Номинал и токовые характеристики автоматических выключателей
Здравствуйте, уважаемые читатели сайта elektrik-sam.info.
В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей.
Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.
Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.
Самая главная характеристика автоматического выключателя – номинальный ток. Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь.
Ряд значений номинального тока автоматических выключателей стандартизован и составляет:
6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.
Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.
Также автоматы в электрощитах обычно устанавливаются по несколько штук в ряд вплотную друг к другу, это приводит к увеличению температуры (автоматы «подогревают» друг друга) и снижению величины коммутируемого ими тока.
Некоторые производители автоматических выключателей указывают в каталогах поправочные коэффициенты для учета этих параметров.
Подробно о влиянии температуры окружающей среды и количества рядом установленных аппаратов защиты смотрите в статье Почему в жару срабатывает автоматический выключатель.
В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.
Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.
Таким образом, следующая основная характеристика:
время-токовая характеристика срабатывания автоматического выключателя – это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.
Важность этой характеристики заключается в том, что автоматы с одинаковым номиналом будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,
Рассмотрим типы время-токовых характеристик:
— Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.
— Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.
— Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.
— Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.
— Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.
— Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.
В быту обычно используются автоматические выключатели с характеристиками B,C и очень редко D. Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.
Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.
Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.
Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).
На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).
Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.
При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.
При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).
В следующих статьях мы продолжим рассмотрение характеристик автоматических выключателей, методику и стратегию их расчета и выбора, потому если хотите не пропустить новые интересные материалы по этой теме — подписывайтесь на новости сайта, форма подписки внизу статьи.
В заключении статьи подробное видео Номинал и токовые характеристики автоматических выключателей:
Рекомендую прочитать:
Автоматические выключатели УЗО дифавтоматы — подробное руководство.
Как выбирать автоматические выключатели, УЗО, дифавтоматы?
Автоматические выключатели — конструкция и принцип работы.
Номиналы групповых автоматов превышают номинал вводного?
Почему в жару срабатывает автоматический выключатель?
Менять ли автоматический выключатель, если его «выбивает»?
Конструкция (устройство) УЗО.
Устройство УЗО и принцип действия.
Работа УЗО при обрыве нуля.
Как проверить тип УЗО?
Почему УЗО выбирают на ступень выше?
Таблица автоматов по мощности и току. Выбор автомата по сечению кабеля таблица
Друзья приветствую всех на сайте «Электрик в доме». Мне на почту часто приходят письма с просьбой разъяснить правильно ли выбран автомат. Я понял, что для вас этот вопрос актуален, поэтому в данной статье будет таблица автоматов по мощности и току, по которой Вы с легкостью сможете выбрать автоматический выключатель под свою нагрузку и сечение кабеля.
Главной функцией автомата является защита электропроводки от перегрузки, которая приводит к разрушению изоляции электрического кабеля, короткому замыканию и пожару. Для того чтобы избежать проблем с электропроводкой в обязательном порядке устанавливают автоматические выключатели.
Конструктивно такой аппарат состоит из теплового и электромагнитного механизмов отключения (расцепителей).
Главной задачей электромонтажника является грамотный расчет характеристик автомата для его долговечной, стабильной работы и выполнения тех функций, которые на него возложены.
Ремонтные работы вследствие выхода из строя электропроводки – сложное и очень дорогое дело. Более того, от правильного выбора защитных устройств зависит жизнь и здоровье человека, поэтому важно подойти к этому вопросу очень ответственно.
В этой статье будет представлен правильный алгоритм выбора автоматических выключателей в зависимости от номинала и других характеристик.
Шкала номинальных токов автоматических выключателей
На корпусе автоматических выключателей производителем всегда указываются главные характеристики устройства, его модель, серийный номер и бренд.
Главной и самой важной характеристикой автомата является значение номинального тока. Она показывает максимально допустимый ток, который может долго проходить через автоматический выключатель без его нагрева и отключения. Значение тока измеряется и указывается в Амперах (А). Если номинальный ток, протекающий через устройство, будет превышен, то защитный автомат отключится и разомкнет цепь.
Модели автоматов имеют стандарт значений номинального тока и бывают 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А. Бывают и более мощные приборы, но в быту они не используются и предназначены только для специальных задач в промышленности.
Согласно нормативно-технической документации номинальный ток для любого автоматического выключателя указывается для работы прибора при температуре окружающей среды +30 градусов Цельсия.
Устанавливают автоматы в электрощитах на дин-рейку по несколько штук в зависимости от количества защищаемых линий. При одновременном расположении нескольких устройств вплотную друг к другу они «подогревают» друг друга, это приводит к уменьшению значения тока, который они могут пропустить без отключения. В связи с этим в каталогах и инструкциях к приборам защиты производители часто указывают поправочные коэффициенты для размещения групп выключателей.
Важность время-токовой характеристики
Некоторые электрические приборы имеют высокий пусковой ток при включении. Его значение бывает выше номинального тока автомата, но действует он краткое время. Для электрического кабеля такой ток не представляет опасности (если его величина в разумных пределах соотносится с типом кабеля), но автомат может срабатывать при пусковом токе, воспринимая это как перегрузку.
Для того чтобы не происходило постоянных отключений из-за запуска устройств с высокими пусковыми токами, автоматы имеют разделение на типы по время-токовой характеристике.
Конструктивно автоматический выключатель состоит из двух расцепителей: электромагнитного и теплового.
Электромагнитный расцепитель предназначен для отключения устройства при коротком замыкании. Для работы такого механизма отключения в автомате используется электромагнитная катушка и соленоид. При многократном превышении значения электрического тока появляется магнитное поле в катушке, та задействует соленоид и он отключает автомат.
Автоматические выключатели имеют характеристику по току короткого замыкания (предельный ток отключения), которая по номиналу бывает в 3, 4,5, 6 и 10кА. Для бытовых целей при устройстве защиты в квартире или доме чаще всего применяют автоматы с номиналом тока КЗ 6кА.
Тепловой расцепитель – это пластина, состоящая из двух различных металлов. При длительной нагрузке, превышающей номинальный ток, эта пластина нагревается, выгибается, воздействует на рычаг расцепителя и устройство отключается. Главная задача такого механизма – защищать линию от долговременных перегрузок выше номинального тока автомата.
Чтобы не думать о том, какую нагрузку включить в розетку, не рассчитывать постоянно суммарную мощность приборов и не думать о пусковых токах была придумана характеристика по времени-току.
Данная характеристика показывает время и ток, которые влияют на отключение аппарата. На автоматах она указывается буквой В, С или D.
Автоматические выключатели с одинаковыми номиналами и различной время–токовой характеристикой будут отключаться в разное время и с разным током превышения.
Такое разделение автоматов является очень удобным и позволяет уменьшить количество ложных отключений.
В соответствии с ГОСТ Р 50345-2010 существует три стандарта время-токовых характеристик:
- B – превышение в 3 — 5 раз от номинального тока, самые чувствительные автоматы имеют такую характеристику и применяются в сетях с приборами не имеющими больших пусковых токов.
- C – превышение в 5 — 10 раз от номинального тока, самая популярные автоматы с такой характеристикой, они используются в квартирах и частных домах.
- D – превышение в 10 — 20 раз от номинального тока, используется для защиты сетей с оборудованием имеющим высокие пусковые токи и кратковременные перегрузки.
Почему автомат С16 не отключится при токе 16 Ампер?
Теперь давайте попробуем понять, почему при сечении электрического кабеля 2,5 кв.мм, который выдерживает ток 25А (ПУЭ таблица 1.3.6) должен защищать автоматический выключатель на 16А, а не на 25А.
Все дело в тепловом расцепителе, который нагревается со временем при воздействии нагрузки и защищает от длительного превышения тока. Длительность этого времени может занимать и 10 минут и 1 час.
Автоматические выключатели имеют такую характеристику, как «ток неотключения», он рассчитан и составляет 1,13 от номинального тока (смотри ГОСТ Р 50345-2010 п.8.6.2). Эта характеристика означает, что автомат не отключится при этом значении тока в течение часа.
Например, автомат на 16А не отключится, при протекании через него тока в 18,08 А в течение часа, это заложено в работу теплового расцепителя устройства.
Еще одной характеристикой автоматов является «условный ток отключения» и он тоже стандартен для всех защитных автоматов и равен 1,45 от номинального тока. При токе, например, 36,25А автомат на 25А обязательно отключится в течение часа. Это правило действует только при условии, что изначально автоматы были холодными.
Поэтому нужно иметь в виду, что автоматические выключатели не отключаются при достижении значения тока их номинала. Они могут работать и дольше, поэтому всегда выбирают защитное устройство с номиналом ниже, чем пропускающая способность кабеля.
Номиналы автоматов по току таблица
Для того, чтобы защитить линию от перегрузки и короткого замыкания нужно тщательно и правильно выбрать номинал автомат по току. Вот, например, если вы защищаете линию с кабелем 2,5 кв.мм. автоматом на 25А и одновременно включили несколько мощных бытовых приборов, то ток может превысить номинал автомата, но при значении меньше 1,45 автомат может работать около часа.
Если тока будет 28 А, то изоляция кабеля начнет плавиться (так как допустимый ток только 25А), это приведет к выходу из строя, пожару и другим печальным последствиям.
Поэтому таблица автоматов по мощности и току выглядит следующим образом:
Сечение медных жил кабеля, кв.мм | Допустимый длительный ток, А | Номинальный ток автомата, А | Максимальная мощность (220 В) | Применение |
1,5 | 19 | 10 | 4,1 | Освещение |
2,5 | 25 | 16 | 5,5 | Розетки |
4 | 35 | 25 | 7,7 | Водонагреватели, духовки |
6 | 42 | 32 | 9,24 | Электроплиты |
10 | 55 | 40 | 12,1 | Вводы в квартиру |
ВАЖНО! Обязательно следуйте значениям таблицы и указаниям нормативной электротехнической документации!
Какой автомат выбрать для кабеля 2.5 мм2?
Для потребителей, суммарная мощность которых не будет превышать 3,5 кВт рекомендуем использовать медный кабель сечением 2,5кв.мм и защищать эти линии автоматом на 16А.
Для медного кабеля сечением 2,5 кв.мм согласно таблице 1.3.6 ПУЭ длительный допустимый ток 27А. Исходя из этого, можно подумать, что к такому кабелю подойдет автомат на 25А. Но это не так. Кстати кто не знает где искать публикую данную таблицу:
Согласно ПУЭ, п. 1.3.10 значение тока 25А разогреет кабель 2,5 кв.мм до 65 градусов Цельсия. Это достаточно высокая температура для постоянных режимов работы.
Еще важно понимать, что не все производители изготавливают кабель согласно ГОСТ и его сечение может быть ниже заявленного. Так что сечение может быть 2,0 кв.мм вместо 2,5 кв.мм. Качество меди у разных заводов тоже отличается и вы не сможете гарантировано точно сказать о том, какое качество кабеля имеете.
Поэтому очень важен запас в защите кабеля для избегания проблем в процессе эксплуатации электропроводки. Выбор автомата по сечению кабеля осуществляют следующим образом:
- кабель 1,5 кв.мм применяю при монтаже сигнализации и освещения, ему соответствует автомат 10А;
- кабель 2,5 кв.мм часто используется для отдельных розеток и розеточных групп, где суммарная мощность потребителей не будет превышать 3,5 кВт. Ему соответствует номиналы автоматов по току 16А;
- кабель 4 кв.мм используют в быту для подключения духовых шкафов, стиральных и посудомоечных машин, обогревателей и водонагревателей, к нему покупают автомат номиналом 25А;
- кабель 6 кв.мм нужен для подключения серьезных мощных потребителей: электрических плит, электрических котлов отопления. Номинал автомата 32А;
- кабель 10 кв.мм обычно максимальное сечение используемое в быту, предназначено для ввода питания в квартиры и частные дома к электрощитам. Автомат на 40А.
Для расчета электрической сети у себя дома смело и строго руководствуйтесь предоставленной выше таблицей и руководством. При правильном расчете силовых линий и защитных устройств всё будет работать долговечно и не принесет вам неудобств и проблем.
Выбор автомата по сечению кабеля таблица для 220 В и 380 Вольт
Многие путают и думают, что автоматические выключатели защищают электрические приборы. Это ошибка.
Автоматический выключатель всегда защищает только силовую линию — кабель! Автомат защищает не нагрузку, не розетку, а питающий кабель и только его. Это нужно запомнить! |
Задача автомата – уберечь кабель от повреждения, перегрева и последствий. Поэтому выбирать автомат нужно руководствуясь следующими советами:
1. Сначала вычисляем максимальную нагрузку на каждую линию (суммируем максимальную мощность потребителей), по закону Ома I=P/U вычисляем максимальный ток.
Например, имея на кухне чайник 1кВт, холодильник 0,5 кВт, мультиварку 0,8 кВт и микроволновую печь 1,2 кВт суммируем их максимальные мощности:
1+0,5+1,2+0,8 = 3,5 кВт;
вычисляем силу тока:
I=3500/220=15,9А
2. Исходя из мощности и тока, рассчитываем сечение кабеля или выбираем его из таблицы. Для дома обычно выбирают 1,5 – 10 кв.мм. в зависимости от нагрузки.
Для нашего примера выбираем кабель с жилами 2,5кв.мм.
3. Далее выбираем номинал автоматического выключателя, опять же по таблице в соответствии с выбранным сечение кабеля. Автомат должен отключаться раньше, чем перегреется кабель. В нашем случае это автомат номиналом 16А.
4. Подключаем все в правильной последовательности и пользуемся.
Если электрическую проводку вы будете использовать старую, то учитывайте состояние кабеля и его сечение и подбирайте автомат под него, но номиналом не более 16А! Лучшим решением при ремонте является полная замена всей проводки и защитных устройств.
Автоматические выключатели лучше всего выбирать известных производителей, тогда вы будете уверены в надежности и долговечности их работы.
Самыми распространенными и качественными импортными устройствами на данный момент считают: ABB, Legrand, Shneider Electric, hager.
Единственный их минус – высокая цена, но, конечно, она соответствует качеству продукции. Отечественные приборы фирм IEK и КЭАЗ уступают по качеству, но имеют доступную цену. Желательно покупать автоматические выключатели в электрический щиток одного производителя, чтобы система работала однородно и не было несоответствий в характеристиках защитных устройств.
Важно! Выбирайте электрические компоненты и защитные устройства в специализированных магазинах и проверяйте сертификаты на продукцию!
Монтаж и разводка электропроводки в доме – это сложный и ответственный процесс, в котором важны все тонкости и нюансы, и которые требуют правильного расчета всех составляющих. Именно поэтому если вы не уверены в том, что вам такая работу будет по плечу, то лучше наймите профессионального электрика.
На этом все друзья, надеюсь данная статья помогла вам с решением такой проблемы как выбрать автомат по сечению кабеля, если остались вопросы задавайте в их в комментариях.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Номиналы автоматических выключателей по току
Номинальный ток автомата
Пришло время разобраться с тем, что на деле означает номинальный ток автомата и какой при этом будет ток срабатывания защиты. Для тех, кто понимает разницу между действующим и мгновенным значениями, уточняю, что все параметры автоматов, связанные с током или напряжением — это действующие значения, если это особо не оговорено. Согласно ГОСТ Р 50345-2010 (п.3.5.1), Номинальный ток автоматического выключателя есть значение тока, определяющее рабочие условия, для которых он спроектирован и построен. Кратко и точно.
Распространенная ошибка — часто люди считают, что номинальный ток и есть ток срабатывания. На самом деле, исправный автоматический выключатель никогда при номинальном токе не сработает. Более того, он не сработает даже при 10% перегрузке. При большей перегрузке автомат отключится, но это не значит, что он отключится быстро. Обычный модульный автомат имеет 2 расцепителя: медленный тепловой и быстро реагирующий электромагнитный.
Тепловой расцепитель в своей основе содержит биметаллическую пластину, которая нагревается от проходящего через нее тока. От нагрева пластина изгибается, и при определенном положении воздействует на защелку, и выключатель отключается. Электромагнитный расцепитель представляет собой катушку со втягивающимся сердечником, который при большом токе также воздействует на защелку, отключающую автомат. Если назначение теплового расцепителя — отключать автомат при перегрузках, то задача электромагнитного — быстрое отключение при коротких замыканиях, когда значение тока в разы превышает номинальное.
Ряд значений номинальных токов
Мне приходилось устанавливать автоматические выключатели номиналом от 0.2А. Вообще, мне встречались модульные автоматы следующих номиналов: 0.2, 0.3, 0.5, 0.8, 1, 1.6, 2, 2.5, 3, 3.15, 4, 5, 6, 6.3, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 Ампер. Максимальный номинал автомата, предназначенного для работы в сетях 0.4 кВ, который я видел — 6300А. Это соответствует трансформатору мощностью 4МВА, ну а более мощных трансформаторов под это напряжение у нас не делают, это предел. Cказать, что номиналы строго соответствуют какому-то единому стандартному ряду, как например Е6, Е12 у радиоэлементов, я не могу. Создается впечатление, что лепят кто во что горазд. С автоматами выше 100А ситуация примерно такая же. Тем не менее, существует и действует поныне стандарт ГОСТ 8032-84 «Предпочтительные числа и ряды предпочтительных чисел». Согласно этому стандарту, номиналы должны соответствовать определенным рядам значений. Основной ряд R5, который определяет следующую шкалу номинальных значений: 1, 1.6, 2.5, 4, 6.3, 10, 16, 25, 40, 63, 100, 160 и т.д.
Как видим, ряд состоит из пяти повторяющихся значений, просто после каждого цикла сдвигается десятичная точка. Если есть спрос на более точный подбор, ГОСТом предусмотрены ряды R10 (1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8) иR20 (1, 1.12, 1.25, 1.4, 1.6, 1.8, 2, 2.24, 2.5, 2.8, 3.15, 3.55, 4, 4.5, 5, 5.6, 6.3, 6.3, 7.1, 8, 9).
При этом, в обоснованных случаях, допускается некоторое округление (например 3.2 вместо 3.15 или 6 вместо 6.3). Думаю, нет нужды расписывать стандарт более подробно, каждый желающий может его найти и почитать.
Но и это еще не все. В том же ГОСТ Р 50345-2010 есть глава 5.3 под названием «Стандартные и предпочтительные значения». Согласно ей, предпочтительными значениями номинального тока модульных автоматов являются: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.
Разновидности защитных устройств
Существует несколько видов АВ, которые подключаются в сеть с целью контроля состояния проводки и, в случае необходимости, прекращения подачи тока. Они могут быть следующими:
- Мини-модели (маленьких габаритов).
- Воздушные (открытого типа).
- Устройства защитного отключения (сокращенное наименование — УЗО).
- Закрытые (элементы устройств размещены в литом корпусе).
- Дифференциальные (автоматические выключатели, совмещенные с УЗО).
Мини-модели
Эти аппараты предназначены для работы в цепях, нагрузка в которых невысока. Функцией дополнительной регулировки они обычно не обладают. В этом ряду представлены устройства, которые могут выдерживать ток осечки величиной 4,5 – 15А. Для заводскихх мощностей они не подходят, поскольку сила тока на предприятиях значительно выше их номинала. Поэтому подключают их, как правило, в бытовую проводку.
Большой популярностью пользуются автоматы, входящие в производственную линейку французской фирмы Schneider Electric. Номиналы АВ, выпускаемых этой компанией, могут составлять 2 – 125А, поэтому можно выбрать пакетник для домашних линий различной мощности.
Воздушные (открытые) устройства
Если суммарная мощность приборов, подключенных в сеть, велика, и номиналы автоматов, о которых говорилось выше, недостаточны, следует выбирать воздушные защитные устройства. Номинальный ток отсечки пакетников открытого типа на порядок превышает аналогичный показатель мини-моделей. Чаще всего они бывают трехполюсными, но в последнее время многие компании наладили производство четырехполюсных автоматов.
Защитные устройства открытого типа следует устанавливать в распределительных шкафах, оснащенных изнутри специальными DIN-рейками.
Если класс защиты шкафа – от IP55, то его можно размещать вне здания. Корпус этого оборудования сделан из тугоплавкого металла и надежно защищен от проникновения влаги, что позволяет обеспечить высокий уровень безопасности автоматов, расположенных внутри него.
Воздушные АВ имеют большое преимущество перед миниатюрными. Оно заключается в возможности настройки их номинальных характеристик с помощью специальных вставок, которые ставятся на активный контакт.
Закрытые автоматические выключатели
Корпус этих устройств отливается из тугоплавкого металла, что обеспечивает их идеальную герметичность и делает пригодными для эксплуатации в тяжелых условиях. Максимальный показатель напряжения, который могут выдерживать такие автоматы, составляет 750В, а тока – 200А. Закрытые АВ классифицируются по типу действия на следующие группы:
- Регулируемые.
- Тепловые.
- Электромагнитные.
Выбирать оптимальный тип следует, исходя из решаемых задач.
Наиболее высокой точностью обладают электромагнитные закрытые автоматы, определяющие с минимальной погрешностью среднеквадратичный показатель активного электротока и моментально обесточивающие сеть в случае КЗ, не допуская серьезных последствий.
Электромагнитные автоматы успешно используются для контроля функционирования моторов заводских станков, а также другого мощного оборудования, поскольку они могут выдерживать силу тока величиной до 70 кА. Цифра, обозначающая номинал автомата по току, нанесена на его корпус.
Все типы закрытых выключателей могут иметь от двух до четырех полюсов. Благодаря этому они могут быть использованы для защиты электросетей любых зданий и сооружений жилого и нежилого типа.
Устройства защитного отключения
В качестве самостоятельных защитных аппаратов использовать устройства защитного отключения не следует, поскольку их основной задачей является защита человека от внезапного поражения электричеством. Поэтому устанавливать их рекомендуется вместе с АВ, или приобретать дифференциальный автомат, в составе которого УЗО уже имеется. В первом случае нужно учесть, что в первую очередь должно устанавливаться устройство защитного отключения, а после него автоматы.
Если изменить порядок монтажа, то короткое замыкание приведет к выходу УЗО из строя в результате слишком высокой нагрузки.
ТОП-5 моделей автомата на рынке в текущем году
Подбирая АВ, необходимо учитывать рейтинг производителей подобных устройств.
Самые лучшие автоматы (точнее, их производители) на сегодняшний день:
- Schneider Electric. Французская фирма. Автоматы ее производства давно испытаны в российских условиях, служат долго и отличаются надежностью.
- General Electric. Недостаток – высокая цена, зато надежность и качество исполнения также на высоте. Американский производитель выпускает отличные АВ для трехфазных сетей.
- Siemens. Низкая цена, но качество хуже, чем у двух лидеров, представленных выше. Тяжело найти приборы в продаже. Изначально бренд был немецким, затем его приобрели американцы. Надежность АВ и средняя стоимость делают компанию такой популярной.
- Контактор. Лучший бренд из российских, однако цены кусаются. Лучше приобрести автоматы европейского производства, хотя Контактор – хорошее решение для слабонагруженных сетей.
Коротко принцип работы и предназначение защитных автоматов
Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.
Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.
Внешний вид трех полюсного автоматического выключателя
Провода должны соответствовать нагрузке
Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.
Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток .
Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.
Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.
кабель силовой NYM
Защитить самое слабое звено электропроводки
Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.
Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.
При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.
Расплавленная изоляция проводов
Расчет номинала автомата
Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:
где Р – суммарная мощность электроприборов.
Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.
Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.
Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.
Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:
Таблица выбора автомата по току
Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про расчет и выбор сечения провода
Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип время токовой характеристики автоматического выключателя подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.
Таблица подбор сечения провода по мощности
Какое сечение провода нужно для 3 квт
Формула как найти мощность тока
Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором
Новогодние поздравления с юмором
Что такое номинальный ток автомата
Номинальный ток – это максимально допустимое значение электрического тока, который пропускает автоматический выключатель без отключения сети.
Чтобы понять и сделать выбор автомата по току, нужно исходить из двух факторов:
- 1. Сечение электрического кабеля – площадь поперечного сечения кабеля электропроводки, который способен без нагрева выдерживать определенную мощность нагрузки.
- 2. Максимальной нагрузке – мощности всех электроприборов, подключённых к данной линии на максимальном режиме работы.
При выборе автоматического выключателя нельзя ставить защитное устройство номиналом по току выше, чем может выдержать смонтированный силовой кабель. Такой автомат не защитит электропроводку и сработает уже поле перегрева линии.
В любом случае сечение электрического кабеля, номинал автомата и мощность нагрузки между собой очень сильно связаны. Силовой кабель может пропускать ограниченную его сечением величину тока.
Поэтому идеальным вариантом для устройства электрической сети будет такая последовательность: расчет мощности всех потребителей на силовой линии, расчет площади поперечного сечения, монтируемого кабеля по максимальной мощности всех устройств, расчет автоматического выключателя исходя из выбранного кабеля.
Номиналы автоматических выключателей по току
Предельное значение номинала определяют по формуле Iном ≤ Iпр/1,45, где Iпр – допустимый в длительном режиме ток для определенной проводки. Если планируется монтаж сети, действуют следующим образом:
- уточняют схему подключения потребителей;
- собирают паспортные данные техники, измеряют напряжение;
- по представленной схеме рассчитывают отдельно, суммируют токи в отдельных цепях;
- для каждой группы надо подобрать автомат, который будет выдерживать соответствующую нагрузку;
- определяют кабельную продукцию с подходящим сечением проводника.
Правила выбора номинала
Пример выбора номинала автомата для каждой линии
Для корректных выводов надо учитывать особенности подключаемого оборудования. Если по расчету суммарный ток составляет 19 ампер, пользователи предпочитают покупать аппарат на 25А. Это решение предполагает возможность применения дополнительных нагрузок без существенных ограничений.
Однако в некоторых ситуациях лучше выбрать автоматический выключатель на 20А. Этим обеспечивают относительно меньшее время на отключения питания при росте тока (повышении температуры) биметаллическим разъединителем
Такая предосторожность поможет сохранить в целостности обмотки электродвигателя при блокировке вращения ротора заклинившим приводом
Разное время срабатывания пригодится для обеспечения селективной работы средств защиты. На линиях устанавливают устройства с меньшей задержкой. При аварийной ситуации отсоединяется от электричества только поврежденная часть. Вводной автомат не успеет отключиться. Питание по другим цепям пригодится для поддержания в работоспособном состоянии освещения, сигнализации, других инженерных систем.
Как работает автоматический выключатель
Главная задача автоматического выключателя (автомата) — это улавливание чрезмерных токов в электросети, и мгновенное её обесточивание
Неважно, к какой категории относится автоматический выключатель, он должен уметь быстро обесточить электросеть и предотвратить тем самым повреждение кабелей
Поэтому главной функцией автоматического выключателя, является:
- Срабатывание в случае перегрузки электросети. Здесь все достаточно просто, и если в сети возникнет чрезмерно большая нагрузка, например, из-за большого количества подключённых электроприборов в доме, автоматический выключатель должен сработать и обесточить домашнюю электросеть. Если этого не произойдёт, и автомат не справится со своей задачей, то может загореться электропроводка в доме;
- Среагировать на сверхток, вызванный коротким замыканием электропроводки. Здесь все, также понятно. В случае замыкания, электропроводка подвергается сильному нагреву, а там где тонко, как известно, там и рвётся, поэтому, если автомат не сработает, возможно, повреждение и возгорание электропроводки.
Следует знать, что каждый автоматический выключатель рассчитан на разную силу тока. Время срабатывания автомата, зависит от величины перегрузки электросети. Если это короткое замыкание, то автоматический выключатель сработает мгновенно, буквально за считанные секунды. Если величина перегрузки не слишком большая, то автомат и электропроводка могут греться часами.
Что касается конструкции автоматического выключателя и его принципа работы, то в основе лежит биметаллическая пластина, через которую проходит электрический ток. Если он слишком большой величины, на которую автомат не рассчитан, то пластина начинает греться, что в итоге и приводит к срабатыванию автоматического выключателя.
Автоматы «В» и «С» — в чем разница, категории автоматических выключателей
Тех людей, которые занимаются модернизацией домашней электросети, часто интересует вопрос о том, чем именно отличаются автоматические выключатели категории «В» и «С», ведь именно они, чаще всего, устанавливаются в бытовых сетях. Главное отличие автоматов «В» и «С» в чувствительности электромагнитного расцепителя.
Буквы А, В, С, D и K, Z — как раз и указывают на характеристики расцепителя установленного в автоматическом выключателе:
А — автоматические выключатели данной категории имеют самую высокую чувствительность. Если номинальный ток на линии где будет установлен автомат категории «А» превысит 30%, то автоматический выключатель отключится.
В — автоматы этой категории срабатывают при превышении нагрузки по номинальному току в 3-5 раз. Автоматические выключатели категории «В» предназначены для установки в электросетях с отсутствием или с минимальным пусковым током (электродвигатели и т. д.). Простыми словами говоря, автоматы категории «В», более чувствительны к проходящему току, и при запуске мощных электродвигателей могут сработать.
С — автоматические выключатели стандартного типа с ещё большей перегрузочной способностью, чем у автоматов «В» класса. Их выключение происходит в том случае, если номинальный ток, проходящий через автомат, станет в 5-10 раз выше. Время срабатывания автомата категории «С», порядка 1,5 секунды. Такие автоматы предназначены для обеспечения защиты электросетей общего назначения.
Автоматы категории D, редко используются в быту. Чаще всего эти автоматические выключатели применяются в электросетях с большими пусковыми нагрузками. Ну и последние категории автоматов, это «K» и «Z», они используются в специальных целях, например, для защиты линий к которым подключены электронные устройства.
Мощность рассеивания автоматических выключателей
Рассеивание — это потери электроэнергии, которые в виде тепла уходят в окружающую среду. Для примера приведу паспортные значения рассеиваемой мощности для автоматов ВА 47-63 (для новых автоматов при значениях тока, равных номинальному):
Номинальный ток In, A | Мощность рассеивания, Вт | |||
1-полюсные | 2-полюсные | 3-полюсные | 4-полюсные | |
1 | 1,2 | 2,4 | 3,6 | 4,8 |
2 | 1,3 | 2,6 | 3,9 | 5,2 |
3 | 1,3 | 2,6 | 3,9 | 5,2 |
4 | 1,4 | 2,8 | 4,2 | 5,6 |
5 | 1,6 | 3,2 | 4,8 | 6,4 |
6 | 1,8 | 3,6 | 5,5 | 7,2 |
8 | 1,8 | 3,6 | 5,5 | 7,33 |
10 | 1,9 | 3,9 | 5,9 | 7,9 |
13 | 2,5 | 5,3 | 7,8 | 10,3 |
16 | 2,7 | 5,6 | 8,1 | 11,4 |
20 | 3,0 | 6,4 | 9,4 | 13,6 |
25 | 3,2 | 6,6 | 9,8 | 13,4 |
32 | 3,4 | 7,5 | 11,2 | 13,8 |
35 | 3,8 | 7,6 | 11,4 | 15,3 |
40 | 3,7 | 8,1 | 12,1 | 15,5 |
50 | 4,5 | 9,9 | 14,9 | 20,5 |
63 | 5,2 | 11,5 | 17,2 | 21,4 |
Как видим, автоматический выключатель тоже хочет есть. Поэтому не стоит увлекаться и втыкать автоматы везде, где это возможно. Где же происходят потери? Основная часть приходится на тепловой расцепитель. Но не надо излишне драматизировать ситуацию. Эти потери пропорциональны протекающему току. Поэтому, если например нагрузка в 2 раза меньше номинальной, то и потери будут соответственно в 4 раза меньше, а при отсутствии нагрузки не будет и потерь. Если их представить в процентном виде, то будут величины порядка 0,05-0.5%, причем наименьший процент у самых мощных автоматов. В самих контактах, пока автомат новый, потери незначительны. Но в процессе эксплуатации контакты будут подгорать, переходное сопротивление будет расти, а с ним будут расти и потери. Поэтому у старого автомата потери могут быть заметно больше. Как измерить потери —
Класс токоограничения
Движемся дальше. Электромагнитный расцепитель, хоть и называется мгновенным, но тоже имеет определенное время срабатывания, которое отражает такой параметр, как класс ограничения. Он обозначается одной цифрой и у многих моделей эту цифру можно найти на корпусе аппарата. В основном сейчас выпускаются автоматы с классом токоограничения 3 — это значит, что со времени достижения током значения срабатывания до полного разрыва цепи пройдет время не более чем 1/3 полупериода. При стандартной у нас частоте 50 Герц это получается около 3,3 миллисекунд. Класс 2 соответствует значению 1/2 (порядка 5 мс). По некоторым источникам, отсутствие маркировки этого параметра равносильно классу 1. Самый высокий класс, который мне попадался — это 4-й у автоматов OptiDin производства КЭАЗ.
Недопустимые ошибки при покупке
Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т.д.
Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку
Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.
Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!
Рекомендуем прочитать:
{SOURCE}
Виды автоматов
Классификация автоматических выключателей происходит по следующим параметрам:
- количество полюсов;
- номинальный и предельный токи;
- применяемый тип электромагнитного расцепителя;
- максимальная мощность отключаемой способности.
Рассмотрим по порядку.
Количество полюсов
Количество полюсов — такое количество фаз, которое способен защищать автомат. По количеству полюсов автоматы могут быть:
- Однополюсные.
Обеспечивается защита одного выходящего провода, одной фазы. - Двухполюсные.
Как правило, это два совмещенных однополюсных автомата с одной общей ручкой управления. В ситуации, когда ток одного из автоматов превышает разрешенную нагрузку происходит отключение обоих устройств. Используются двухполюсные автоматы для полного отключения нагрузки (одна фаза), отключая рабочую фазу и рабочий нуль. - Трехполюсные.
Используются с трехфазными цепями, при превышении нагрузки происходит отключение трех фаз одновременно. Такие автоматы так же имеют один общий размыкатель цепи. - Четырехполюсные.
Аналогичны двухполюсным, но предназначены для работы с трехфазными цепями. При превышении нагрузки происходит размыкание трех фаз и рабочего нуля одновременно.
Номинальный и предельный токи
Тут все просто — такая сила тока, при которой автомат будет размыкать цепь. При номинальном токе и даже немного больше заявленного будет осуществляться работа, однако только при превышении предельного тока на 10–15% произойдет отключение. Обусловлено это тем, что достаточно часто стартовые токи превышают предельно возможные токи на небольшой промежуток времени, поэтому в автомате есть определенный запас времени, по истечению которого произойдет размыкание цепи.
Тип электромагнитного расцепителя
Эта деталь автомата, которая позволяет размыкать цепь при коротком замыкании, а так же в случае повышения тока (перегрузки) на определенное количество раз. Расцепители разделяются на несколько категорий, рассмотрим самые популярные:
- B — размыкание при превышении номинального тока в 3–5 раз;
- C — при превышении в 5–10 раз;
- D — при превышении в 10–20 раз.
Максимальная мощность отключаемой способности. Такое значение тока короткого замыкания (определяется в тысячах ампер), при котором автомат останется рабочим после размыкания цепи из-за короткого замыкания.
Подбор оптимального сечения кабеля
Каждый кабель, как и автомат, имеет определенный разрешенный ток нагрузки. В зависимости от сечения и материала кабеля варьируется и ток нагрузки. Для выбора автомата по сечению кабеля следует использовать таблицу.
Необходимо заметить, что допускается выбирать кабель с небольшим запасом, но никак не пакетный выключатель! Автомат должен соответствовать планируемой нагрузке! В соответствии с правилами устройств электроустановок 3.1.4 — токи уставок автоматов следует выбирать такие, которые будут меньше расчетных токов выбираемых зон.
Рассмотрим на примере, на определенном участке электропроводка проложена кабелем сечением 2.5 мм квадратных, а нагрузка составляет 12 кВт, в данном случае при монтаже автомата (по минимальному току) на 50 А произойдет возгорание проводки, так как провод с данным сечением рассчитан на разрешенный ток в 27 А, а через него проходит значительно больше. В данном случае разрыва цепи не происходит, так как автомат адаптирован под данные токи, а провод — нет, автоматика отключит автомат только в случае короткого замыкания.
Пренебрежение данным правилом грозит серьезными последствиями!
Именно благодаря такому принципу проводка никогда не перегреется и, следовательно, не произойдет возгорания.
Расчет номинального тока автоматического выключателя
Без использования автоматических выключателей сегодня не создается ни одна система подачи питания в жилом доме или на промышленном объекте. Эти электромеханические устройства напрочь вытеснили морально устаревшие «предохранители-пробки» с плавкими вставками.
Что такое автоматический выключатель?
Автоматический выключатель представляет собой электромеханическое устройство, выполняющее эффективную защиту электрической линии от разрушения токами недопускаемой, для конкретной проводки, величины. Следует помнить, что такие выключатели-автоматы – это устройства, которые защищают электрическую проводку от разрушений, а не бытовые приборы, подключаемые к ней. Поэтому, при выборе выключателя, в первую очередь выполняют расчет по току, а уже после выключатель может подбираться и по мощности, подключаемых к линии приборов. То есть расчет автоматов по мощности можно выполнять в тех случаях, когда провода на всех участках имеют одинаковое сечение и способны выдержать подключаемую нагрузку. Иными словами, номинальный ток электрической проводки должен быть больше, нежели номинал автомата, выбранного по нагрузке.
Для чего нужен выключатель-автомат?
Если не установить это устройство защиты или его номинал выбрать неправильно, то это чревато аварийными последствиями для проводки и даже может привести к пожару. Дело в том, что при токовой перегрузке или при коротком замыкании сила тока возрастает в десятки раз. Естественно, что проводка на такой ток не рассчитана – изначально произойдет ее быстрый нагрев, расплавление изоляционного шара, а после и повреждение самой проводки, и возгорание. Такая ситуация может случиться и если номинал автомата намного выше номинального тока, на который рассчитана проводка. Ведь в таком случае защита сможет сработать только при достижении того значения тока, на который она рассчитана, а это приведет к изначальному выходу из строя проводки.
Если же установить автоматический выключатель с намного меньшим номиналом, то он будет срабатывать постоянно, как только будет достигнуто значение тока, являющееся для него граничным, а оно может быть намного меньше того, на который рассчитана проводка и подключаемые к ней приборы. Поэтому, в таком случае попросту невозможно будет использовать некоторую бытовую технику.
Расчет номинального тока автоматического выключателя
Рассмотрим более детально, как происходит процесс выбора выключателя.
При определении, на какой ток нужно приобрести автоматический выключатель, берут во внимание номинальный ток, с которым может работать та или иная электрическая проводка. Номинальный ток проводки – это такая сила тока, протекающего через проводник, при которой он не нагревается. Это значение зависит от материала, из которого выполнен проводник, его сечения и способа монтажа.
Поскольку номинальная величина тока в технической документации к проводке может указываться не всегда, рассмотрим, как ее можно вычислить. Для этого потребуется знать из какого материала произведен кабель (медь, алюминий) и замерить его диаметр (сердечника), которому пропорционально поперечное сечение проводника, требуемое для вычислений. Зная диаметр проводника и материал, из которого он сделан, по специальным таблицам, можно определить величину номинального тока, которую выдерживает эта проводка.
После того, как произведены такие расчеты по электропроводке, можно выбирать и номинал выключателя-автомата. Его значение должно быть равным или немного меньше номинального значения тока проводки. Устанавливать автоматы с номиналом немного большим, чем номинальный ток проводки не рекомендуется – это может привести к оплавке изоляции кабеля.
Выбор характеристической кривой автомата
Кроме номинала по току автоматические выключатели выбираются и по время-токовым характеристикам, которые определяются величиной пускового тока, который индивидуален для каждого вида приборов. Чтобы верно определиться с автоматическим выключателем следует знать величину пускового тока и его продолжительность и уже по этим параметрам выбирать выключатель.
Пример
Если для какого-либо прибора рабочий ток составляет 6А, а кратность при запуске равна 8, то получим, что в момент включения в цепи будет протекать ток в 48 А. Такая величина в электрической цепи может поддерживаться не более 3-х секунд. Если посмотреть на временно-токовые характеристики предлагаемых автоматических выключателей (внешняя ссылка), то можно сделать вывод, что оптимальным вариантом будет автомат С16, который допускает кратковременное увеличение тока до 80 А.
Как выбрать автомат и тип используемой проводки?
Все конфигурации электрической проводки можно разбить на отдельные группы. Каждая из таких групп имеет свой питающий кабель с определенным сечением, по которому определяется номинальный ток и подбирается автоматический выключатель.
Чтобы верно определиться с сечением требуемого кабеля и автомата под него, нужно выполнить расчет нагрузки, которая будет работать в этой цепи. Это производится путем суммирования мощностей отдельных приборов, которые будут подключены в эту цепь. Зная общую мощность приборов можно рассчитать ток, который будет проходить в этой цепи. Это производится делением суммарной мощности на напряжение в сети, которое равно 220 В. Получив величину тока можно, по таблицам, определить для какого сечения проводника и из какого материала он будет номинальным. Именно такую проводку можно будет прокладывать к используемой группе приборов. Автоматический выключатель следует выбирать под рассчитанный ток. Важно, чтобы автомат отключался немного раньше, нежели будет достигнута максимальная величина номинального тока. Это позволит исключить расплавление изоляции проводящего кабеля.
Номиналы автоматических выключателей по току для грамотного подбора
Устройства для отключения электричества при перегрузках и коротких замыканиях устанавливают на входе в любую домашнюю сеть. Необходимо правильно рассчитать номиналы автоматических выключателей по току, иначе их работа будет неэффективной. Согласны?
Мы расскажем, как производится расчет параметров автомата, согласно которым подбирают это защитное устройство. Из предложенной нами статьи вы узнаете, как выбрать прибор, требующийся для защиты электросети. С учетом наших советов вы приобретете вариант, четко срабатывающий в опасный для проводки момент.
Содержание статьи:
Параметры автоматических выключателей
Для обеспечения правильного выбора номинала устройств отключения необходимо понимание принципов их работы, условий и времени срабатывания.
Рабочие параметры автоматических выключателей стандартизированы российскими и международными нормативными документами.
Основные элементы и маркировка
В конструкцию выключателя входят два элемента, которые реагируют на превышение силой тока установленного диапазона значений:
- Биметаллическая пластина под воздействием проходящего тока нагревается и, изгибаясь, надавливает на толкатель, который разъединяет контакты. Это “тепловая защита” от перегрузки.
- Соленоид под воздействием сильного тока в обмотке генерирует магнитное поле, которое давит сердечник, а тот уже воздействует на толкатель. Это “токовая защита” от короткого замыкания, которая реагирует на такое событие значительно быстрее, чем пластина.
Типы устройств электрической защиты обладают маркировкой, по которой можно определить их основные параметры.
На каждом автоматическом выключателе обозначены его основные характеристики. Это позволяет не перепутать устройства, когда они установлены в щитке
Тип времятоковой характеристики зависит от диапазона уставки (величины силы тока при которой происходит срабатывание) соленоида. Для защиты проводки и приборов в квартирах, домах и офисах используют выключатели типа “C” или, значительно менее распространенные – “B”. Особенной разницы между ними при бытовом применении нет.
Тип “D” используют в подсобных помещениях или столярках при наличии оборудования с электродвигателями, которые имеют большие показатели пусковой мощности.
Существует два стандарта для устройств отключения: жилой (EN 60898-1 или ГОСТ Р 50345) и более строгий промышленный (EN 60947-2 или ГОСТ Р 50030.2). Они отличаются незначительно и автоматы обоих стандартов можно использовать для жилых помещений.
По номинальному току стандартный ряд автоматов для использования в бытовых условиях содержит приборы со следующими значениями: 6, 8, 10, 13 (редко встречается), 16, 20, 25, 32, 40, 50 и 63 A.
Время-токовые характеристики срабатывания
Для того чтобы определить быстроту срабатывания автомата при перегрузке существуют специальные таблицы зависимости времени отключения от коэффициента превышения номинала, который равен отношению существующей силы тока к номинальной:
K = I / In.
Резкий обрыв вниз графика при достижении значения коэффициента диапазона от 5 до 10 единиц, обусловлен срабатыванием электромагнитного расцепителя. Для выключателей типа “B” это происходит при значении от 3 до 5 единиц, а для типа “D” – от 10 до 20.
График показывает зависимость диапазона времени срабатывания автоматов типа “C” от отношения силы тока к значению, которое установлено для этого выключателя
При K = 1,13 автомат гарантированно не отключит линию в течение 1 часа, а при K = 1,45 – гарантированно отключит за это же время. Эти величины утверждены в п. 8.6.2. ГОСТ Р 50345-2010.
Чтобы понять, за какое время сработает защита, например, при K = 2, необходимо провести вертикальную линию от этого значения. В результате получим, что согласно приведенному графику, отключение произойдет в диапазоне от 12 до 100 секунд.
Столь большой разброс времени обусловлен тем, что нагрев пластины зависит не только от мощности проходящего через нее тока, но и параметров внешней среды. Чем выше температура, тем быстрее срабатывает автомат.
Правила выбора номинала
Геометрия внутриквартирных и домовых электрических сетей индивидуальна, поэтому типовых решений по установке выключателей определенного номинала не существует. Общие правила расчета допустимых параметров автоматов достаточно сложны и зависят от многих факторов. Необходимо учесть их все, иначе возможно создание аварийной ситуации.
Принцип устройства внутриквартирной разводки
Внутренние электрические сети имеют разветвленную структуру в виде “дерева” – графа без циклов. Соблюдение такого принципа построения называется , согласно которой оснащаются защитными устройствами все виды электрических цепей.
Это улучшает устойчивость системы при возникновении аварийной ситуации и упрощает работы по ее устранению. Также гораздо легче происходит распределение нагрузки, подключение энергоемких приборов и изменение конфигурации проводки.
У основания графа находится вводной автомат, а сразу после разветвления для каждой отдельной электрической цепи размещают групповые выключатели. Это проверенная годами стандартная схема
В функции вводного автомата входит контроль общей перегрузки – недопущение превышения силой тока разрешенного значения для объекта. Если это произойдет, то существует риск повреждения наружной проводки. Кроме того, вероятно срабатывание защитных устройств за пределами квартиры, которые уже относится к общедомовой собственности или принадлежит местным энергосетям.
В функции групповых автоматов входит контроль силы тока по отдельным линиям. Они защищают от перегрузки кабель на выделенном участке и подключенную к нему группу потребителей электроэнергии. Если при коротком замыкании такое устройство не срабатывает, то его страхует вводной автомат.
Даже для квартир с небольшим количеством электропотребителей желательно выполнить отдельную линию на освещение. При отключении автомата другой цепи, свет не погаснет, что позволит в более комфортных условиях устранить возникшую проблему. Практически в каждом щитке значение номинала вводного автомата меньше чем сумма на групповых.
Суммарная мощность электроприборов
Максимальная нагрузка на цепь возникает при одновременном включении всех электроприборов. Поэтому обычно, суммарную мощность вычисляют простым сложением. Однако в ряде случаев этот показатель будет меньше.
Для некоторых линий, одновременная работа всех подключенных к ней электроприборов маловероятна, а порой и невозможна. В домах иногда специально устанавливают ограничения на работу мощных устройств. Для этого нужно помнить о недопущении их одновременного включения или использовать ограниченное число розеток.
Вероятность одновременной работы всей офисной оргтехники, освещения и вспомогательного оборудования (чайники, холодильники, вентиляторы, обогреватели и т.д.) очень низка, поэтому при расчете максимальной мощности используют поправочный коэффициент
При электрификации офисных зданий для расчетов часто используют эмпирический коэффициент одновременности, значение которого берут в диапазоне от 0,6 до 0,8. Максимальная нагрузка вычисляется умножением суммы мощностей всех электроприборов на коэффициент.
В расчетах существует одна тонкость – необходимо учитывать разницу между номинальной (полной) мощностью и потребляемой (активной), которые связаны коэффициентом (cos (f)).
Это означает, что для работы устройства необходим ток мощности равной потребляемой деленной на этот коэффициент:
Ip = I / cos (f)
Где:
- Ip – сила номинального тока, которую применяют в расчетах нагрузки;
- I – сила потребляемого прибором тока;
- cos (f) <= 1.
Обычно номинальный ток сразу или через указание величины cos (f) указывают в техническом паспорте электрического прибора.
Так, например, значение коэффициента для люминесцентных источников света равно 0,9; для LED-ламп – около 0,6; для обыкновенных ламп накаливания – 1. Если документация утеряна, но известна потребляемая мощность бытовых устройств, то для гарантии берут cos (f) = 0,75.
Указанные в таблице рекомендуемые значения коэффициента мощности можно использовать при расчете электрических нагрузок, когда отсутствуют данные о номинальном токе
О том, как подобрать автоматический выключатель по мощности нагрузки, написано в , с содержанием которой мы советуем ознакомиться.
Выбор сечения жил
Прежде чем прокладывать силовой кабель от распределительного щитка к группе потребителей, необходимо вычислить мощность электроприборов при их одновременной работе. Сечение любой ветви выбирают по таблицам расчета в зависимости от типа металла проводки: меди или алюминия.
Производители проводов сопровождают выпускаемую продукцию подобными справочными материалами. Если они отсутствуют, то ориентируются на данные из справочника “Правила устройства электрооборудования” или производят .
Однако часто потребители перестраховываются и выбирают не минимально допустимое сечение, а на шаг большее. Так, например, при покупке медного кабеля для линии 5 кВт, выбирают сечение жил 6 мм2, когда по таблице достаточно значения 4 мм2.
Справочная таблица, представленная в ПУЭ, позволяет выбрать необходимое сечение из стандартного ряда для различных условий эксплуатации медного кабеля
Это бывает оправдано по следующим причинам:
- Более длительная эксплуатация толстого кабеля, который редко подвергается предельно допустимой для его сечения нагрузке. Заново выполнять прокладку электропроводки – непростая и дорогостоящая работа, особенно если в помещении сделан ремонт.
- Запас пропускной способности позволяет беспроблемно подключать к ветви сети новые электроприборы. Так, в кухню можно добавить дополнительную морозильную камеру или переместить туда стиральную машину из ванной комнаты.
- Начало работы устройств, содержащих электродвигатели, дает сильные стартовые токи. В этом случае наблюдается просадка напряжения, которая выражается не только в мигании ламп освещения, но и может привести к поломке электронной части компьютера, кондиционера или стиральной машины. Чем толще кабель, тем меньше будет скачок напряжения.
К сожалению, на рынке много кабелей, выполненных не по ГОСТу, а согласно требованиям различных ТУ.
Часто сечение их жил не соответствует требованиям или они выполнены из токопроводящего материала с большим сопротивлением, чем положено. Поэтому реальная предельная мощность, при которой происходит допустимый нагрев кабеля, бывает меньше чем в нормативных таблицах.
Эта фотография показывает отличия между кабелями, выполненными по ГОСТ (слева) и согласно ТУ (справа). Очевидна разница в сечении жил и плотности прилегания изоляционного материала
Расчет номинала выключателя для защиты кабеля
Устанавливаемый в щитке автомат должен обеспечить отключение линии при выходе мощности тока за пределы диапазона, разрешенного для электрического кабеля. Поэтому для выключателя необходимо провести расчет максимально допустимого номинала.
По ПУЭ допустимую длительную нагрузку проложенных в коробах или по воздуху (например, над натяжным потолком) медных кабелей, берут из приведенной выше таблицы. Эти значения предназначены для аварийных случаев, когда идет перегрузка по мощности.
Некоторые проблемы начинаются при соотнесении номинальной мощности выключателя длительному допустимому току, если это делать в соответствии с действующим ГОСТ Р 50571.4.43-2012.
Приведен фрагмент п. 433.1 ГОСТ Р 50571.4.43-2012. В формуле “2” допущена неточность, а для правильного понимания определения переменной In нужно учесть Приложение “1”
Во-первых, в заблуждение вводит расшифровка переменной In, как номинальной мощности, если не обратить внимания на Приложение “1” к этому пункту ГОСТа. Во-вторых, в формуле “2” существует опечатка: коэффициент 1,45 добавлен неправильно и этот факт констатируют многие специалисты.
Согласно п. 8.6.2.1. ГОСТ Р 50345-2010 для бытовых выключателей с номиналом до 63 A условное время равно 1 часу. Установленный ток расцепления равен значению номинала, умноженного на коэффициент 1,45.
Таким образом, согласно и первой и измененной второй формулам номинальная сила тока выключателя должна рассчитываться по следующей формуле:
In <= IZ / 1,45
Где:
- In – номинальный ток автомата;
- IZ – длительный допустимый ток кабеля.
Проведем расчет номиналов выключателей для стандартных сечений кабелей при однофазном подключении с двумя медными жилами (220 В). Для этого разделим длительный допустимый ток (при прокладке по воздуху) на коэффициент расцепления 1,45.
Выберем автомат таким образом, чтобы его номинал был меньше этого значения:
- Сечение 1,5 мм2: 19 / 1,45 = 13,1. Номинал: 13 A;
- Сечение 2,5 мм2: 27 / 1,45 = 18,6. Номинал: 16 A;
- Сечение 4,0 мм2: 38 / 1,45 = 26,2. Номинал: 25 A;
- Сечение 6,0 мм2: 50 / 1,45 = 34,5. Номинал: 32 A;
- Сечение 10,0 мм2: 70 / 1,45 = 48,3. Номинал: 40 A;
- Сечение 16,0 мм2: 90 / 1,45 = 62,1. Номинал: 50 A;
- Сечение 25,0 мм2: 115 / 1,45 = 79,3. Номинал: 63 A.
Автоматические выключатели на 13A в продаже бывают редко, поэтому вместо них чаще используют устройства с номинальной мощностью 10A.
Кабели на основе алюминиевых жил сейчас редко используют при монтаже внутренней проводки. Для них тоже есть таблица, позволяющая выбрать сечение по нагрузке
Подобным способом для алюминиевых кабелей рассчитаем номиналы автоматов:
- Сечение 2,5 мм2: 21 / 1,45 = 14,5. Номинал: 10 или 13 A;
- Сечение 4,0 мм2: 29 / 1,45 = 20,0. Номинал: 16 или 20 A;
- Сечение 6,0 мм2: 38 / 1,45 = 26,2. Номинал: 25 A;
- Сечение 10,0 мм2: 55 / 1,45 = 37,9. Номинал: 32 A;
- Сечение 16,0 мм2: 70 / 1,45 = 48,3. Номинал: 40 A;
- Сечение 25,0 мм2: 90 / 1,45 = 62,1. Номинал: 50 A.
- Сечение 35,0 мм2: 105 / 1,45 = 72,4. Номинал: 63 A.
Если производитель силовых кабелей заявляет иную зависимость допустимой мощности от площади сечения, то необходимо пересчитать значение для выключателей.
Формулы зависимости силы тока от мощности для однофазной и трехфазной сети отличаются. Многие люди, которые имеют приборы, рассчитанные на напряжения 380 Вольт, на этом этапе допускают ошибку
Как определить технические параметры автоматического выключателя по маркировке, подробно . Рекомендуем ознакомиться с познавательным материалом.
Предупреждение перегрузки от работы потребителей
Иногда на линию устанавливают автомат с номинальной мощностью значительно более низкой, чем необходимо для гарантированного сохранения работоспособности электрического кабеля.
Снижать номинал выключателя целесообразно, если суммарная мощность всех устройств в цепи значительно меньше, чем способен выдержать кабель. Это происходит, если исходя из соображений безопасности, когда уже после монтажа проводки часть приборов была удалена с линии.
Тогда уменьшение номинальной мощности автомата оправдано с позиции его более быстрого реагирования на возникающие перегрузки.
Например, при заклинивании подшипника электродвигателя, ток в обмотке резко увеличивается, но не до значений короткого замыкания. Если автомат среагирует быстро, то обмотка не успеет оплавиться, что спасет двигатель от дорогостоящей процедуры перемотки.
Также используют номинал меньше расчетного по причинам жестких ограничений на каждую цепь. Например, для однофазной сети на входе в квартиру с электроплитой установлен выключатель 32 A, что дает 32 * 1,13 * 220 = 8,0 кВт допустимой мощности. Пусть при выполнении разводки по квартире были организованы 3 линии с установкой групповых автоматов номинала 25 A.
Если количество установленных в распределительный щит групповых автоматов велико, то их необходимо подписать и пронумеровать. Иначе можно запутаться
Допустим, что на одной из линий происходит медленное возрастание нагрузки. Когда потребляемая мощность достигнет значения равного гарантированному расцеплению группового выключателя, на остальные два участка останется только (32 – 25) * 1,45 * 220 = 2,2 кВт.
Это очень мало относительно общего потребления. При такой схеме распределительного щитка входной автомат будет чаще отключаться, чем устройства на линиях.
Поэтому чтобы сохранить принцип селективности, нужно поставить на участки выключатели номиналом в 20 или 16 ампер. Тогда при таком же перекосе потребляемой мощности на другие два звена будет приходиться суммарно 3,8 или 5,1 кВт, что приемлемо.
Рассмотрим возможность с номиналом 20A на примере выделенной для кухни отдельной линии.
К ней подсоединены и могут быть одновременно включены следующие электроприборы:
- Холодильник, номинальной мощностью 400 Вт и стартовым током в 1,2 кВт;
- Две морозильные камеры, мощностью 200 Вт;
- Духовка, мощностью 3,5 кВт;
- При работе электрической духовки разрешено дополнительно включить только один прибор, самые мощный из которых – электрочайник, потребляющий 2,0 кВт.
Двадцатиамперный автомат позволяет более часа пропускать ток с мощностью 20 * 220 * 1,13 = 5,0 кВт. Гарантированное отключение меньше чем за один час произойдет при пропуске тока в 20 * 220 * 1,45 = 6,4 кВт.
На кухне постоянное подключение к электричеству должно быть у холодильного оборудования и плиты. Если существует риск превышения силы тока, то одновременную работу остальных устройств можно исключить, выделив для них всего две розетки
При одновременном включении духовки и электрочайника суммарная мощность составит 5,5 кВт или 1,25 части от номинала автомата. Так как чайник работает недолго, то отключения не произойдет. Если в этот момент включатся в работу холодильник и обе морозильные камеры, то мощность составит уже 6,3 кВт или 1,43 части номинала.
Это значение уже близко к параметру гарантированного расцепления. Однако вероятность возникновения такой ситуации крайне мала и длительность периода будет незначительна, так как время работы моторов и чайника невелико.
Возникающего при запуске холодильника стартового тока, даже в сумме со всеми работающими устройствами, будет недостаточно для срабатывания электромагнитного расцепителя. Таким образом, в заданных условиях можно использовать автомат на 20 A.
Единственный нюанс заключается в возможности увеличения напряжения до 230 В, что разрешено нормативными документами. В частности ГОСТ 29322-2014 (IEC 60038:2009) определяет стандартное напряжение равным 230 В с возможностью использования 220 В.
Сейчас в большинство сетей электричество подают напряжение 220 В. Если же параметр тока приведен к международному стандарту 230 В, то можно пересчитать номиналы в соответствии с этим значением.
Выводы и полезное видео по теме
Устройство выключателя. Выбор вводного автомата в зависимости от подключаемой мощности. Правила распределения питания:
Выбор выключателя по пропускной способности кабеля:
Расчет номинального тока выключателя – сложная задача, для решения которой необходимо учесть множество условий. От установленного автомата зависит удобство обслуживания и безопасность работы локальной электросети.
В случае возникновения сомнений в возможности сделать правильный выбор необходимо обратиться к опытным электрикам.
Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите о собственном опыте в подборе автоматических выключателей. Поделитесь полезной информацией и фото по теме статьи, задавайте вопросы.
Выбор автоматического выключателя
Автоматический выключатель должен соответствовать требованиям, предъявляемым к нему в каждом конкретном случае, поэтому для успешного выбора модели нужно знать параметры защищаемой электропроводки, подключаемых к ней нагрузок и главные характеристики электропитания.
Основываясь на этих данных и необходимых параметрах защиты, можно выбрать нужные автоматы для реализации схемы электрощита и системы токовой защиты в целом. Так как схема может быть достаточно сложной и не только состоять из нескольких ступеней защиты, но и иметь несколько вводных и отходящих линий, то для выбора выключателей в то или иное место нужно также учитывать указанные выше параметры смежных автоматов и других аппаратов защиты установленных до и после выбираемого автомата.
Чтобы выбрать подходящий автоматический выключатель, нужно обратить внимание на следующие характеристики:
Номинальное напряжение Ue (B)
Это максимальное допустимое значение напряжения в условиях нормальной работы. При меньших величинах напряжения отдельные характеристики могут изменяться или, в некоторых случаях, улучшаться (например отключающая способность).
Номинальное напряжение изоляции Ui (кB)
Установленное изготовителем значение напряжения, характеризующее максимальное номинальное напряжение выключателя. Максимальное номинальное напряжение ни в коем случае не должно превышать номинальное напряжение изоляции.
Номинальное импульсное напряжение Uimp (кВ)
Номинальное импульсное напряжение – пиковое значение импульсного напряжения заданной формы и полярности, которое автомат способен выдержать без ущерба.
Номинальный ток In (А)
Это наибольший ток, который автомат может проводить неограниченное долгое время при температуре окружающего воздуха 40°С по ГОСТ Р 50030.2-99 и 30°С по ГОСТ Р 50345-99. При более высоких температурах значение номинального тока уменьшается.
Предельный ток короткого замыкания
Эта характеристика определяет максимальный ток, при протекании которого автоматический выключатель способен разомкнуть цепь хотя бы один раз. Так же её называют предельная коммутационная способность (ПКС). Иначе говоря, ПКС показывает максимальный ток при котором подвижный контакт автомата не приварится (не пригорит) к неподвижному контакту при возникновении и гашении дуги при размыкании контактов. Токи короткого замыкания могут достигать нескольких тысяч ампер и указываются на маркировке модели.
Класс токоограничения
Параметр, напрямую влияющий на безопасность, надежность и долговечность электропроводки. Он заключается в отключении питания защищаемой цепи раньше, чем ток короткого замыкания достигнет своего максимума. Благодаря этому изоляция не подвергается повышенному нагреву при коротких замыканиях, тем самым снижая риск возникновения возгорания. Класс токоограничения — это время от момента начала размыкания силовых контактов автоматического выключателя до момента полного гашения электрической дуги в дугогасительной камере. Существует три класса токоограничения: 1, 2, 3. Самый высокий класс — 3. Время гашения дуги автомата этого класса происходит за 2,5…6 мс , 2-го класса — 6…10 мс, 1 класса — за время более 10 мс. Данная характеристика указывается под значением предельной коммутационной способности в черном квадрате. Автоматы с токоограничением 1-го класса не маркируются.
Количество полюсов
Данная характеристика определяет максимально возможное количество подключаемых к автомату защиты питающих и защищаемых проводов/проводников, одновременное отключение которых происходит при аварийной ситуации (превышение значения номинального тока и кривой отключения свыше определенного времени) в любой из подключенных цепей.
Номинальная отключающая способность Icu (кА)
Это способность автомата отключить защищаемый участок при возникновения в нем тока короткого замыкания, не превышающем величины предельной коммутационной способности. Если ток будет превышать её, то защита линии и способность автомата отключиться не гарантируется. Если автомат выбран по номинальной отключающей способности, то он может обеспечить защиту от тока короткого замыкания несколько раз.
Кривая отключения
Это характеристика зависимости времени отключения от протекаемого тока. Иначе её еще называют токо-временная характеристика. Выбор должен осуществляться в соответствии с типом Вашей системы, так как требования по защите всегда различны. Существует несколько типов кривых, самые популярные из них это типы B, C, и D: 1. Кривая B предназначена в основном для защиты генераторов, пиковых бросков тока нет. Расцепление от 3 до 5 номинальных токов. 2. Кривая C необходима для защиты цепей в случаях общего применения. Расцепление от 5 до 10 номинальных токов. 3. Кривая D требуется для защиты цепей с высоким пусковым током (трансформаторов и двигателей). Расцепление от 10 до 20 номинальных токов.
Степень защиты — IP
Степень защиты автоматического выключателя от неблагоприятных воздействий окружающей среды характеризуется международным стандартом IP и обозначается двумя цифрами, например IP20. Более подробно об этой важной характеристике Вы можете узнать в статье Что такое класс защиты IP
Что обозначает маркировка выключателя?
На фото изображена маркировка однополюсного автоматическиго выключателя фирмы Siemens. На его примере рассмотрим типичные обозначения данного ряда устройств: 5SY61 MCB — полное название модели, С 10 — кривая отключения типа С и номинальный ток 10 А, 230-400V — номинальное напряжение. Схемы показывают 2 рабочих положения автомата: I — цепь замкнута ( положение 1), O — цепь разомкнута (положение 2). Ниже слева от индикатора включения представлена предельная коммутационная способность (ток короткого замыкания) — 6000 А, под ней расположен класс токоограничения — 3. Подробное описание всех этих параметров приведено выше.
Зная эти характеристики можно без труда подобрать нужную модель. На нашем сайте представлен широкий ассортимент автоматических выключателей и вся необходимая информация о них. Задавайте все интересующие Вас вопросы через форму «Помощь онлайн», и Вам обязательно помогут с выбором. Удачных приобретений!
Технические характеристики автоматических выключателей
Рассмотрим технические характеристики автоматических выключателей, установленные требованиями стандартов МЭК 60898‑1 и МЭК 60898‑2, ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011.
Вся информация, которую вы прочитаете ниже основана на материалах из книги Ю.В. Харечко [3], а также соответствующих ГОСТов.
Коммутационная износостойкость.
Коммутационная износостойкость представляет собой способность автоматического выключателя выполнять определенное число циклов оперирования, когда в его главной цепи протекает электрический ток, оставаясь после этого в предусмотренном состоянии.
При номинальном напряжении и токовой нагрузке в своей главной цепи, равной номинальному току, любой автоматический выключатель должен выдерживать не менее 4000 циклов электрического оперирования.
Под циклом оперирования понимают последовательность оперирований автоматического выключателя из одного положения в другое с возвратом в начальное положение. Каждый цикл оперирования состоит из замыкания главных контактов автоматического выключателя с последующим их размыканием.
После выполнения 4000 циклов включения номинальной электрической нагрузки с ее последующим отключением автоматический выключатель не должен быть чрезмерно изношенным, не должен иметь повреждений подвижных контактов главной цепи, а также ослабления электрических и механических соединений. Кроме того, не должна ухудшаться электрическая прочность изоляции автоматического выключателя, которую проверяют соответствующими испытаниями.
Номинальное рабочее напряжение (номинальное напряжение).
Под номинальным рабочим напряжением (номинальным напряжением) Uе понимают установленное изготовителем значение напряжения, при котором обеспечена работоспособность автоматического выключателя, особенно при коротком замыкании. Для одного автоматического выключателя может быть установлено несколько значений номинального напряжения, каждому из которых соответствует собственное значение номинальной коммутационной способности при коротком замыкании.
В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие предпочтительные значения номинального напряжения для различных видов автоматических выключателей:
- для однополюсных – 120, 230, 230/400 В;
- для двухполюсных – 120/240, 230, 400 В;
- для трехполюсных и четырехполюсных – 240, 400 В.
Предпочтительные значения номинального напряжения, равные 120, 120/240 и 240 В, установлены стандартами для автоматических выключателей, предназначенных для использования в однофазных трехпроводных электрических системах переменного тока с номинальным напряжением 120/240 В.
Автоматические выключатели, имеющие значения номинального напряжения 230, 230/400 и 400 В, применяют в широко распространенных однофазных двухпроводных, трехфазных трехпроводных и четырехпроводных электрических системах переменного тока с номинальным напряжением 230 В, 400 и 230/400 В.
Помимо указанных выше в стандарте МЭК 60898-2 и ГОСТ IEC 60898-2-2011 установлены следующие предпочтительные значения номинального напряжения постоянного тока для универсальных автоматических выключателей:
для однополюсных – 125, 220 В;
для двухполюсных – 125/250, 220/440 В.
В обоих стандартах также сказано, что производитель должен указать в своей документации значение минимального напряжения, на которое рассчитан данный автоматический выключатель.
Номинальное напряжение изоляции Ui.
Номинальное напряжение изоляции Ui представляет собой установленное изготовителем напряжение, к которому отнесены напряжения испытания изоляции и расстояния утечки. Номинальное напряжение изоляции применяют для определения значений напряжения, используемых при испытании изоляции автоматического выключателя. Его также учитывают при установлении расстояний утечки автоматического выключателя. Когда отсутствуют другие указания, номинальное напряжение изоляции соответствует наибольшему номинальному напряжению автоматического выключателя. При этом значение наибольшего номинального напряжения автоматического выключателя не должно превышать значения его номинального напряжения изоляции.
Номинальный ток In.
Номинальный ток In
– установленный изготовителем электрический ток, который автоматический выключатель способен проводить в продолжительном режиме при определенной контрольной температуре окружающего воздуха.
Под продолжительным режимом в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 понимают такой режим, при котором главные контакты автоматического выключателя остаются замкнутыми, проводя установившийся электрический ток без прерывания в течение продолжительного времени (неделями, месяцами и даже годами).
Контрольной температурой окружающего воздуха называют такую температуру окружающего воздуха, при которой устанавливают время-токовую характеристику автоматического выключателя. Стандартная контрольная температура окружающего воздуха принята равной 30 °С.
В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие предпочтительные значения номинального тока: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.
Номинальная частота.
Характеристика «номинальная частота» определяет промышленную частоту, для которой разработан автоматический выключатель и с которой согласованы другие его характеристики. Автоматический выключатель может иметь несколько значений номинальной частоты. Автоматические выключатели, соответствующие требованиям стандарта МЭК 60898-2 и ГОСТ IEC 60898-2-2011, могут также функционировать при постоянном токе. Стандартные значения номинальной частоты автоматических выключателей равны 50 и 60 Гц.
Характеристика расцепления.
Характеристика расцепления каждого автоматического выключателя, с одной стороны, должна обеспечивать надежную защиту проводников электрических цепей от сверхтока. С другой стороны, она не должна допускать в стандартных условиях эксплуатации расцепления автоматического выключателя при протекании в его главной цепи электрического тока, равного номинальному току. Характеристика расцепления автоматического выключателя должна быть стабильной во время его эксплуатации и находиться в пределах соответствующей стандартной время-токовой зоны1.
Примечание 1: Эта характеристика автоматического выключателя в п. 8.6.1 ГОСТ IEC 60898-1-2020 названа нормальной время-токовой характеристикой, а п. 8.6.1 ГОСТ IEC 60898-2-2011 – стандартной время-токовой характеристикой. Однако время-токовая характеристика любого автоматического выключателя имеет вид кривой. В стандартах установлены граничные значения, в пределах которых должны находиться характеристики расцепления всех автоматических выключателей, т. е. в них заданы время-токовые зоны, которые находятся между граничными время-токовыми кривыми. Поэтому рассматриваемую характеристику логичнее поименовать стандартной время-токовой зоной. В п. 8.6.1 стандартов МЭК 60898‑1 и МЭК 60898-2 она названа именно так – «standard time-current zone».
Примечание 1 от Харечко Ю.В. из книги [3]
Основные параметры стандартных время-токовых зон представлены в таблицах 7 стандартов МЭК 60898‑1 и МЭК 60898‑2. Время-токовая характеристика любого качественного автоматического выключателя должна находиться в пределах его стандартной время-токовой зоны.
Ток мгновенного расцепления.
Под током мгновенного расцепления понимают минимальный электрический ток, вызывающий автоматическое срабатывание автоматического выключателя без выдержки времени.
В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов мгновенного расцепления1:
тип В – свыше 3 In до 5 In;
тип С – свыше 5 In до 10 In;
тип D – свыше 10 In до 20 In2.
Примечание 1: В стандарте МЭК 60898‑1 эта характеристика имеет наименование «стандартный диапазон мгновенного расцепления» («standard range of instantaneous tripping»). Однако это название нельзя признать удачным. Мгновенное расцепление не может иметь какой-либо диапазон. Оно либо происходит, либо нет. В требованиях стандарта МЭК 60898‑1 и ГОСТ Р 50345 речь идет о диапазонах, в которых находятся минимальные электрические токи, вызывающие мгновенное расцепление автоматических выключателей, т. е. стандарты устанавливают диапазоны, в которых должны находиться токи мгновенного расцепления. Поэтому рассматриваемую характеристику автоматического выключателя в международном стандарте более правильно назвать стандартным диапазоном токов мгновенного расцепления, как она названа в п. 5.3.5 ГОСТ IEC 60898-1-2020.
Примечание 1 от Харечко Ю.В. из книги [3]
Примечание 2: В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 указано, что для специальных автоматических выключателей, имеющих тип мгновенного расцепления D, верхняя граница может быть увеличена до 50 In.
Примечание 1 от Харечко Ю.В. из книги [3]
Для универсальных автоматических выключателей требованиями стандарта МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 предусмотрены только два типа мгновенного расцепления – B и C. При этом для постоянного тока даны иные, чем для переменного тока, стандартные диапазоны токов мгновенного расцепления.
тип В – свыше 4 In до 7 In;
тип С – свыше 7 In до 15 In.
Если в главной цепи автоматического выключателя протекает электрический ток, величина которого равна нижней границе стандартного диапазона токов мгновенного расцепления (3 In, 5 In, 10 In переменного тока, а для универсальных автоматических выключателей также 4 In и 7 In постоянного тока), то автоматический выключатель должен расцепиться за промежуток времени более 0,1 с, но менее 45 с или 90 с (тип мгновенного расцепления B), 15 с или 30 с (тип мгновенного расцепления C) и 4 с или 8 с (тип мгновенного расцепления D) соответственно при номинальном токе до 32 А включительно и более 32 А, т. е. нижняя граница стандартного диапазона токов мгновенного расцепления не является током мгновенного расцепления.
При протекании в главной цепи автоматического выключателя электрического тока, равного верхней границе стандартного диапазона токов мгновенного расцепления (5 In, 10 In, 20 In переменного тока или 7 In, 15 In постоянного тока), он должен расцепиться за промежуток времени менее 0,1 с, т. е. верхняя граница стандартного диапазона токов мгновенного расцепления представляет собой максимально допустимое значение тока мгновенного расцепления. Любой сверхток, превышающий верхнюю границу стандартного диапазона токов мгновенного расцепления, тем более
должен вызывать мгновенное расцепление автоматического выключателя.
В том случае, если значение электрического тока, протекающего в главной цепи автоматического выключателя, находится между нижней и верхней границами стандартного диапазона токов мгновенного расцепления, он может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с). Фактическое время срабатывания конкретного автоматического выключателя определяется его индивидуальной время-токовой характеристикой. Ток мгновенного расцепления автоматического выключателя также определяется его индивидуальной время-токовой характеристикой.
Стандарт МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 классифицируют автоматические выключатели согласно их токам мгновенного расцепления по типам B, С и D, т. е. все автоматические выключатели подразделяют на три типа мгновенного расцепления: тип B, тип С и тип D. Конкретному типу мгновенного расцепления соответствует собственный стандартный диапазон токов мгновенного расцепления, а также собственная стандартная время-токовая зона. Для универсальных автоматических выключателей стандартом МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 предусмотрены два типа мгновенного расцепления B и С.
Импульсное выдерживаемае напряжение.
Под импульсным выдерживаемым напряжением понимают наибольшее пиковое значение импульсного напряжения предписанной формы и полярности, которое не вызывает пробоя изоляции при установленных условиях. Номинальное импульсное выдерживаемое напряжение Uimp автоматического выключателя должно быть равным или превышать стандартные значения номинального импульсного выдерживаемого напряжения, которые установлены в таблицах 3 стандарта МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 в зависимости от номинального напряжения электроустановки (см. табл. 1).
Таблица 1. Стандартные значения номинального импульсного выдерживаемого напряжения | ||
Номинальное импульсное выдерживаемое напряжение (Uimp), кВ | Номинальное напряжение электроустановки, В | |
Трехфазные системы | Однофазная система с заземленной средней точкой | |
2,5 | — | 120/240 |
4 | 230/400, 250/440 | 120/240, 240 |
Предельная отключающая способность при коротком замыкании Icu.
Под предельной отключающей способностью при коротком замыкании Icu1 понимают отключающую способность, для которой предписанные условия соответственно установленной последовательности испытаний не предусматривают способности автоматического выключателя проводить в течение условного времени электрический ток, равный 0,85 его тока нерасцепления.
Примечание 1: В ГОСТ IEC 60898-1-2020 рассматриваемая характеристика автоматического выключателя имеет наименование «предельная наибольшая отключающая способность». В стандарте МЭК 60898‑1 эта характеристика названа иначе – «предельная отключающая способность при коротком замыкании» («ultimate short-circuit breaking capacity»). В национальных стандартах, распространяющихся на автоматические выключатели, вместо термина «предельная наибольшая отключающая способность» следует использовать термин «предельная отключающая способность при коротком замыкании». В требованиях стандарта МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 не используют рассматриваемый термин.
Примечание 1 от Харечко Ю.В. из книги [3]
Номинальная коммутационная способность при коротком замыкании Icn.
Номинальная коммутационная способность при коротком замыкании Icn1 представляет собой значение предельной отключающей способности при коротком замыкании, установленное изготовителем для автоматического выключателя.
Примечание 1: В ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 рассматриваемая характеристика автоматического выключателя имеет наименование «номинальная наибольшая отключающая способность». В стандартах МЭК 60898‑1 и МЭК 60898‑2 эта характеристика названа иначе – «номинальная способность при коротком замыкании» («rated short-circuit capacity»). При этом под способностью при коротком замыкании (short-circuit capacity) в международных стандартах понимают (включающую и отключающую) способность при коротком замыкании (short-circuit (making and breaking) capacity), т. е. коммутационную способность автоматического выключателя при коротком замыкании. Для устранения расхождений в наименованиях одной и той же характеристики автоматического выключателя в международных и национальных нормативных документах целесообразно использовать термин «номинальная коммутационная способность при коротком замыкании».
Примечание 1 от Харечко Ю.В. из книги [3]
Характеристика «номинальная коммутационная способность при коротком замыкании» определяет максимальный ток короткого замыкания, который автоматический выключатель должен гарантированно включить, проводить определенное время и отключить при заданных стандартом условиях, например, при установленном в стандарте диапазоне коэффициентов мощности (см. таблицу 17 ГОСТ IEC 60898-1-2020). Автоматический выключатель тем более должен отключить любой ток короткого замыкания, значение которого не превышает его номинальной коммутационной способности при коротком замыкании.
Для понимания характера поведения автоматического выключателя после отключения им максимального тока короткого замыкания обратимся к требованиям, изложенным в п. 9.12.11.4.3 стандартов1. Каждый автоматический выключатель должен обеспечить одно отключение испытательной электрической цепи с ожидаемым током короткого замыкания, равным номинальной коммутационной способности при коротком замыкании, а также одно включение с последующим автоматическим отключением электрической цепи, в которой протекает указанный испытательный ток.
Примечание 1: В стандартах МЭК 60898‑1 и МЭК 60898‑2 этот пункт назван «Испытание при номинальной способности при коротком замыкании (Icn)», в ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 − «Испытание при номинальной наибольшей отключающей способности (Icn)». Этот пункт в международных и национальных стандартах целесообразно назвать иначе: «Испытание при номинальной коммутационной способности при коротком замыкании (Icn)».
Примечание 1 от Харечко Ю.В. из книги [3]
После проведения этого испытания качественный автоматический выключатель не должен иметь повреждений, ухудшающих его эксплуатационные свойства, а также должен выдержать установленные стандартом испытания на электрическую прочность и проверку характеристики расцепления.
Рассматриваемую характеристику автоматического выключателя используют для согласования ее численного значения с токами короткого замыкания в электроустановке здания. Значение номинальной коммутационной способности при коротком замыкании должно превышать или быть равным максимальному току короткого замыкания в месте установки автоматического выключателя.
Для автоматических выключателей бытового назначения в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие значения номинальной коммутационной способности при коротком замыкании:
- в диапазоне сверхтока до 10 000 А включительно – стандартные значения номинальной коммутационной способности при коротком замыкании, равные 1500, 3000, 4500, 6000, 10 000 А;
- в диапазоне сверхтока свыше 10 000 А до 25 000 А включительно – предпочтительное значение номинальной коммутационной способности при коротком замыкании, равное 20 000 А.
Указанные значения номинальной коммутационной способности при коротком замыкании имеют и универсальные автоматические выключатели.
Включающая и отключающая способность при коротком замыкании.
Включающую и отключающую способность при коротком замыкании2 автоматического выключателя оценивают в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 по действующему значению переменной составляющей ожидаемого тока3, который он предназначен включать, проводить в течение его времени размыкания и отключать при определенных условиях.
Примечание 2: В ГОСТ IEC 60898-1-2020 рассматриваемая характеристика автоматического выключателя имеет наименование «наибольшая включающая и отключающая способность». В стандарте МЭК 60898‑1 эта характеристика названа иначе – «(включающая и отключающая) способность при коротком замыкании» («short-circuit (making and breaking) capacity»). В национальных стандартах, распространяющихся на автоматические выключатели, вместо термина «наибольшая включающая и отключающая способность» следует использовать термин «включающая и отключающая способность при коротком замыкании». В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 не используют рассматриваемый термин.
Примечание 2 от Харечко Ю.В. из книги [3]
Примечание 3: Ожидаемый ток – электрический ток, который будет протекать в электрической цепи, если каждый полюс коммутационного устройства заменить проводником с пренебрежимо малым полным сопротивлением.
Примечание 3 от Харечко Ю.В. из книги [3]
Время отключения и время дуги.
Для отключения сверхтока автоматическому выключателю требуется определенное время – время отключения, которое представляет собой интервал времени между началом времени размыкания и концом времени дуги. Началом времени размыкания считают момент, когда электрический ток в главной цепи автоматического выключателя достигнет уровня срабатывания его расцепителя сверхтока. Концом времени дуги является момент гашения электрических дуг во всех полюсах автоматического выключателя. Поэтому время отключения однополюсного автоматического выключателя приблизительно равно сумме времени размыкания и времени дуги в полюсе, а многополюсного автоматического выключателя – сумме времени размыкания и времени дуги в многополюсном автоматическом выключателе.
Рабочая отключающая способность при коротком замыкании Ics.
Номинальной коммутационной способности при коротком замыкании автоматического выключателя соответствует определенная рабочая отключающая способность при коротком замыкании Ics1 – отключающая способность, для которой предписанные условия соответственно установленной последовательности испытаний предусматривают способность автоматического выключателя проводить в течение условного времени электрический ток, равный 0,85 его тока нерасцепления.
Примечание 1: В ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 рассматриваемая характеристика автоматического выключателя имеет наименование «рабочая наибольшая отключающая способность». В стандартах МЭК 60898‑1 и МЭК 60898‑2 эта характеристика названа иначе – «рабочая отключающая способность при коротком замыкании» («service short-circuit breaking capacity»). Для устранения расхождений в наименованиях одной и той же характеристики автоматического выключателя в национальных нормативных документах вместо термина «рабочая наибольшая отключающая способность» следует использовать термин «рабочая отключающая способность при коротком замыкании».
Примечание 1 от Харечко Ю.В. из книги [3]
В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 между номинальной коммутационной способностью при коротком замыкании автоматического выключателя и его рабочей отключающей способностью при коротком замыкании установлены соотношения, представленные в табл. 2. Указанная информация приведена в таблицах 18 стандартов, в которых соотношение между рабочей отключающей способностью и номинальной коммутационной способностью задано посредством коэффициента, равного К = Ics/Icn.
Таблица 2. Соотношения между номинальной коммутационной способностью при коротком замыкании и рабочей отключающей способностью при коротком замыкании
Номинальная коммутационная способность при коротком замыкании Icn | Рабочая отключающая способность при коротком замыкании Ics |
Icn ≤ 6000 А | Ics = Icn |
6000 А < Icn ≤ 10 000 А | Ics = 0,75 Icn, но не менее 6000 А |
Icn > 10 000 А | Ics = 0,5 Icn, но не менее 7500 А |
Рабочая отключающая способность при коротком замыкании значительно меньше номинальной коммутационной способности при коротком замыкании (при Icn > 6000 А). Поэтому каждый автоматический выключатель способен отключить электрический ток, равный рабочей отключающей способности при коротком замыкании, бóльшее число раз, чем электрический ток, равный номинальной коммутационной способности при коротком замыкании.
Однополюсный и двухполюсный автоматические выключатели должны обеспечить два отключения испытательной электрической цепи с ожидаемым током короткого замыкания в ней, равным рабочей отключающей способности при коротком замыкании, и одно включение указанной электрической цепи с последующим ее автоматическим отключением. Трехполюсный и четырехполюсный автоматические выключатели должны обеспечить одно отключение электрической цепи, в которой протекает указанный испытательный ток, а также два ее включения с последующим автоматическим отключением.
Однополюсный и двухполюсный универсальные автоматические выключатели должны обеспечить одно отключение электрической цепи с ожидаемым постоянным током короткого замыкания в ней, равным рабочей отключающей способности при коротком замыкании, а также два ее включения с последующим автоматическим отключением.
После проведения указанного испытания качественный автоматический выключатель не должен иметь повреждений, ухудшающих его эксплуатационные свойства. Автоматический выключатель также должен выдержать предписанные стандартами испытания на электрическую прочность и проверку его характеристики расцепления.
В требованиях подраздела 533.3 «Выбор устройств для защиты электропроводок от коротких замыканий» стандарта МЭК 60364‑5‑53 сказано, что, когда стандарт на защитное устройство определяет и рабочую отключающую способность при коротком замыкании, и номинальную предельную отключающую способность при коротком замыкании, допустимо выбирать защитное устройство на основе предельной отключающей способности при коротком замыкании для максимальных характеристик короткого замыкания.
Однако условия эксплуатации могут сделать желательным выбор защитного устройства по рабочей отключающей способности при коротком замыкании, например, когда защитное устройство устанавливают на вводе низковольтной электроустановки. Аналогичное требование, сформулированное с терминологическими ошибками, имеется в ГОСТ Р 50571.5.53-2013, который разработан на основе стандарта МЭК 60364‑5‑53:2002. Поэтому при согласовании характеристик автоматических выключателей с характеристиками электрических цепей в электроустановке здания значения их рабочих отключающих способностей при коротком замыкании целесообразно выбирать так, чтобы они превышали или были равными максимальным токам короткого замыкания в местах их установки.
Характеристика I2t.
Характеристика I2t представляет собой кривую, отражающую максимальные значения I2t автоматического выключателя как функцию ожидаемого тока в указанных условиях эксплуатации. Эта характеристика позволяет оценить способность автоматического выключателя ограничивать ожидаемый сверхток в защищаемых им электрических цепях. Некоторые виды электрооборудования, например устройства дифференциального тока без встроенной защиты от сверхтока, имеют ограничения по значению характеристики I2t. Поэтому при проектировании электроустановок зданий с помощью рассматриваемой характеристики проводят проверку возможности использования автоматических выключателей для обеспечения защиты подобного электрооборудования от токов короткого замыкания.
Значения характеристики I2t для конкретных электрических токов – так называемый «интеграл Джоуля» – интеграл квадрата силы тока по данному интервалу времени (t0, t1) – определяют по следующей формуле:
В стандарте EN 60898‑1 рассматриваемая характеристика положена в основу классификации автоматических выключателей, устанавливающей способность автоматических выключателей ограничивать ожидаемые сверхтоки в защищаемых ими электрических цепях. Автоматические выключатели подразделяют на три класса ограничения энергии.
Класс ограничения электроэнергии.
Характеристика «класс ограничения электроэнергии» и значения характеристики I2t, по которым автоматические выключатели могут быть отнесены к определенному классу, не предусмотрены ни в стандарте МЭК 60898‑1, ни в ГОСТ IEC 60898-1-2020. Однако в обоих стандартах отмечается, что в дополнение к характеристике I2t, обеспеченной производителем, автоматические выключатели могут быть классифицированы согласно их характеристике I2t. По требованию производитель должен сделать доступным характеристику I2t. Он может указать классификацию I2t и соответственно маркировать автоматические выключатели.
В табл. 3 представлены максимальные значения характеристики I2t автоматических выключателей по классам ограничения электроэнергии, значения которых заимствованы из изменения А11, внесенного в стандарт EN 60898 в 1994 г.
Таблица 3. Предельные значения характеристики I2t для автоматических выключателей, А2с | |||||
Номинальная коммутационная способность при коротком замыкании, А | Класс ограничения электроэнергии | ||||
1 | 2 | 3 | |||
Тип мгновенного расцепления автоматического выключателя | |||||
B и C | В | С | В | С | |
Номинальный ток до 16 А включительно | |||||
3000 | Предельные значения не установлены | 31000 | 37000 | 15000 | 18000 |
4500 | 60000 | 75000 | 25000 | 30000 | |
6000 | 100000 | 120000 | 35000 | 42000 | |
10000 | 240000 | 290000 | 70000 | 84000 | |
Номинальный ток свыше 16 А до 32 А включительно* | |||||
3000 | Предельные значения не установлены | 40000 | 50000 | 18000 | 22000 |
4500 | 80000 | 100000 | 32000 | 39000 | |
6000 | 130000 | 160000 | 45000 | 55000 | |
10000 | 310000 | 370000 | 90000 | 110000 | |
* Для автоматических выключателей с номинальным током 40 А могут быть применены максимальные значения, равные 120 % от указанных в таблице. Такие автоматические выключатели могут быть маркированы символом соответствующего класса ограничения электроэнергии. |
Автоматические выключатели, имеющие класс ограничения электроэнергии 2 и 3, представляют собой токоограничивающие автоматические выключатели, характеризующиеся малым временем отключения, в течение которого ток короткого замыкания не успевает достичь своего пикового значения. Применение токоограничивающих автоматических выключателей в электроустановках зданий позволяет уменьшить негативное воздействие токов короткого замыкания на низковольтное электрооборудование и, прежде всего, на проводники электрических цепей.
Современные автоматические выключатели бытового назначения, имеющие номинальный ток до 40 А и типы мгновенного расцепления B и C, как правило, представляют собой токоограничивающие автоматические выключатели и соответствуют третьему классу ограничения электроэнергии.
В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 дополнительно установлена следующая классификация универсальных автоматических выключателей по постоянной времени:
- автоматические выключатели, пригодные для электрических цепей постоянного тока с постоянной времени T ≤ 4 мс;
- автоматические выключатели, пригодные для электрических цепей постоянного тока с постоянной времени T ≤ 15 мс.
В ГОСТ IEC 60898-2-2011 приведено следующее пояснение: «Очевидно, что токи короткого замыкания не превышают значения 1500 А в тех установках, где в силу присоединенных нагрузок постоянная времени при нормальной эксплуатации может быть не более 15 мс. В электроустановках со значениями токов короткого замыкания свыше 1500 А постоянная времени T = 4 мс считается достаточной».
Список использованной литературы
- ГОСТ IEC 60898-1-2020
- ГОСТ IEC 60898-2-2011
- Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 5// Приложение к журналу «Библиотека инженера по охране труда». – 2017. – № 2. – 160 c
Номинальный ток, л.с., Вольт | carlingtech.com
Любой коммутатор Carling Technologies, одобренный агентством, будет иметь отметку о рейтинге на его основании. Номиналы переключателей Carling Technologies указаны для ампер , вольт и лошадиных сил (если применимо).
Электричество — это движение электронов от одного атома к другому. Поток электронов через электрический проводник называется электрическим током, который измеряется в ампер или ампер .Электрическое давление, необходимое для того, чтобы вызвать это движение, составляет напряжение . Само по себе напряжение не течет по проводникам, а является силой, которая заставляет ток течь. Напряжение также называют электрическим потенциалом, потому что, если в проводнике присутствует напряжение, существует потенциал для протекания тока.
Двигатели рассчитаны на лошадиных сил. (л.с.) или доли лошадиных сил (1/4, 1/3, 1/2 и т. Д.). С механической точки зрения одна лошадиная сила (1 л.с.) равна 33000 фунтам, перемещаемым на 1 фут за 1 минуту. (или 33000 фут-фунт / мин).Одна лошадиная сила (1 л.с.) также равна 746 Вт электрической мощности.
Номинальное напряжение — это функция способности переключателя подавлять внутреннюю дугу, возникающую при размыкании контактов переключателя. Номинальное напряжение , указанное на коммутаторах Carling Technologies, представляет собой максимальное напряжение , допустимое для правильной работы коммутатора при номинальном токе. Номинальный ток ампер переключателя Carling — это максимальный ток в амперах, который переключатель будет выдерживать непрерывно.Так, в приведенном ниже примере максимальная номинальная мощность этого переключателя при 250 вольт переменного тока (В переменного тока) составляет 10 ампер; Максимальный номинальный ток при 125 В переменного тока для того же переключателя составляет 15 А.
Переключатели, которые будут подвергаться высоким пусковым индуктивным нагрузкам, такие как двигатель переменного тока, часто будут иметь номинальную мощность в лошадиных силах в дополнение к вольтам и амперам. Этот рейтинг отражает величину тока, которую могут выдержать контакты переключателя в момент включения устройства. Электродвигатель переменного тока потребляет в восемь раз больше рабочего тока при первом включении или в неподвижном состоянии при включенном питании (остановленный ротор).Переключатель в приведенном ниже примере рассчитан на использование с двигателем мощностью 3/4 л.с. при напряжении от 125 до 250 вольт переменного тока.
Типичный номинал переключателя Carling Technologies:
10A 250VAC
15A 125VAC
3 / 4HP 125-250VAC
AC / DC
Carling предлагает номинальное напряжение переключателя как переменного (переменного тока), так и постоянного (постоянного тока). Переменный или переменный ток — это электрический ток или напряжение, которые меняют направление потока через равные промежутки времени и имеют попеременно положительные и отрицательные значения, среднее значение которых за период времени равно нулю.Количество раз (или циклов) изменения этого значения в секунду равно его частоте . Частота измеряется в герцах (Гц). Чем больше циклов в секунду, тем выше частота. Электрическая «сеть» в Северной Америке основана на очень стабильной частоте 60 Гц. В большинстве европейских стран используется частота 50 Гц. Все номинальные значения переменного напряжения Carling Technologies указаны для 50/60 Гц, и все переключатели, одобренные агентством Carling Technologies, будут указывать конкретные номинальные значения переменного напряжения.
Постоянный или постоянный ток — это электрический ток или напряжение, которое может иметь пульсирующие характеристики, но не меняет направление на противоположное.Его потенциал всегда одинаков по отношению к земле, а его полярность может быть положительной или отрицательной. Батарея — один из примеров источника постоянного тока.
A Carling AC Рейтинг следует за «VAC», например, 125VAC — это 125VAC. За номинальными параметрами Carling AC / DC следует только «V», без букв AC и DC. Например, номинальное значение 125 В будет считаться как 125 вольт переменного тока и 125 вольт постоянного тока.
Практическое правило округа Колумбия
Для тех переключателей, в которых указано только номинальное напряжение переменного тока, можно применить «Практическое правило постоянного тока» для определения максимального номинального постоянного тока переключателя.Это «правило» гласит, что максимальная сила тока на переключателе должна удовлетворительно работать до 30 вольт постоянного тока. Например, выключатель рассчитан на 10 А 250 В переменного тока; 15A 125VAC; 3 / 4HP 125–250 В переменного тока, вероятно, будет удовлетворительно работать при 15 А и 30 В постоянного тока (В постоянного тока).
Виды нагрузок
Электрическая нагрузка — это количество электроэнергии, поставляемой или требуемой в любой конкретной точке или точках системы. Требование исходит от энергопотребляющего оборудования потребителей.Проще говоря, нагрузка — это то оборудование, которое вы включаете и выключаете.
Резистивные нагрузки в первую очередь обеспечивают сопротивление протеканию тока. Примеры резистивных нагрузок включают электрические нагреватели, плиты, духовки, тостеры и утюги. Если устройство должно нагреваться и не двигаться, скорее всего, это резистивная нагрузка.
Индуктивные нагрузки — это обычно движущиеся устройства, обычно включающие в себя электрические магниты, такие как электродвигатель. Примеры индуктивных нагрузок включают в себя дрели, электрические миксеры, вентиляторы, швейные машины и пылесосы.Трансформаторы также создают индуктивные нагрузки.
Высокие пусковые нагрузки потребляют больше тока или силы тока при первом включении по сравнению с величиной тока, необходимой для продолжения работы. Примером высокой пусковой нагрузки является электрическая лампочка, которая при первом включении может потреблять в 20 или более раз превышающий нормальный рабочий ток. Это часто называют ламповой нагрузкой. Другими примерами нагрузок с высоким пусковым током являются импульсные источники питания (емкостная нагрузка) и двигатели (индуктивная нагрузка).
Рейтинги UL / CSA
Типичный номинальный ток UL / CSA — это одно значение, которое представляет индуктивные / резистивные нагрузки. Если указана номинальная мощность в лошадиных силах, это означает, что переключатель подходит для использования с нагрузками двигателя, которые рассчитаны на данную мощность. Если номинальная мощность в лошадиных силах не указана, переключатели проверяются на индуктивную / ненагруженную нагрузку при 75% коэффициента мощности.
Типичный пример рейтинга UL / CSA приведен ниже:
10A 250VAC
15A 125VAC
3 / 4HP 125-250VAC
Европейские рейтинги
Типичный европейский рейтинг различает резистивную и индуктивную нагрузки.Ниже приведен пример типичного европейского номинала:
16 (4) A 250 В ~ T85 µ
В этом примере 16 = сила тока резистивной нагрузки; (4) = сила тока индуктивной нагрузки; A = сила тока; 250 В = напряжение; ~ = AC; T85 = максимальная рабочая температура в градусах Цельсия; µ = микрозазор (<3 мм) одобрен.
Если между контактами переключателя в разомкнутом положении остается менее 3 мм воздушного зазора, может быть предоставлено разрешение на микрозазоры (µ). Этот знак указывает на то, что коммутатор имеет общее одобрение применения с оговоркой, что другое устройство, такое как шнур и вилка, должно обеспечивать альтернативные средства отключения от основного источника питания.
Рейтинги L & T
Рейтинг «L» означает способность переключателя работать с начальными высокими характеристиками пускового тока лампы накаливания с вольфрамовой нитью только при работе от переменного напряжения. Рейтинг «T» — это эквивалентная ламповая нагрузка для постоянного тока.
H Рейтинг
Рейтинг «H» означает неиндуктивное сопротивление. Рейтинги, перечисленные в информации о продуктах Carling Technologies, могут обозначаться символом «H» или словами «неиндуктивный» или «резистивный». Для переключателей, используемых в коммерческих духовках, обычно требуется рейтинг «H».
Номинальные параметры переключателя с подсветкой
Для выключателей с подсветкой с зависимыми лампами линейное напряжение должно соответствовать номинальному напряжению лампы. Например, если используется лампа постоянного тока на 6 В, то контакты переключателя должны выдерживать только линейное напряжение 6 В постоянного тока; Неоновая лампа на 125 В не должна использоваться на переключателях, управляющих переменным током 250 Вольт. Несоответствие этих двух рейтингов может привести к гораздо более короткому сроку службы лампы, чем ожидалось, или к ее перегоранию, или к более яркому свету, чем ожидалось.
Рабочая температура
Все переключатели, сертифицированные в Европе, имеют максимальную рабочую температуру 85 градусов по Цельсию, если не указано иное.Выключатели с номиналом T85, если они работают напрямую, не должны использоваться в приложениях, где температура рабочего органа, включая любое повышение температуры, превышает 85 градусов по Цельсию.
Если не указано иное, все переключатели, рассчитанные на североамериканские стандарты, имеют максимальную температуру материала 105 градусов по Цельсию.
Номинальное напряжение— обзор
8.4.1 Нормализация
Выбор базовых значений, используемых в единичной или нормализованной системе, в некоторой степени произвольный.В частном случае SYNCREL в литературе использовалось несколько различных схем. Однако следует понимать, что выводы, сделанные при использовании различных нормализаций, должны быть одинаковыми, поскольку они просто смотрят на систему немного по-другому. Также следует понимать, что некоторые нормализации больше подходят для анализа конкретных стратегий управления — они производят более простые выражения, которые легче анализировать.
Поскольку следующий анализ основан на моделях, построенных в предыдущем разделе, они основаны на тех же предположениях.Кроме того, большая часть анализа также предполагает, что сопротивлением статора можно пренебречь. Это предположение создает выражения, достаточно простые, чтобы по ним можно было почерпнуть основные свойства машины.
Одна нормализация, которую можно использовать для SYNCREL, основана на максимальном крутящем моменте на ампер, а также номинальном напряжении и токе машины [10]. Когда используется эта нормализация, индуктивности исчезают, поскольку они представлены в модели как отношение L d / L q , которое обозначается символом ξ.
Для определения максимального крутящего момента на ампер нам необходимо определить угол вектора тока относительно оси d . Рассмотрим выражение (8.54), повторенное здесь для удобства:
(8.75) Te = 32pp (Ldr − Lqr) idriqr
Это выражение также можно записать как
(8.76) Te = 32pp (Ldr − Lqr) (icos θ) (isinθ) = 34pp (Ldr − Lqr) i2sin2θ
, где θ≜ угол текущего пространственного вектора относительно оси d машины, а i ≜ текущий вектор величина (как определено на рис.8.9).
Из (8.76) можно увидеть, что для данной величины вектора тока крутящий момент максимизируется, если θ = π / 4 радиан. Следовательно, максимальный крутящий момент для SYNCREL составляет
(8,77) Temax = 34pp (Ldr-Lqr) i02
, где i 0 ≜ номинальный ток для SYNCREL.
Для удобства мы определим базовый крутящий момент для машины в терминах двухфазной машины. Следовательно,
(8,78) T0 = 12pp (Ldr − Lqr) i02.
Базовая частота определяется как частота, при которой в машине заканчивается напряжение при базовом крутящем моменте и токе. Это нормальная «точка излома» характеристики крутящего момента машины. Следовательно, базовая частота равна
(8,79) ω0≜ppωbrk.
Номинальное напряжение машины (т.е. напряжение на частоте отключения) обозначается как В 0 . 12
Базовый поток для станка может быть получен следующим образом:
(8.80) ψ0 = (Ldrid0r) 2+ (Lqriq0r) 2
где i r d0 ≜ d — ток оси, и i r q q — ток оси, когда величина тока равна i 0 . Как видно из рис. 8.9, эти токи можно записать как
(8,81) id0r = i0cosθ = 12i0 для θ = π / 4
(8,82) iq0r = i0sinθ = 12i0 для θ = π / 4
Следовательно, используя эти выражения, базовый поток можно записать как
(8.83) ψ0 = i02 (Ldr) 2+ (Lqr) 2.
Теперь можно определить другие базы в терминах уже определенных. Базовое напряжение
(8,84) v0 = ω0ψ0.
Теперь можно определить базовую мощность:
(8,85) P0 = v0i0 = ω0ψ0i0 = ω0i022 (Ldr) 2+ (Lqr) 2.
Теперь также можно определить базовое сопротивление и индуктивность:
(8,86) R0 = v0i0
Давайте теперь суммируем нормализованные значения, используя вышеуказанные базы для основных параметров машины.
Резюме 8.2
(8,88) Tn = TeT0 Pn = PP0 ψn = ψnψ0ωn = ωω0 in = iin vn = vv0Rn = RR0 Ln = LL0}.
Используя нормировки в Сводке 8.2 и предполагая, что сопротивлением статора можно пренебречь, 13 , мы можем вывести следующие нормализованные электрические уравнения из приведенных в Сводке 8.1:
(8.89) vdn = 2ξξ2 + 1 (1ω0pidn − ωnξiqn)
(8.90) vqn = 2ξξ2 + 1 (1ξω0piqn + ωnidn)
(8.91) Tn = in2sin2θ = 2in2tanθ1 + tan2θ
, где p ≜ оператор производной d / dt
(8.92) ξ = LdrLqr (который известен как коэффициент значимости).
Используя эти базовые выражения, можно сгенерировать ряд других вспомогательных выражений. Установившиеся напряжения SYNCREL могут быть записаны как (если принять члены p в (8.89) и (8.90) равными нулю)
(8.93) vdn = −2ωniqnξ2 + 1
(8.94) vqn = — 2ξωnidnξ2 + 1.
Используя тот факт, что tan θ≜ i qn / i dn и i n =
idn2 + iqn2
, можно записать токи машина как(8.95) idn = in1 + tan2θ
(8.96) iqn = intanθ1 + tan2θ
, который можно подставить в (8.93) и (8.94), чтобы получить
(8.97) vdn = −2ωn (tan Θ) в (ξ2 + 1) (1 + tan2θ)
(8.98) vqn = 2ξωnin (ξ2 + 1) (1 + tan2θ).
Эти выражения напряжения могут быть заменены на V 2 n = v 2 dn + V 2 qn и преобразовать следующий выражение для нормированной амплитуды тока в машине:
(8.99) in2 = (ξ2 + 1) (1 + tan2θ) vn22ωn2 (tan2θ + ξ2).
Затем это можно подставить в (8.91), чтобы получить:
(8.100) Tn = (ξ2 + 1) (tanθ) vn2ωn2 (tan2θ + ξ2).
Замечание 8.15 Это выражение для крутящего момента машины неявно предполагает, что текущий угол постоянен. Это происходит как следствие предположения об установившемся состоянии .
Еще одно очень полезное выражение может быть получено, если мы получим величину напряжения в терминах крутящего момента в переходных условиях .Если использовать тот факт, что i 2 n = i 2 dn + i 2 qn вместе с (
) 9 можно написать 8.101) idn = Tn2cotθ, который при подстановке в (8.89) и (8.90) дает нормированные напряжения в терминах крутящего момента и угла тока:
(8.103) vdn = ξξ2 + 1 [cotθω0pTn − ωnξTntan θ]
(8.104) vqn = ξξ2 + 1 [tanθξω0pTn + ωnTncotθ]
Замечание 8.16 Обратите внимание, что эти выражения напряжения предполагают, что θ является постоянным, т. Е. Не изменяется во времени. Это позволило вынести члены на основе θ за пределы оператора p. Следовательно, эти уравнения и следующее уравнение, полученное из них, ограничиваются стратегиями управления с постоянным углом (CAC). Это означает, что токи i dn и i qn не являются независимыми, но связаны между собой tan θ.
Использование v 2 n = v 2 dn + v 2 qn и замена
(8,105) vn2 = tanθ + ξ2cotθξ2 + 1 [14Tnω02 (pTn) 2 + ωn2Tn].
Наконец, еще одна полезная нормализация — это нормализованная скорость изменения нормализованного крутящего момента, то есть pT n . Его можно нормировать на угловую скорость следующим образом:
(8.106) p’Tn = pTnω0
, который имеет единицы о.е. / радиан.
Замечание 8.17 Можно интерпретировать p ′ T n как то, насколько крутящий момент в pu увеличивается за один радиан электрического цикла при частоте ω 0 . Например, если p ′ T n = 5 / 2π , то крутящий момент увеличивается на 5 о.е. на 2π радиан или на 1 о.е. на 2π / 5 радиан, что составляет 1/5 часть базовый электрический цикл .
AC DC Формула для расчета тока полной нагрузки
Расчет тока полной нагрузки машины переменного и постоянного тока:
Ток полной нагрузки используется для разработки системы защиты электрооборудования.
Что такое ток полной нагрузки:Ток полной нагрузки — это не что иное, как максимально допустимый ток. Входной ток к машине превышает ток полной нагрузки, значит, электрическая машина может быть повреждена. Из-за чрезмерного протекания тока машина производит дополнительное тепло (из-за P = I 2 * R)., Это может привести к повреждению изоляции или обмотки электрооборудования. Следовательно, эксплуатация машины при токе ниже полной нагрузки увеличивает срок службы электрического оборудования.
Нагрузки двигателя переменного тока (переменный ток):
Нагрузки переменного тока состоят из резистивных нагрузок, индуктивных нагрузок. Активные нагрузки: водонагреватель, комнатный обогреватель и т. Д. Индуктивными нагрузками являются индукционная печь, однофазный асинхронный двигатель, трехфазный двигатель и т. Д.
Расчет тока полной нагрузки 3-фазный двигатель:
В большинстве трехфазных систем потребление электроэнергии происходит по схеме звезды и треугольника.Входная мощность (P) в системе одинакова, независимо от подключения.
Мощность в кВт (киловаттах)
В = напряжение +/- 10% в вольтах
I = ток полной нагрузки в амперах
Cos pi = коэффициент мощности
Трехфазная мощность P = 3 В * I * Cos pi Следовательно, ток полной нагрузки трехфазного двигателя I = P / (3 * V * Cos pi)
кВт = выходная мощность в ваттах ……. Все данные указаны на паспортной табличке.
Посмотрите на приведенную выше формулу, трехфазный ток полной нагрузки равен мощности, деленной на 3 умноженное на произведение линейного напряжения на нейтраль и коэффициента мощности.
Как мы уже говорили, ток полной нагрузки трехфазной системы зависит от типа подключения. Здесь
Iph => Фазный ток
Iline => Линейный ток
Для соединения звездой ток полной нагрузки Iline равен Iph
Iph = Iline
Для соединения треугольником ток полной нагрузки Iline в 1,732 раза больше Iph
Iph / 1.732 = Iline
Следовательно, трехфазный ток полной нагрузки I равен
I = P / (1.732 * V * Cos pi)
Здесь трехфазный ток полной нагрузки равен мощности, деленной на 1,732-кратное линейное напряжение и коэффициент мощности.
Расчет тока полной нагрузки Однофазный двигатель:Ток полной нагрузки I однофазного двигателя равен мощности P, деленной на коэффициент мощности, умноженный на напряжение фаза-нейтраль.
P = V * I * Cos pi
Ток полной нагрузки I = P / (V x Cos pi) Амперы
В = напряжение +/- 10% в вольтах
I = ток полной нагрузки в амперах
Cos pi = коэффициент мощности
кВт = выходная мощность в ваттах …….Все данные указаны на паспортной табличке двигателя.
Расчет тока полной нагрузки Трехфазный змеевик нагревателя:
Для трехфазного тока полный ток нагрузки для резистивной нагрузки равен трехфазной мощности, деленной на 1,732-кратное напряжение. Здесь коэффициент мощности для резистивных нагрузок будет равен единице.
Как вы знаете формулу мощности,
P = 1,732 x V x I
Ток полной нагрузки I,
I = P / 1,732 * В Ампер.
В = линейное напряжение
I = ток полной нагрузки в амперах
Если рассматривать среднее линейное напряжение, формула тока полной нагрузки принимает вид
I = P / 3 * В Ампер.
кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.
Расчет тока полной нагрузки Однофазные нагреватели:
Формула мощности кВт
В = Напряжение
I = ток полной нагрузки в амперах
кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.
P = V X I А
Ток полной нагрузки для однофазного нагревателя составит,
I = P / V Ампер
Рассчитать через сопротивление:
- Измерьте сопротивление R змеевика нагревателя с помощью мультиметра.2 * руб.
См. Также : Как рассчитать падение напряжения
Расчет тока полной нагрузки Машина постоянного тока (двигатель постоянного тока и генератор постоянного тока):постоянного тока => постоянного тока
P = V X I
V = E ± Ia Ra ± Is Rsh + падение щеток (шунтирующая машина)
V = E ± Ia (Ra + Rsh) + падение щеток (серийная машина)
В = напряжение питания
E = задняя ЭДС
Ia = ток якоря
Ra = сопротивление якоря
Is = ток возбуждения
Rsh = Полевое сопротивление
Обратная ЭДС e = (pi * N * P * Z / 60 A)
Pi = Магнитный поток
N = скорость машины
P = количество полюсов
Z = количество проводов
A = количество параллельных путей
P = A для лабораторной обмотки
А = 2 для волновой обмотки
Мифы о токе полной нагрузки:
- Ток полной нагрузки Для алюминиевого кабеля — o.8 штук за квадратный метр
- для медного кабеля 1,2 за квадратный метр
- , 3 фазы, 415 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 1,3 А.
- 1 фаза 230 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 4 А.
Максимальные и минимальные значения напряжения двигателя
Экономические убытки от преждевременного отказа двигателя огромны. В большинстве случаев цена самого мотора тривиальна по сравнению со стоимостью внеплановых остановок процессов. Как высокое, так и низкое напряжение могут вызвать преждевременный отказ двигателя, равно как и дисбаланс напряжений.Здесь мы рассмотрим влияние низкого и высокого напряжения на двигатели и соответствующие изменения производительности, которые вы можете ожидать при использовании напряжения, отличного от указанного на паспортной табличке.
Воздействие низкого напряжения. Когда вы подвергаете двигатель воздействию напряжения ниже номинального, указанного на паспортной табличке, некоторые характеристики двигателя изменяются незначительно, а другие — резко. Чтобы приводить в действие фиксированную механическую нагрузку, подключенную к валу, двигатель должен потреблять фиксированное количество энергии от линии.Количество потребляемой двигателем мощности примерно соответствует току напряжения 2 (в амперах). Таким образом, когда напряжение становится низким, ток должен увеличиваться, чтобы обеспечить такое же количество энергии. Увеличение тока представляет опасность для двигателя только в том случае, если этот ток превышает номинальный ток двигателя, указанный на паспортной табличке. Когда сила тока превышает номинальное значение, указанное на паспортной табличке, в двигателе начинает накапливаться тепло. Без своевременной коррекции это тепло приведет к повреждению двигателя. Чем больше тепла и чем дольше на него воздействуют, тем больше повреждение мотора.
Существующая нагрузка является основным фактором при определении того, насколько снижение напряжения питания может выдержать двигатель (см. Врезку ниже). Например, давайте посмотрим на двигатель с небольшой нагрузкой. Если напряжение уменьшается, ток увеличивается примерно в той же пропорции, что и напряжение. Например, снижение напряжения на 10% приведет к увеличению силы тока на 10%. Это не повредит двигатель, если ток будет ниже значения, указанного на паспортной табличке.
А что, если у этого двигателя большая нагрузка? В этом случае у вас уже есть большой ток, поэтому напряжение уже ниже, чем было бы без нагрузки.Возможно, вы даже приблизитесь к нижнему пределу напряжения, указанному на паспортной табличке. Когда происходит снижение напряжения, ток возрастает до нового значения, которое может превышать номинальный ток при полной нагрузке.
Низкое напряжение может привести к перегреву, сокращению срока службы, снижению пусковой способности и уменьшению момента подъема и отрыва. Пусковой крутящий момент, крутящий момент и крутящий момент отрыва асинхронных двигателей изменяются в зависимости от приложенного напряжения в квадрате. Таким образом, 10% -ное снижение напряжения, указанного на паспортной табличке (от 100% до 90%, от 230 В до 207 В), снизит пусковой крутящий момент, крутящий момент срабатывания и крутящий момент отрыва в раз.92.9. Полученные значения составят 81% от значений полного напряжения. При напряжении 80% результат будет 0,82,8 или значение 64% от полного значения напряжения. Что это означает в реальной жизни? Что ж, теперь вы можете понять, почему трудно запустить «трудно запускаемые» нагрузки, если напряжение оказывается низким. Точно так же крутящий момент двигателя будет намного ниже, чем при нормальном напряжении.
На слабо нагруженных двигателях с легко запускаемыми нагрузками снижение напряжения не будет иметь какого-либо заметного эффекта, за исключением того, что оно может помочь снизить потери при небольшой нагрузке и повысить эффективность в этих условиях.Это принцип, лежащий в основе некоторого дополнительного оборудования, предназначенного для повышения эффективности.
Воздействие высокого напряжения. Люди часто делают предположение, что, поскольку низкое напряжение увеличивает силу тока на двигателях, высокое напряжение должно уменьшать потребляемую силу тока и нагрев двигателя. Это не тот случай. Высокое напряжение на двигателе приводит к насыщению магнитной части двигателя. Это приводит к тому, что двигатель потребляет чрезмерный ток, пытаясь намагнитить утюг за пределы точки, в которой намагничивание является практичным.
Двигатели допускают некоторое изменение напряжения выше расчетного. Однако, если напряжение превышает расчетное, сила тока возрастет, что приведет к соответствующему увеличению нагрева и сокращению срока службы двигателя.
Например, производители ранее рассчитывали двигатели на 220/440 В с диапазоном допуска 510%. Таким образом, допустимый диапазон напряжения на высоковольтных соединениях составляет от 396 до 484 В. Несмотря на то, что это так называемый диапазон допуска, наилучшие характеристики будут достигнуты при номинальном напряжении.Крайние концы (высокие или низкие) создают ненужную нагрузку на двигатель.
Не попадайтесь в ловушку, думая, что с вами все в порядке, только потому, что ваше напряжение питания находится в этих пределах. Назначение этих диапазонов — приспособиться к обычным почасовым колебаниям напряжения на заводе. Постоянная работа на высоких или низких предельных значениях сокращает срок службы двигателя.
Такая чувствительность к напряжению характерна не только для двигателей. Фактически, колебания напряжения влияют на другие магнитные устройства аналогичным образом.Соленоиды и катушки, которые вы найдете в реле и пускателях, лучше переносят низкое напряжение, чем высокое. Это также верно для балластов в люминесцентных, ртутных и натриевых осветительных приборах высокого давления. И это касается трансформаторов всех типов. Лампы накаливания особенно чувствительны к высокому напряжению. Повышение напряжения на 5% сокращает срок службы лампы на 50%. Повышение напряжения на 10% выше номинального сокращает срок службы лампы накаливания на 70%.
В целом, для оборудования определенно будет лучше, если вы измените ответвления на входных трансформаторах, чтобы оптимизировать напряжение в цехе до уровня, близкого к номинальным характеристикам оборудования.На старых установках вам, возможно, придется пойти на некоторые компромиссы из-за различий в стандартах для старых двигателей (220/440 В) и более новых стандартов «Т-образной рамы» (230/460 В). Напряжение посередине этих двух напряжений (что-то вроде 225 В или 450 В) обычно дает наилучшую общую производительность. Высокое напряжение всегда приводит к снижению коэффициента мощности, что увеличивает потери в системе. Это приводит к более высоким эксплуатационным расходам на оборудование и систему.
Стандартный рисунок (найденный в документации по двигателям и в оригинальной печатной версии этой статьи) иллюстрирует общее влияние высокого и низкого напряжения на характеристики двигателей с Т-образной рамой.Этот график широко используется в различных справочных материалах. Но это всего лишь пример и не дает точной информации, которая применима ко всем двигателям. Вместо этого он представляет только один тип двигателя, с большим количеством вариаций от одного двигателя к другому. Например, самая низкая точка на линии усилителя полной нагрузки не всегда возникает при напряжении на 21/2% выше номинального. На некоторых двигателях это может произойти при напряжении ниже номинального. Кроме того, рост ампер полной нагрузки при напряжениях выше номинальных имеет тенденцию быть более крутым для одних конструкций обмоток двигателей, чем для других.Боковая панель на странице 78 предлагает некоторые рекомендации по определению влияния колебаний напряжения на отдельные конструкции и корпуса двигателей.
Не подвергайте свои электродвигатели и другое электрическое оборудование нагрузке из-за того, что энергосистема работает на краях предельных значений напряжения или около них. Наилучший срок службы и наиболее эффективная работа обычно происходят, когда вы эксплуатируете двигатели при напряжениях, очень близких к номинальным значениям, указанным на паспортной табличке. Подавая напряжение на двигатели, держитесь подальше от «внешних пределов».«
Этот текст представляет собой адаптацию «Документов Коверна», любезно предоставленных компанией Baldor Electric Co., Уоллингфорд, штат Коннектикут, под редакцией Марка Ламендолы, технического редактора EC&M. Кауэрн — разработчик приложений Baldor.
Почему трансформатор рассчитан на кВА, а не на кВт?
Трансформатор Всегда номинальная мощность в кВА вместо кВтКак следует из названия, трансформатор только передает мощность от одной цепи к другой без изменения значения мощности и частоты.Другими словами, он может только увеличивать или уменьшать значение тока и напряжения, в то время как мощность и частота остаются прежними. Общая дата на паспортной табличке трансформатора напечатана для получения дополнительных сведений, таких как мощность в ВА, однофазный / трехфазный (силовой или распределительный трансформатор), повышение / понижение, подключение и т. Д.
Право на вопрос, простыми словами ,
Имеется двух типов потерь в трансформаторе ;
- 1. Потери меди
- 2. Потери в железе или потери в сердечнике или потери в изоляции
Потери в меди (I²R) зависят от тока , который проходит через обмотку трансформатора, а Потери в железе или потери в сердечнике или потери в изоляции зависят от напряжения . т.е. общие потери зависят от напряжения (В) и тока (I), которые выражаются в вольт-амперах ( ВА ), а не от коэффициента мощности нагрузки (p.f) . Вот почему мощность трансформатора может быть выражена в ВА или кВА, а не в Вт или кВт.
Давайте объясним более подробно, чтобы понять, что , почему трансформатор рассчитан в ВА, а не в кВт?
Когда производители проектируют трансформатор, они понятия не имеют, какая нагрузка будет подключена к трансформатору. Нагрузка может быть резистивной (R), индуктивной (L), емкостной (C) или смешанной нагрузкой (R, L и C). Это означает, что будет различный коэффициент мощности (p.f) на вторичной стороне (нагрузки) на разных типах подключенных нагрузок, в зависимости от R, L и C. Таким образом, в случае трансформатора они выбирают ВА вместо Вт.
Позволяет очистить номинал трансформатора в ВА вместо Вт с решенным примером.
Потери трансформатора останутся такими же, пока величина тока / напряжения одинакова. Независимо от того, какой коэффициент мощности нагрузки ток / напряжение.
Пример:
Предположим, что для однофазного повышающего трансформатора
- Мощность трансформатора в кВА = 11 кВА
- Первичное напряжение = 110 В
- Первичный ток = 100 006
А = 220 В
- Вторичный ток = 50 А .
- Эквивалентное сопротивление на вторичной обмотке = 5 Ом
- Потери в стали = 30 Вт
В первом сценарии , если мы подключим резистивную нагрузку ко вторичной обмотке трансформатора при единичном коэффициенте мощности θ = 1 ,
Тогда общие потери трансформатора составят потерь в меди + потери в стали , т.е.
I²R + потери в стали
Подставляя значения,
(50 2 x 5) + 30W = 12.53кВт
т.е. потери на первичной и вторичной передаче остаются такими же. (См. Ниже пример также для вторичных потерь)
Выход трансформатора будет:
P = V x I x Cos θ
Снова поместим значение из вторичной обмотки (то же значение, если мы поместим значения из первичной обмотки)
P = 220 x 50 x 1 = 11 кВт .
Теперь номинал трансформатора
кВА = ВА / 1000
кВА = 220 x 50/1000 = 11 кВА.
Теперь, во втором сценарии , подключите емкостную или индуктивную нагрузку к вторичной обмотке трансформатора при коэффициенте мощности θ = 0.6 .
Опять же, общие потери трансформатора будут равняться потерям в меди + потерям в железе, т.е.
I²R + потерям в железе
Если подставить значения,
(50 2 x 5) + 30Вт = 12,53 кВт
Следовательно, доказано что потери в первичной и вторичной обмотках одинаковы.
Но Выход трансформатора будет:
P = V x I x Cos θ
Снова поместим значение из вторичного (то же значение, если мы поместим значения из первичного)
P = 220 x 50 x 0.6 = 6,6 кВт.
Теперь мощность трансформатора
кВА = ВА / 1000
кВА = 220 x 50/1000 = 11 кВА .
Его средний трансформатор 11 кВА Рейтинг означает, что он может выдерживать 11 кВА. Настала наша очередь преобразовать и использовать 11 кВА как 11 кВт (мы можем сделать это, увеличив коэффициент мощности до 1 в случае чисто резистивной нагрузки ), что непредсказуемо и даже очень трудно получить в случае индуктивной нагрузки. и емкостные нагрузки , где коэффициент мощности будет иметь разные значения.
Из приведенного выше примера ясно, что номинал трансформатора такой же (11 кВА), но другая выходная мощность ( 11 кВт и 6,6 кВт ) из-за различных значений коэффициента мощности после подключения нагрузки другого типа, которая непредсказуемо для производителей трансформаторов, у которых потери одинаковы в обоих случаях .
Итак, является точной причиной номинальной мощности трансформатора в кВА вместо кВт.
Полезно знать:
Как и у трансформатора, номинальная мощность и мощность генераторов / генераторов, стабилизаторов, ИБП, линий электропередачи также указаны в ВА вместо Вт. В то время как мощность электростанции, переменный ток (состояние воздуха) и двигатели указаны в Вт. (ватты), а не ВА (вольт-амперы).
Вы также можете прочитать о:
Коэффициент мощности — индуктивная нагрузка
Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где
- Активная (реальная или истинная) мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
- Полная мощность измеряется в вольт-амперах (ВА. ) и представляет собой напряжение в системе переменного тока, умноженное на весь ток, который в ней протекает.Это векторная сумма активной и реактивной мощности
- Реактивная мощность измеряется в вольт-амперах реактивной ( VAR ). Реактивная мощность — это мощность, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.
Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает количество полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.
Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .
Коэффициент мощности
Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:
PF = cos φ
где
PF = коэффициент мощности
φ = фазовый угол между напряжением и током
Коэффициент мощности, определенный IEEE и IEC, представляет собой соотношение между приложенной активной (истинной) мощностью — и полная мощность , и в целом может быть выражена как:
PF = P / S (1)
, где
PF = коэффициент мощности
P = активная (истинная или действительная) мощность (Вт)
S = полная мощность (ВА, вольт-амперы)
Низкий коэффициент мощности lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.
Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что
- общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен обеспечить большую генерирующую мощность, чем фактически требуется
- искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем
Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.
Пример — коэффициент мощности
Промышленное предприятие потребляет 200 A при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА .
Если коэффициент мощности — PF — нагрузки составляет 0,7 — только
Система потребляет80 кВА × 0,7
= 56 кВт
реальной мощности. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.
- Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем тот, который был бы необходим при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
Зависимость поперечного сечения проводника от коэффициента мощности
Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:
Коэффициент мощности 1 0,9 0.8 0,7 0,6 0,5 0,4 0,3 Поперечное сечение 1 1,2 1,6 2,04 Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит распределительную способность электрической системы из-за увеличения тока и падения напряжения.
«Опережающий» или «запаздывающий» коэффициенты мощности
Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.
- При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет равен 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
- Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
- Емкостные нагрузки — конденсаторные батареи или проложенные кабели — генерируют реактивную мощность с фазой тока, опережающей напряжение.
Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. В течение остальных циклов энергия возвращается обратно в источник питания.
В системах с преимущественно индуктивными нагрузками — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.
Коэффициент мощности трехфазного двигателя
Полная мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из
- Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
- Реактивная мощность — нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)
Коэффициент мощности трехфазного электродвигателя может быть выражен как:
PF = P / [(3) 1/2 UI] (2)
где
PF = коэффициент мощности
P = приложенная мощность (Вт, Вт)
U = напряжение (В)
I = ток (А, амперы)
— или альтернативно:
P = (3) 1/2 UI PF
= (3) 1/2 U I cos φ (2b)
U, l и cos φ обычно указаны на паспортной табличке двигателя.
Типичный коэффициент мощности двигателя
Мощность
(л.с.)Скорость
(об / мин)Коэффициент мощности (cos φ ) Без нагрузки без нагрузки 1/2 нагрузки 3/4 нагрузки полная нагрузка 0-5 1800 0,15 — 0,20 0,5 — 0,6 0,72 0,82 0,84 5 9 0,84 9110 — 20 1800 0.15 — 0,20 0,5 — 0,6 0,74 0,84 0,86 20-100 1800 0,15 — 0,20 0,5 — 0,6 0,79 86
100-300 1800 0,15 — 0,20 0,5 — 0,6 0,81 0,88 0,91 Коэффициент мощности по отраслям
Типичные неулучшенные коэффициенты мощности:
Промышленность Коэффициент мощности Пивоваренный завод 75-80 Цемент 75-80 Химический 65-75 9106 Электрохимический Литейное производство 75-80 Поковка 70-80 Hospi tal 75-80 Производство, станки 60-65 Производство, краска 65-70 Металлообработка 65-70 Уголь, шахта — 80 Офис 80-90 Перекачка масла 40-60 Производство пластмасс 75-80 Штамповка 60106 60 — 65-80 Текстиль 35-60 Преимущества коррекции коэффициента мощности
- Снижение счетов за электроэнергию — предотвращение штрафа за низкий коэффициент мощности от энергокомпании
- увеличенная мощность системы — дополнительные нагрузки может быть добавлен без перегрузки системы
- улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
- улучшенные рабочие характеристики системы за счет увеличения напряжения — предотвращение чрезмерных падений напряжения
Коррекция коэффициента мощности с помощью конденсатора
Поправочный коэффициент конденсатора Коэффициент мощности до улучшения (cosΦ) Коэффициент мощности после улучшения (cosΦ) 91251.0 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90 10 9125 10 1,50910 1,5 1,44 1,40 1,37 1,34 1,30 1,28 1,25 0,55 1,52 1.38 1,32 1,28 1,23 1,19 1,16 1,12 1,09 1,06 1,04 0,60 86
1,0 1,0 1,01 0,97 0,94 0,91 0,88 0,85 0,65 1,17 1,03 0.97 0,92 0,88 0,84 0,81 0,77 0,74 0,71 0,69 0,70 1,02 0,89 0,66 0,62 0,59 0,56 0,54 0,75 0,88 0,74 0,67 0.63 0,58 0,55 0,52 0,49 0,45 0,43 0,40 0,80 0,75 0,61 0,54 0,54 0,61 0,54 0,35 0,32 0,29 0,27 0,85 0,62 0,48 0,42 0,37 0.33 0,29 0,26 0,22 0,19 0,16 0,14 0,90 0,48 0,34 0,28 89
0,19 0,09 0,06 0,02 0,91 0,45 0,31 0,25 0,21 0,16 0,13 0.09 0,06 0,02 0,92 0,43 0,28 0,22 0,18 0,13 0,10 86 0,06 0,13
0,10 86 0,06 017
86 0,06
0,25 0,19 0,15 0,10 0,07 0,03 0,94 0.36 0,22 0,16 0,11 0,07 0,04 0,95 0,33 6 6 9108 6 9108 9108 9108 9108 9108 9108 9108 9108 9108 91080,96 0,29 0,15 0,09 0,04 0.97 0,25 0,11 0,05 0,98 0,20 0,06 32 Пример — Повышение коэффициента мощности с помощью конденсатора
Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .
При требуемом коэффициенте мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора равен 0,58 .
Требуемая мощность KVAR может быть рассчитана как
C = (150 кВт) 0,58
= 87 KVAR
Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B
Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.
Номинальная мощность асинхронного двигателя
(л.с.)Номинальная скорость двигателя (об / мин) 3600 1800 1200 Номинальная мощность конденсатора
912AR(K) Ток
(%)Номинал конденсатора
(кВАр)Снижение линейного тока
(%)Номинал конденсатора
(кВАр)Снижение линейного тока
3 1.5 14 1,5 23 2,5 28 5 2 14 2,5 22 3 2,5 3 20 4 21 10 4 14 4 18 5 21 89 151086
89 151086
89
18 6 20 20 6 12 6 17 7.5 19 25 7,5 12 7,5 17 8 19 30 8 1186 1186 910
40 12 12 13 15 16 19 50 15 12 18 89
151086 151086 15 89
151086 60 18 12 21 14 22.5 17 75 20 12 23 14 25 15 100 22,5 1186 111086 910125 25 10 36 12 35 12 150 30 10 42 89
12 200 35 10 50 11 50 10 250 40 11 60 10 62.5 10 300 45 11 68 10 75 12 350 50 1286 751286 910 910
400 75 10 80 8 100 12 450 80 8 90 89
9108 120 89
120 89
120 500 100 8 120 9 150 12 Как подобрать двигатели в зависимости от нагрузки, мощности двигателя, лошадиных сил
Автор: Randy Barnett
Run a Current Probe iFlex ™ Flexible одиночный проводник.Или вы можете центрировать губки токоизмерительных клещей вокруг одного проводника.Это заблуждение среди тех, кто выбирает и устанавливает двигатели. Правильный выбор двигателей для данной нагрузки приводит к более эффективному управлению нагрузками, экономии энергии и экономии долларов. Двигатели обычно наиболее эффективны при нагрузке от 90% до 95%. Тот факт, что на заводской табличке двигателя написано «25 л.с.», не означает, что двигатель выдает двадцать пять лошадиных сил во время работы. Двигатель может производить немного меньше в зависимости от требований к нагрузке.Если двигатель постоянно работает с этими пониженными требованиями к мощности, деньги тратятся зря, и вам следует подумать о замене его двигателем правильного размера.
Кроме того, сечение проводов и предохранителей или прерывателя цепи, питающих этот двигатель, основывается на номинальном токе полной нагрузки двигателя, предполагаемой частоте его срабатывания и других факторах. Установка проводов и прерывателей большего размера, чем необходимо, — напрасная трата. Также важно понимать, что даже при низких требованиях к мощности двигатель по-прежнему потребляет относительно большой ток.Например, двигатель, работающий без нагрузки, по-прежнему потребляет около 50% своего номинального тока.
При замене двигателя подберите двигатель к заданию.
При замене двигателей важно согласовать двигатель с заданием. В дополнение к выбору правильного напряжения, фазы (трехфазной или однофазной), буквенного обозначения и буквенного кода обязательно выберите правильную номинальную мощность в лошадиных силах. Если двигатель был заменен ранее или работает с насосом, вентилятором или другим оборудованием, размер которого не был определен производителем оригинального оборудования как часть всей системы, возможно, вы выбрали двигатель неправильного размера.Измерение базовых значений напряжения и тока для оценки собственных требований к мощности предоставит вам более эффективную систему.
Такая информация важна при проведении энергетического исследования. Если нагрузка двигателя изменяется на 90% или менее от полной нагрузки в течение длительного времени, применение может быть подходящим для привода с регулируемой скоростью и, таким образом, значительной экономии. Например, если требования к мощности двигателя в лошадиных силах могут быть уменьшены с помощью привода с регулируемой скоростью для снижения скорости двигателя до 90% от полной номинальной скорости двигателя, то потребление энергии снижается до 73% от того, что требуется для работы на полной скорости.Еще одна причина узнать требования к нагрузке вашего оборудования!
В некоторых случаях двигатель может быть перегружен, потребляя ток, превышающий его номинальный. Будь то плохие подшипники, смещенный вал или другие проблемы, связанные с обслуживанием, или просто чрезмерная нагрузка на двигатель, однозначно имеет место один вредный эффект: чрезмерное нагревание обмоток. Тепло ухудшает изоляцию и является основной причиной отказа двигателя. Хотя правильно подобранные и установленные устройства защиты от перегрузок вызывают отключение двигателя, как правило, от 115% до 125% от значения тока полной нагрузки, указанного на паспортной табличке, выделяемое за это время тепло обязательно сокращает срок службы двигателя.
Определение фактической мощности двигателя
Значения рабочего тока и напряжения двигателя должны измеряться и регистрироваться на регулярной основе в рамках программы профилактического обслуживания. Используйте эту формулу для оценки мощности двигателя: Мощность (л.с.) = Напряжение x Средняя мощность x% КПД x коэффициент мощности x 1,73 / 746. (См. Подробную информацию на диаграмме ниже.)
Используйте эту формулу для оценки мощности двигателя
Мощность (л.с.) = Напряжение x Сила тока x% EFF x коэффициент мощности x 1,73 / 746
Где:
Напряжение — это среднее значение трех измеренных напряжений: (AB + AC + BC) / 3
Ампер — средний измеренный ток трех фаз: (A + B + C) / 3
% EFF — КПД двигателя на паспортная табличка двигателя
Коэффициент мощности — это отношение реальной мощности (кВт) к полной мощности (кВА).При отсутствии инструментов для измерения коэффициента мощности практическое правило заключается в оценке коэффициента мощности на уровне 0,85
1,73 — константа, используемая при расчете трехфазной мощности
746 — константа для преобразования ватт в лошадиные силы (746 Вт = 1 л.с.)
Пример: Сколько лошадиных сил имеет двигатель мощностью 25 л.с., вырабатывающий при 472 В и потребляющий в среднем 20 А на фазу с маркировкой на паспортной табличке двигателя, указывающей на эффективность 90%?
Мощность в лошадиных силах (л.с.) = напряжение x сила тока x% КПД x коэффициент мощности x 1.73/746
= 472 В x 20 А x 0,90 x 0,85 x 1,73 / 746 = 17 л.с.
Самый быстрый метод точной оценки мощности двигателя — использовать цифровые клещи для измерения тока и напряжения на двигателе, а затем выполнить простой расчет. Используйте эту формулу для оценки мощности двигателя. Мощность (л.с.) = напряжение x сила тока x% КПД x коэффициент мощности x 1,73 / 746. Обязательно соблюдайте правила безопасной работы, соответствующие конкретному применению. Благодаря наличию цифровых мультиметров с удаленным дисплеем, таких как токоизмерительные клещи для измерения истинного среднеквадратичного значения с удаленным дисплеем Fluke 381, рабочие могут уменьшить свое воздействие смертельного напряжения и зоны опасности дугового разряда.
Для получения точных показаний важно использовать токоизмерительные клещи с истинным среднеквадратичным значением. В то время как токи двигателя обычно можно считывать непосредственно с лицевой стороны привода с регулируемой скоростью, питающего связанный двигатель, для другого оборудования потребуется использовать измеритель, обеспечивающий точные показания при наличии гармоник и синусоидальных искажений.
Измерение нагрузок, отличных от двигателей
Вам также необходимо записать рабочие значения нагрузок, отличных от двигателей. Поскольку мощность в лошадиных силах не определяется для других нагрузок, кроме двигателей, просто используйте процедуру, описанную во врезке «Используйте эту формулу для оценки мощности двигателя», чтобы измерить и записать текущее значение нагрузки.Примерами таких нагрузок могут быть герметичные мотор-компрессоры хладагента, используемые в оборудовании HVAC, осветительные нагрузки и нагревательные элементы. Номинальный ток нагрузки герметичных компрессоров хладагента и номинальный ток другого типа оборудования необходимо сравнивать с измеренными значениями, когда вы имеете дело с отключением выключателя или перегревом оборудования. Чтобы определить размер прерывателя и проводов, необходимых для питания нагрузки, см. Национальный электротехнический кодекс® (NEC®), инструкции производителя, чертежи и любые местные нормативные требования.Хотя NEC имеет особые правила для различных типов оборудования, такого как двигатели и оборудование HVAC, обычно проводники и автоматические выключатели рассчитаны на 125% от продолжительной нагрузки плюс 100% от непостоянной нагрузки.
Зонд iFlex ™ окружает единственный проводник в этом шкафу привода для установки кондиционирования воздуха (AHU). Токоизмерительные клещи Fluke 381 используются для записи показаний силы тока с целью выявления предполагаемой проблемы привода. Тот же токоизмерительный клещи используется для оценки мощности двигателя.«Непрерывная нагрузка» — это нагрузка, при которой ожидается, что максимальный ток будет продолжаться в течение трех часов или более. Один важный момент: при выборе размеров проводов и выключателей для двигателей используйте соответствующую таблицу в NEC для силы тока полной нагрузки двигателя, а не ранее измеренное значение или информацию с паспортной таблички двигателя. Ранее измеренное значение помогает определить размер нагрузки. Размеры проводов и прерывателей для питания двигателя основаны на кодовых таблицах, в которых указаны значения тока полной нагрузки для конкретных фаз, напряжения и мощности двигателей.Номинальные характеристики и измеренные значения производителя используются для нагрузок, отличных от двигателя.
Например, трехфазный двигатель насоса охлажденной воды мощностью 25 лошадиных сил должен проработать при полной нагрузке три часа или более. В таблицах NEC указано, что ток полной нагрузки трехфазного двигателя мощностью 460 В и мощностью 25 лошадиных сил составляет 34 ампера. Следовательно, проводники, питающие двигатель, должны иметь размер 34 x 1,25 = 43 А (125% от 34 ампер). Таблицы допустимой нагрузки в NEC используются для определения фактического сечения проводника в зависимости от типа изоляции, температуры окружающей среды и других условий.Максимальный размер автоматического выключателя или предохранителя для двигателя основан на другой таблице NEC, Таблица 430.52. Максимальное значение этого устройства защиты от перегрузки по току может находиться в диапазоне от 175% до 250% от тока полной нагрузки. Всегда консультируйтесь с Национальными правилами установки электрооборудования или у квалифицированного электрика, чтобы узнать точные размеры проводки двигателя, предохранителей и автоматических выключателей, а также требования к защите двигателей от перегрузки. То же самое касается герметичных мотор-компрессоров хладагента и другого электрического оборудования.
Цель: правильно подобранная и безопасная установка, работающая с максимальной эффективностью.
Вы должны определить мощность двигателя в полевых условиях, чтобы убедиться, что используется двигатель подходящего размера. Если двигатель слишком большой, рассмотрите возможность замены двигателя или установки частотно-регулируемого привода. Регулярное измерение и запись значений тока и напряжения также является важной частью программы качественного профилактического обслуживания.
You may also like
Как клеить обои правильно виниловые видео: Как клеить виниловые обои на бумажной основе: советы для отделки
Универсальный диск для болгарки по дереву: Диск по дереву для болгарки: выбор подходящего инструмента
Фасадная механизированная штукатурка: Механизированная штукатурка фасадов, наружных стен
Профлист расцветки фото: Цвета профлиста для забора название (72 фото) » НА ДАЧЕ ФОТО