, а затем затихнет, как струна фортепиано, на которую ударяют молоточком. Другим сравнением может быть атомный котел меньше критического размера: введенная идея должна соответствовать нейтрону, входящему в котел извне. Каждый такой нейтрон будет вызывать определенное возмущение, которое со временем угаснет. Если, однако, размер котла достаточно увеличить, возмущение, вызванное таким падающим нейтроном, весьма вероятно, будет продолжаться и увеличиваться до тех пор, пока весь котел не будет разрушен. Есть ли соответствующее явление для разума и для машин? Похоже, что для человеческого разума есть один. Большинство из них кажутся «подкритическими», , т.е. , чтобы соответствовать в этой аналогии сваям докритического размера. Идея, представленная такому уму, в среднем вызовет менее одной идеи в ответ. Небольшая часть является сверхкритической. Представленная такому уму идея может породить целую «теорию», состоящую из вторичных, третичных и более отдаленных идей. Ум животных, кажется, очень определенно субкритичен. Придерживаясь этой аналогии, мы спрашиваем: «Можно ли сделать машину сверхкритической?»

Аналогия с луковой шелухой также полезна. При рассмотрении функций ума или мозга мы находим определенные операции, которые мы можем объяснить чисто механическими терминами. Мы говорим, что это не соответствует реальному уму: это своего рода кожа, которую мы должны содрать, если хотим найти настоящий ум. Но затем в том, что осталось, мы находим еще одну кожу, которую нужно снять, и так далее. Действуя таким образом, придем ли мы когда-нибудь к «настоящему» уму или в конце концов придем к коже, в которой ничего нет? В последнем случае весь ум механический. (Однако это не будет машина с дискретными состояниями. Мы обсуждали это.)

Последние два абзаца не претендуют на роль убедительных аргументов. Скорее их следует охарактеризовать как «рассказы, стремящиеся породить веру».

Единственной действительно удовлетворительной поддержкой точки зрения, выраженной в начале § 6, будет та, которая будет обеспечена ожиданием конца века, а затем выполнением описанного эксперимента. Но что мы можем сказать в то же время? Какие шаги нужно предпринять сейчас, чтобы эксперимент удался?

Как я уже объяснил, проблема в основном в программировании. Потребуется также технический прогресс, но маловероятно, что этого будет недостаточно для удовлетворения требований. Оценки емкости памяти мозга варьируются от 10 9от 1110 10 до 10 15 двоичные цифры. Я склоняюсь к низшим значениям и полагаю, что лишь очень небольшая часть используется для высших типов мышления. Большая его часть, вероятно, используется для сохранения зрительных впечатлений. Я был бы удивлен, если бы для удовлетворительной игры в имитацию требовалось более 10 9 , по крайней мере против слепого. (Примечание. Емкость Британской энциклопедии , , 11-е издание, составляет 2 × 10 9 .) Емкость хранилища 10 7 было бы вполне осуществимой возможностью даже с использованием современных технологий. Наверное, вообще не нужно повышать скорость работы машин. Части современных машин, которые можно рассматривать как аналоги нервных клеток, работают примерно в тысячу раз быстрее, чем последние. Это должно обеспечить «запас прочности», который мог бы покрыть потери скорости, возникающие во многих отношениях. Наша проблема состоит в том, чтобы выяснить, как запрограммировать эти машины для игры. При моем нынешнем темпе работы я произвожу около тысячи цифр программы в день, так что около шестидесяти рабочих, постоянно работающих в течение пятидесяти лет, могли бы выполнить эту работу, если бы ничего не попало в корзину для бумаг. Желателен какой-то более быстрый метод.

В процессе имитации разума взрослого человека мы вынуждены много думать о процессе, который привел его к тому состоянию, в котором он находится. Мы можем заметить три компонента:

  • Исходное состояние разум, скажем, при рождении,

  • Воспитание, которому оно подверглось,

  • Другой опыт, не подлежащий описанию как образование, которому оно было подвергнуто.

Вместо того, чтобы пытаться создать программу, имитирующую взрослый разум, почему бы не попытаться создать программу, имитирующую детский? Если бы это затем было подвергнуто соответствующему курсу обучения, можно было бы получить мозг взрослого человека. Предположительно, детский мозг — это что-то вроде записной книжки, которую покупают у канцелярских продавцов. Довольно маленький механизм и много чистых листов. (С нашей точки зрения, механизм и письмо — почти синонимы.) Мы надеемся, что в детском мозгу так мало механизмов, что что-то подобное можно легко запрограммировать. Мы можем предположить, что объем работы в области образования в первом приближении почти такой же, как и для человеческого ребенка.

Итак, мы разделили нашу задачу на две части. Детская программа и образовательный процесс. Эти двое остаются очень тесно связанными. Мы не можем рассчитывать найти хорошего ребенка-машину с первой попытки. Нужно поэкспериментировать с обучением одной такой машины и посмотреть, насколько хорошо она обучается. Затем можно попробовать другой и посмотреть, лучше он или хуже. Существует очевидная связь между этим процессом и эволюцией благодаря идентификации

Структура дочерней машины = Hereditary material 
Changes  „  „  = Mutations 
Natural selection  = Judgment of the experimenter 

Structure of the child machine  = Hereditary material 
Изменения  „  „ = Мутации
Естественный отбор = Суждение экспериментатора

Открыть в новой вкладке

Structure of the child machine  = Hereditary material 
Changes  „  „  = Mutations 
Natural selection  = Judgment of the experimenter 

Структура дочерней машины = наследственный материал
Изменения = Мутации
Естественный отбор = Суждение экспериментатора

Открыть в новой вкладке

Однако можно надеяться, что этот процесс будет более быстрым, чем эволюция. Выживание наиболее приспособленных — медленный метод измерения преимуществ. Экспериментатор, используя интеллект, должен быть в состоянии ускорить его. Не менее важен тот факт, что он не ограничивается случайными мутациями. Если он может проследить причину некоторой слабости, он, вероятно, сможет придумать вид мутации, которая улучшит ее.

Невозможно применить к машине тот же процесс обучения, что и к обычному ребенку. Например, у него не будет ножек, чтобы его нельзя было попросить выйти и наполнить ведро с углем. Возможно, у него не было глаз. Но как бы хорошо эти недостатки ни преодолевались хитрой инженерией, нельзя было отправить это существо в школу без того, чтобы другие дети не высмеивали его. Это должно быть дано некоторое обучение. Нам не нужно слишком беспокоиться о ногах, глазах и т. д. Пример мисс Хелен Келлер показывает, что образование может иметь место при условии, что общение в обоих направлениях между учителем и учеником может осуществляться теми или иными средствами.

Обычно мы связываем наказания и поощрения с процессом обучения. Некоторые простые дочерние машины могут быть сконструированы или запрограммированы по такому принципу. Машина должна быть сконструирована таким образом, чтобы события, которые непосредственно предшествовали возникновению сигнала-наказания, вряд ли повторились бы, в то время как сигнал-награда увеличивал вероятность повторения событий, которые к нему привели. Эти определения не предполагают никаких чувств со стороны машины. Я провел несколько экспериментов с одним из таких детей-машин, и мне удалось обучить его нескольким вещам, но метод обучения был слишком неортодоксальным, чтобы эксперимент можно было считать действительно успешным.

Использование наказаний и поощрений в лучшем случае может быть частью учебного процесса. Грубо говоря, если у учителя нет других средств связи с учеником, количество информации, которое может до него дойти, не превышает общего количества применяемых поощрений и наказаний. К тому времени, когда ребенок научится повторять «Касабьянку», он, вероятно, действительно почувствовал бы себя очень болезненным, если бы текст можно было обнаружить только с помощью метода «Двадцати вопросов», где каждое «НЕТ» принимало форму удара. Поэтому необходимо иметь какие-то другие «неэмоциональные» каналы связи. Если они доступны, можно с помощью наказаний и поощрений научить машину подчиняться приказам, отдаваемым на каком-либо языке 9.0277 напр. символический язык. Эти приказы должны передаваться по «неэмоциональным» каналам. Использование этого языка значительно уменьшит количество требуемых наказаний и поощрений.

Мнения могут различаться относительно сложности, подходящей для дочерней машины. Можно попытаться сделать его как можно более простым в соответствии с общими принципами. В качестве альтернативы можно иметь «встроенную» полную систему логического вывода. 1 В последнем случае магазин был бы в основном занят определениями и предложениями. Предложения будут иметь различные виды статуса, напр. 90 278 хорошо установленных фактов, предположений, математически доказанных теорем, утверждений, данных авторитетом, выражений, имеющих логическую форму предложения, но не имеющих достоверной ценности. Некоторые предложения могут быть описаны как «императивы». Машина должна быть сконструирована таким образом, чтобы, как только императив классифицировался как «устоявшийся», автоматически выполнялось соответствующее действие. Чтобы проиллюстрировать это, предположим, что учитель говорит машине: «Сделай домашнее задание сейчас». Это может привести к тому, что фраза «Учитель говорит: «Сделай домашнее задание сейчас»» будет включена в число общеизвестных фактов. Другим таким фактом может быть

«Все, что говорит учитель, правда». Их сочетание может в конечном итоге привести к тому, что императив «Сделай домашнюю работу сейчас» будет включен в число хорошо установленных фактов, и это, благодаря конструкции машины, будет означать, что домашняя работа действительно начнется, но эффект будет очень удовлетворительным. . Процессы вывода, используемые машиной, не обязательно должны удовлетворять самых требовательных логиков. Например, может не быть иерархии типов. Но это не должно означать, что будут возникать ошибки типа, точно так же, как мы не обречены падать с незащищенных скал. Подходящие императивы (выраженные в системе , не являющейся частью правил системы ), например, «Не используйте класс, если он не является подклассом того, который был упомянут учителем», может иметь эффект, аналогичный «Не ходи». слишком близко к краю».

Императивы, которым может подчиняться машина без конечностей, должны носить довольно интеллектуальный характер, как в приведенном выше примере (выполнение домашнего задания). Важными среди таких императивов будут те, которые регулируют порядок применения правил рассматриваемой логической системы. Ибо на каждом этапе использования логической системы существует очень большое количество альтернативных шагов, каждый из которых разрешено применять, поскольку это касается подчинения правилам логической системы. Этот выбор определяет разницу между блестящим и рассудительным мыслителем, а не разницу между здравомыслящим и ошибочным. Предложения, ведущие к императивам такого рода, могут быть такими: «Когда упоминается Сократ, используйте силлогизм в Варваре» или «Если доказано, что один метод быстрее другого, не используйте более медленный метод». Некоторые из них могут быть «даны властью», но другие могут быть произведены самой машиной 9.0277 напр. по научной индукции.

Некоторым читателям идея обучающейся машины может показаться парадоксальной. Как могут измениться правила эксплуатации машины? Они должны полностью описывать, как машина будет реагировать, какой бы ни была ее история, какие бы изменения она ни претерпела. Таким образом, правила практически не зависят от времени. Это совершенно верно. Объяснение парадокса состоит в том, что правила, которые изменяются в процессе обучения, носят гораздо менее претенциозный характер и претендуют лишь на эфемерную действительность. Читатель может провести параллель с Конституцией Соединенных Штатов.

Важной особенностью обучающейся машины является то, что ее учитель часто будет в значительной степени не знать, что происходит внутри, хотя он все же может в некоторой степени предсказать поведение своего ученика. В наибольшей степени это должно относиться к последующему образованию машины, возникающей из дочерней машины с хорошо испытанной конструкцией (или программой). Это явно контрастирует с обычной процедурой использования машины для выполнения вычислений: в этом случае цель состоит в том, чтобы иметь четкую мысленную картину состояния машины в каждый момент вычислений. Эта цель может быть достигнута только с борьбой. Представление о том, что «машина может делать только то, что мы знаем, как ей приказать»9.1110 1 выглядит странно на фоне этого. Большинство программ, которые мы можем поместить в машину, приведут к тому, что она будет делать что-то, что мы вообще не можем понять, или что мы рассматриваем как совершенно случайное поведение. Интеллектуальное поведение, по-видимому, состоит в отходе от полностью дисциплинированного поведения, связанного с вычислениями, но в довольно незначительном отклонении, которое не приводит к случайному поведению или бессмысленным повторяющимся циклам. Другим важным результатом подготовки нашей машины к ее участию в имитационной игре в процессе обучения и обучения является то, что «человеческая склонность к ошибкам», скорее всего, будет опущена довольно естественным образом9. 0277 т.е. без специальной «тренировки». (Читатель должен согласовать это с точкой зрения на стр. 24, 25.) Наученные процессы не дают стопроцентного результата. уверенность в результате; если бы они это сделали, они не могли бы быть разучившимися.

Вероятно, было бы целесообразно включить в обучающую машину случайный элемент (см. стр. 438). Случайный элемент весьма полезен, когда мы ищем решение какой-то проблемы. Предположим, например, что мы хотим найти число от 50 до 200, равное квадрату суммы его цифр, мы можем начать с 51, затем попробовать 52 и продолжать, пока не получим число, которое сработает. В качестве альтернативы мы можем выбирать числа случайным образом, пока не получим хороший. Преимущество этого метода в том, что нет необходимости отслеживать значения, которые были опробованы, но недостаток в том, что одно и то же можно попробовать дважды, но это не очень важно, если есть несколько решений. Недостаток систематического метода состоит в том, что может существовать огромный блок без каких-либо решений в области, которую необходимо исследовать в первую очередь. Теперь процесс обучения можно рассматривать как поиск формы поведения, которая удовлетворит учителя (или какой-либо другой критерий). Поскольку существует, вероятно, очень большое количество удовлетворительных решений, случайный метод кажется лучше, чем систематический. Следует заметить, что он используется в аналогичном процессе эволюции. Но там систематический метод невозможен. Как можно отследить различные генетические комбинации, которые были опробованы, чтобы избежать их повторения?

Мы можем надеяться, что со временем машины будут конкурировать с людьми во всех чисто интеллектуальных областях. Но с каких лучше начать? Даже это трудное решение. Многие люди думают, что лучше всего подойдет очень абстрактная деятельность, например, игра в шахматы. Можно также утверждать, что лучше всего снабдить машину лучшими органами чувств, которые можно купить за деньги, а затем научить ее понимать и говорить по-английски. Этот процесс может следовать обычному обучению ребенка. Вещи будут указаны и названы и т. д. Опять же, я не знаю, какой ответ правильный, но я думаю, что следует попробовать оба подхода.

Мы можем видеть только небольшое расстояние вперед, но мы видим там много того, что нужно сделать.

1 Возможно, это мнение еретическое. Святой Фома Аквинский ( Summa Theologica , цитируется Бертраном Расселом, стр. 480) утверждает, что Бог не может сделать человека без души. Но это может быть не реальным ограничением Его сил, а лишь следствием того факта, что человеческие души бессмертны, а потому нерушимы.

1 Имена авторов, выделенные курсивом, относятся к Библиографии.

1 Или, скорее, «запрограммировано» для нашего ребенка-машины будет запрограммировано в цифровом компьютере. Но логическую систему изучать не придется.

1 Сравните утверждение леди Лавлейс (стр. 450), в котором нет слова «только».

БИБЛИОГРАФИЯ

Сэмюэл

Батлер

,

Эревон

,

Лондон

, 30 139 0

80003

Главы 23, 24, 25

,

Книга Машин

.

Алонзо

Черч

, «

Неразрешимая проблема теории элементарных чисел

»,

American J. of Math.

,

58

(

1936

),

345

363

3 90. 1

”,

Monatshefle für Math, und Phys.

, (

1931

),

173

189

.

D. R.

Hartree

,

Счетные приборы и машины

,

Нью-Йорк

,

1943 9004.

 

S. C.

Клини

, “

Общие рекурсивные функции натуральных чисел

»,

Американский J. Math.

,

57

(

1935

),

153

173

и

219

9000 24444444444999.

.

Г.

Джефферсон

, «

Разум механического человека». Lister Oration за 1949 год

.

Британский медицинский журнал

, том.

я

(

1949

),

1105

1121

.

Графиня Лавельс

, ‘

Примечания переводчика в статью о аналитическом Engiro’s Babbage

’,

Scientific Memoirs

(Ed.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *