Разное

Как узнать на сколько ом резистор: как узнать на сколько Ом резистор с полосками?

Как узнать на сколько ом резистор: как узнать на сколько Ом резистор с полосками?

Содержание

Как узнать на сколько ом резистор

Чаще всего встречаются неисправности резисторов, связанные с выгоранием токопроводящего слоя или нарушением контакта между ним и хомутиком. Для всех случаев дефектов существует простой тест. Разберемся, как проверить резистор мультиметром.

Типы мультиметров

Прибор бывает стрелочным или цифровым. Для первого не требуется источник питания. Он работает как микроамперметр с переключением шунтов и делителей напряжения в заданные режимы измерений.

Цифровой мультиметр показывает на экране результаты сравнения разницы между эталонными и измеряемыми параметрами. Для него нужен источник питания, влияющий на точность измерений по мере разрядки. С его помощью производится тестирование радиодеталей.

Виды неисправностей

Резистором называют электронный компонент с определенным или переменным значением электрического сопротивления. Перед тем как проверить резистор мультиметром, его осматривают, визуально проверяя исправность. Прежде всего определяется целостность корпуса по отсутствию на поверхности трещин и сколов. Выводы должны быть надежно закреплены.

Неисправный резистор часто имеет полностью обгоревшую поверхность или частично – в виде колечек. Если покрытие немного потемнело, это еще не характеризует наличие неисправности, а говорит лишь о его нагреве, когда выделяемая на элементе мощность в какой-то момент превысила величину допустимой.

Деталь может выглядеть как новая, даже если внутри оборвется контакт. У многих здесь возникают проблемы. Как проверить резистор мультиметром в данном случае? Необходимо наличие принципиальной схемы, по которой производятся замеры напряжения в определенных точках. Для облегчения поиска неисправностей в электрических цепях бытовой техники выделяются контрольные точки с указанием на них величины этого параметра.

Проверка резисторов производится в самую последнюю очередь, когда нет сомнений в следующем:

  • полупроводниковые детали и конденсаторы исправны;
  • на печатных платах нет сгоревших дорожек;
  • отсутствуют обрывы в соединительных проводах;
  • соединения разъемов надежны.

Все вышеперечисленные дефекты появляются со значительно большей вероятностью, чем выход из строя резистора.

Характеристики резисторов

Величины сопротивлений стандартизованы в ряды и не могут принимать любые значения. Для них задаются допустимые отклонения от номинала, зависимые от точности изготовления, температуры среды и других факторов. Чем дешевле резистор, тем больше допуск. Если при измерении величина сопротивления выходит за его пределы, элемент считается неисправным.

Еще одним важным параметром является мощность резистора. Одной из причин преждевременного выхода детали из строя является ее неправильный выбор по этому параметру. Мощность измеряется в ваттах. Ее выбирают такой, на которую он рассчитан. На схеме условного обозначения мощность резистора определяется по знакам:

  • 0,125 Вт – двойная косая черта;
  • 0,5 Вт – прямая продольная черта;
  • римская цифра – величина мощности, Вт.

Резистор для замены выбирается по тем же параметрам, что и неисправный.

Проверка резисторов на соответствие номиналам

Для проверки необходимо найти значения сопротивлений. Их можно увидеть по порядковому номеру элемента на схеме или в спецификации.

Измерение сопротивления является самым распространенным способом проверки резистора. В данном случае определяется соответствие номиналу и допуску.

Величина сопротивления должна быть в пределах диапазона, который на мультиметре устанавливается переключателем. Щупы подключаются к гнездам COM и VΩmA. Перед тем как проверить резистор тестером, сначала определяется исправность его проводов. Их замыкают между собой, и прибор должен показать величину сопротивления, равную нулю или немного больше. При измерениях малых сопротивлений эта величина вычитается из показаний прибора.

Если энергии элементов питания недостаточно, обычно получается сопротивление, отличное от нуля. В этом случае следует заменить батарейки, поскольку точность измерений будет низкой.

Новички, не зная, как проверить резистор на работоспособность мультиметром, часто касаются руками щупов прибора. Когда измеряются величины в килоомах, это недопустимо, поскольку получаются искаженные результаты. Здесь следует знать, что тело также имеет определенное сопротивление.

При фиксации прибором величины сопротивления, равной бесконечности, это является показателем наличия обрыва (на экране горит «1»). Редко встречается наличие пробоя резистора, когда его сопротивление равно нулю.

После измерения полученное значение сравнивается с номиналом. При этом учитывается допуск. Если данные совпадают, резистор исправен.

Когда появляются сомнения в правильности показаний прибора, следует замерить величину сопротивления исправного резистора с тем же номиналом и сравнить показания.

Как измерить сопротивление, когда номинал неизвестен?

Установка максимального порога при измерении сопротивления не обязательна. В режиме омметра можно установить любой диапазон. Мультиметр из-за этого не выйдет из строя. Если прибор покажет «1», что означает бесконечность, порог следует увеличивать, пока на экране не появится результат.

Функция прозвонки

А еще как проверить резистор мультиметром на исправность? Распространенным способом является прозвонка. Положение переключателя для данного режима обозначается значком диода с сигналом. Знак сигнала может быть отдельно, верхняя граница срабатывания его не превышает 50-70 Ом. Поэтому резисторы, номиналы которых превышают порог, прозванивать не имеет смысла. Сигнал будет слабым, и его можно не услышать.

При значениях сопротивления цепи ниже граничного значения прибор издает писк через встроенный динамик. Прозвонка делается путем создания напряжения между точками схемы, выбранными с помощью щупов. Чтобы данный режим работал, нужны подходящие источники питания.

Проверка исправности резистора на плате

Сопротивление замеряют, когда элемент не подключен к остальным в схеме. Для этого нужно освободить одну из ножек. Как проверить резистор мультиметром, не выпаивая из схемы? Это делается только в особых случаях. Здесь необходимо проанализировать схему подключений на наличие шунтирующих цепей. Особенно на показания прибора влияют полупроводниковые детали.

Заключение

Решая вопрос, как проверить резистор мультиметром, необходимо разобраться, как измеряется электрическое сопротивление и какие пределы устанавливаются. Прибор предназначен для ручного применения и следует запомнить все приемы использования щупов и переключателя.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

40 комментариев

Спасибо, очень удобный справочник.

Спасибо Вам за прекрасную и необходимую работу!

Полезная информация.Просто,удобно и понятно.Спасибо!

Все бы ничего, почему калькулятор не считаетв EIA?

Вроде все считает..

Буковку «С» нужно ввести после номинала

Доброго всем дня. На резисторе (СМД) написанно Е22 измерить не получается ,так как корозия уничтожила выводы. Стоит в десеке (переключатель спутниковых конвертеров) Прочитал только под микроскопом очень маленький размер. На глаз длинна не более 1,5мм. Подскажите кто силён.

На обычных резисторах этот номинал означает 22 Ома

Привет, а не могли бы сжато написать если не трудно: что такое смд резистор, его предназначение, сколько минимально ом и сколько максимально? Просто я только начал пытаться учить смд компоненты и сейчас тяжело усваиваю инфу, мне нужно сжато суть выучить смд резисторы, диоы и кандеры, что это, предназначение их, мощность мин и макс и как прозваниваются!

смд — маленький, без проводков, на плату сразу припаивать к дорожкам
предназначение — Сопротивляться прохождению тока (от ангельского Резист — Сопротивление)
минимально — Ноль (0) Ом (без приставки Омы — маленькое значение)
Максимально — Сколько повезёт (ххх) МегаОм (приставка Кило — среднее значение)

Прозванивается мультиметром на режиме Ʊ после предварительного замыкания измерительных контактов (эту цифру вычесть из измеренного сопротивления резистора). Измеренное значение Ноль при цифрах на маркировке говорит о коротком замыкании резистора внутри (сгорел). Сменой режима мультиметра можно найти нужный диапазон измерения, чтобы увидеть точное значение. Небольшое отличие от написанного номинала допустимо. Если на всех пределах показывает превышение предела — значит резистор в обрыве (сгорел). Как проводить измерения — написано в инструкции к измерительному прибору. Как работает сопротивление — описано в учебнике по физики, раздел про Закон Ома. Остальные компоненты также имеются в физике. Книга небольшая, прочитать можно один раз и потом на столе держать как справочник.

Человечество начало жить в сфере цифровых технологий. В повседневной жизни повсюду компьютеры, пылесосы, электрочайники, телефоны. Поэтому каждому хоть один раз в жизни приходилось разбираться с непредвиденными поломками. Необязательно быть электриком, чтобы определить разрыв проводов, поломку ТЭНа или утюга. Часто надо просто прозвонить провода или лампочку накаливания, то есть проконтролировать значение сопротивления.

Для выполнения этих задач можно обойтись без сложного оборудования. Вполне подойдет мультиметр. Мультиметр — это многофункциональный измерительный прибор, позволяющий замерять значение силы тока, напряжения и сопротивления.

Особенности измерения сопротивления

Измерение сопротивления проводника основано на законе Ома. В нем сказано, что сопротивление проводника равно отношению напряжения к протекающей силе тока на участке цепи. Формула выглядит следующим образом: Сопротивление = Напряжение / Сила тока.

Единицей измерения сопротивления является Ом. Один Ом сопротивления означает, что по участку цепи протекает ток в один Ампер при напряжении один Вольт.

Поэтому, если пропустить с заданным напряжением ток, заранее измеренный, через проводник, то можно посчитать сопротивление проводника.

Таким образом, мультиметр представляют собой не что иное, как источник напряжения и амперметр для замера силы тока. Шкала амперметра размечена в Омах.

Описание работы мультиметра

На сегодняшний день разработано большое количество мультиметров. Принципиально они разделены на:

Аналоговые тестеры выводят измеренные значения на экран со стрелочкой. Некоторые профессионалы до сих пор предпочитают их, хотя эти устройства практически вытеснены с рынка цифровыми тес. На данных устройствах удобней и наглядней наблюдать изменение измеряемых параметров.

Цифровые мультиметры выводят данные на дисплей с цифрами. Эти приборы очень популярны.

Аналоговое устройство хорошо работает на отрезке радиоволн и электромагнитных полей. Им не нужно, в отличие от цифровых мультиметров, автономное питание.

На корпусе аналогового тестера находится переключатель. С его помощью выбирают режим измерения. Переключение диапазонов получается в результате умножения значения на шкале на масштабный коэффициент, который задал переключатель.

Равномерная шкала боится перегрузок. Если у нее значения от нуля до определенного числа, то возможен выход прибора из строя. Это вероятно, если при измерениях существенно выйти за допустимые пределы. Поэтому многие аналоговые мультиметры снабжены логарифмической шкалой, где диапазон возможных измеряемых значений — от нуля до бесконечности.

К прибору подключаются два щупа. Концы щупов похожи на иглы. Иногда для удобства на них надеваются металлические зажимы — «крокодилы».

В бюджетных моделях щупы не очень высокого качества, хотя внешне могут выглядеть эффектно.

При покупке прибора следует обратить внимание на то, чтобы провод был гибким и эластичным. Возле места входа он должен держаться плотно.

Для аналогового мультиметра не требуется источник питания. У него принцип работы как у амперметра.

Когда щупы подключаются к цепи или радиоэлементу, то во внутренних индукционных катушках начинает течь ток. Под воздействием созданных магнитных полей указывающая стрелка на приборе отклоняется на определенный угол и указывает значение на экране.

Цифровой тестер устроен немного иначе. Внутри его корпуса на печатной плате расположена микросхема. Она полностью отвечает за обработку входных данных.

Цифровые мультиметры более точны и выдают меньшую погрешность, чем их аналоговые коллеги.

Элементы контроля и управления размещены на передней панели:

  • переключатель режимов и диапазонов;
  • ЖК-дисплей;
  • разъемы для щупов.

Проверка показателя тестером

Для перевода мультиметра в режим измерения сопротивления нужно при помощи круговой ручки выбрать сектор «Омега». В этом секторе указаны допустимые диапазоны измерений. Они отмечены метками 200, 2к, 20к, 200к, 2 М, 20 М, 200 М. Эти метки обозначают максимальное измеряемое сопротивление, которое допустимо в этом диапазоне.

Номинал проверяемого элемента должен быть меньше, чем крайне правое значение диапазона, но больше левого. Например, если номинал проверяемого резистора составляет десятки мегаомов, то нужно выбрать диапазон в секторе «Омега» от 20 мОм до 200 мОм.

Если область сопротивления резистора заранее неизвестна, то надо начать измерения с самого большого диапазона. Затем снижать диапазоны, добиваясь нужной точности.

Если выставить диапазон меньше, чем сопротивление элемента, то данные отображаться не будут.

Щупы вставляются в соответствующие гнезда. Черный щуп прибора — в гнездо на тестере с надписью «СОМ» (сокращенно от common — общий), красный же — в то гнездо, рядом с которым имеется обозначение «Омега».

Процесс прозвонки проводов

Перед началом любых прозвонов необходимо проверить работоспособность самого прибора. Не исключено, что в самой измерительной системе есть неполадки или разрывы. Тот же недостаточный контакт щупов. Для проверки концы щупов соединяют друг с другом. Если обрывов в цепи нет и прибор работоспособен, то дисплей отобразит нулевое значение. Иногда значения слегка отклоняются от нуля. Это связано с сопротивлением самих щупов и их клемм.

Существует два способа прозвонки проводов. Использование их зависит от того, есть ли в приборе звуковой сигнал или нет. Если функция звука есть, то соответствующий значок будет нарисован на корпусе.

Прозвонка проста и интуитивно понятна. Надо установить переключатель в режим зуммера и поднести щупы к концам проверяемого проводника. Возможны следующие варианты поведения тестера:

  1. Если провод не поврежден, то раздастся звуковой сигнал.
  2. Провод может быть целым, но слишком длинным. Тогда его сопротивление будет больше, чем-то, при котором зуммер подает сигнал. Тогда дисплей высветит цифру со значением сопротивления.
  3. Если же сопротивление гораздо больше установленного диапазона, то на дисплее появится единица. Следует выбрать другой режим и еще раз произвести измерение.
  4. Если в проводнике произошел разрыв, то никакой индикации не будет.

В случае прозвонки радиодеталей аналоговым мультиметром, он выставляется на минимально возможный диапазон измерений. Если при контакте провода и щупов стрелка прибора находится около нуля, значит, обрыва нет.

Перед тем как померить сопротивление, кроме стандартного теста мультиметра, надо провести еще одно тестирование. Необходима проверка реакции поведения тестера на человеческое тело. Некоторые люди обладают низким сопротивлением. Если держать руками щупы в местах, где нет изоляции, то тестер может решить, что измеряемый участок не разорван. Хотя на самом деле, это будет не так.

Нюансы измерения сопротивления

Измерение сопротивления мультиметром очень похоже на прозвонку проводов, но имеет свои особенности.

В первую очередь проверяемую радиодеталь надо выпаять из электроплаты. Или хотя бы одну ножку. Иначе прибор может замерить общее сопротивление сети, а не конкретной детали. Если проверяемая деталь имеет несколько выводов, то она полностью выпаивается из платы.

Перед тем как выпаивать элемент из платы, ее нужно полностью обесточить, вынуть гальванические батареи, выключатели все выключить и разрядить конденсаторы.

Визуально осматривают, проверяя поверхность корпуса. Сгоревшая деталь (особенно резисторы) часто имеет обгоревшие колечки на корпусе, значительные потемневшие участки, признаки оплавления.

Нужно выставить оптимальный диапазон измерений. Некоторые модели тестеров умеют определять его автоматически.

В случае если точность измерений критична, необходимо учитывать погрешности измерения. Например, если на резисторе написано сопротивление 1кОм (1000 Ом), следует учитывать процент допуска. Этот допуск для резисторов равен 10%. В итоге реальные показатели сопротивления будут колебаться от 900 до 1100 Ом.

Тот же самый резистор, проверенный в диапазоне до 2000кОм, покажет сопротивление равное единице. Но если выставить значения диапазона 2кОм, на дисплее тестера высветится более точное число. Например, 0,97 или 1,02.

В некоторых случаях можно провести измерения, не выпаивая деталь с платы. Это используется только в особых случаях. Необходимо проверить, есть ли в электрической схеме шунтирующие цепи. На показания мультиметра влияют полупроводники.

В этом случае требуется изучить принципиальную схему. Чтобы облегчить поиск проблемных участков и деталей, на электросхемах всегда показаны контрольные точки с соответствующими правильными параметрами.

Недопустимо прикасаться во время измерений сопротивления руками к выводам проверяемого элемента. Результат будет предсказуемо неправильный.

Иногда приходится учитывать так называемое переходное сопротивление. Хвостики радиодеталей, чистый припой могут покрываться со временем оксидной пленкой. Рекомендуется немного очистить место контакта или процарапать игольчатым щупом.

Когда измеряется сопротивление, важно правильно интерпретировать данные. Например, возможен вариант, если значение измерения равно максимальному, выставленному как ограничительный предел. Это может указывать на то, что мультиметр сломался. Впрочем, это редкий вариант развития событий. Скорее всего, предел установлен неправильно, и нужно переключателем на корпусе увеличить его.

При сомнениях в правильности полученных значений желательно измерить величину сопротивления заведомо исправного и подписанного подходящего элемента.

Необходимо регулярно проверять состояние гальванической батареи внутри тестера. Со временем и при активной работе батарея разряжается. На практике это приводит к неточным результатам. К тому же погрешность растет пропорционально разрядке аккумулятора.

Особенности действий при изоляции

Узнать сопротивление обычных проводников и радиодеталей сравнительно просто. В случае с изоляцией есть особенности. Неграмотные действия электрика могут привести к очень плохим последствиям. Важное правило: эти замеры должны проводиться в обогреваемых и теплых помещениях.

Если подобные замеры производить на улице при низкой температуре воздуха, есть большая вероятность образования микроскопических льдинок внутри оплетки кабеля. Поскольку вода — это диэлектрик, ее проводимость минимальная. Мультиметры не смогут распознать эти вкрапления. Если кабель с холодной улицы переместить в теплую комнату, то внутри проводки может появиться влажность.

Собственно, измерение сопротивления изоляции кабеля происходит следующим образом: нужно определить нулевой провод, находящийся в распределительном щитке. В конце нулевого провода устанавливается первый щуп. Второй щуп присоединяется к фазовому кабелю. При выполнении замеров желательно отсоединить концы от клемм. Осталось подобрать правильный предел и увидеть на экране значение сопротивления.

После чего значение сопротивления сравнивается с эталонными параметрами. Они размещены в Правилах устройства электроустановок. В приведенных таблицах указаны значения в зависимости от сечения кабеля, его марки и многих других параметров. Если измеренные данные находятся в допустимом диапазоне согласно таблицам, значит, проводка не нарушена. И проблем нет.

Когда нужно выяснить наличие заземляющего контура в проводке, то есть несколько рекомендаций:

  • В новых домах значение напряжения в цепочке фаза-заземление выше, чем в фаза-нейтраль.
  • Между нулевым кабелем и заземленным возможно небольшое напряжение. Из-за слабого потенциала на нулевом проводе.

В целом измерить сопротивление с помощью современных тестеров несложно. Особенно если это новый цифровой мультиметр. Управление им очень удобно и не требует глубоких профессиональных навыков.

Проверяющему достаточно небольшого набора знаний основ построения электроцепей с уроков физики школьного курса. И конечно же, в любом случае надо соблюдать элементарные требования техники безопасности.

Как проверить резистор (сопротивление) мультиметром (универсальным прибором)

 Если вы занимаетесь радиоэлектроникой или хотя мы немного наслышаны о ней, то наверняка знаете, что такое резистор или как еще их называют сопротивления. В принципе, само слово резистор происходит от английского resist, что и означает сопротивляться. Так чему же сопротивляется наш резистор и как это используется в электроника? А самое главное, как проверить работоспособность этого радиоэлемента? Об этом мы и расскажем в нашей статье.

Резистор что это за радиоэлемент и его основные признаки работоспособности

Резистор можно назвать самым простым радиоэлементом, который  можно встретить в природе. Действительно, все его функции сводятся лишь к тому, чтобы снизить потенциал, то есть он является ограничителем тока и тут же напряжения. Так как эти величины зависят друг от друга. Резистор можно сравнить с узким участком трубы в трубопроводе, когда через него проходил первоначально один объем жидкости, а потом стал проходить гораздо меньший объем. Только здесь в качестве жидкости выступает ток, то есть направленное движение электронов. Как же можно ограничить движения тока?

 Самый простой способ это уменьшить площадь проводника, чтобы, как и в случае с узким участком трубы, не все электроны смогли по нему пройти. В итоге, перед проводником начнется своеобразная «давка», словно в толпе на концерте неформальной группы, и не все электроны пройдут за резистор.

В большинстве случаев резистор конструктивно выполнен следующим образом. Это тонкая нихромовая проволока, намотанная на керамический каркас, либо керамика, в которую включены токопроводящие частички. В первом случае, чем тоньше проволока, тем будет большее сопротивление. Во-втором, чем меньше токопроводящих частичек, тем также выше сопротивление резистора.
 Здесь надо отметить и еще один факт, если наш напор будет чрезмерно сильным, то вместо того, чтобы его ограничить, он разорвет трубопровод. Так и в случае с резистором. Если он перегреется, и проводник будет нарушен, то резистор будет испорчен. Возможность сдерживать перегрев относится к мощности резистора. В итоге, у резистора два главных свойства. Первое это оказывать сопротивление, которое измеряется в Омах. Второе, выдерживать определенный ток. Так как ток проходит в единицу времени, то по сути это возможность рассеивать теплоту за тот же определенный период времени. А все мы знаем, что если что-то совершает какую-то работу в единицу времени, пусть даже просто рассеивает тепло, то эта характеристика называется ничем иным как мощность. Именно эта стойкость резистора к перегоранию, если так можно сказать, будет описываться его мощностью.
 Если же резистор не справится с возложенными на него задачами, не важно по каким причинам, будь то просчет конструктора или нештатные отклонения тока в схеме. В этом случае он просто перегорит. Вначале перегреется, с него слезет красивая краска с полосками или буковками, а далее и вовсе почернеет и станет не похож сам на себя. Вроде того, что представлено на нашем рисунке.

Именно это и можно считать первым косвенным основанием к проверке и замене резистора. Однако, прежде чем проверить резистор необходимо знать, что мы будем проверять, то есть знать какой номинал у него был. Об этом в абзаце далее.

Какие бывают резисторы по маркировке и по мощности

Хорошо если корпус обгорел не до такой степени, что вам все-таки можно еще опознать, что же это был за резистор, то есть на нем осталась какая-либо маркировка, будь то цветовая или символьная.
 Здесь сразу скажем, что в настоящее время символьная маркировка не применяется, это осталось неким анахронизмом с времен СССР. Хотя это удобно. На корпусе можно было бы прочитать маркировку, не обладая какими-либо знаниями и справочниками. Вот скажем сопротивление в 82 Ома.

Сегодня же резисторы маркируются при помощи цветных полос, то есть это такой приятный взгляду радиоэлемент в полосочках. Подробнее о маркировке резисторов можно узнать из нашей статьи «Маркировка корпуса резисторов (сопротивления) и обозначение в схеме».

 Итак, если у вас перегорел резистор и на нем не видно маркировки, то скорее всего вам уже не удастся визуально установить, какой же номинал у него был. Единственным вариантом будет искать схем к ремонтируемому устройству и смотреть там, что же это все-таки было.

 Вторая характеристика это мощность, о ней мы уже начали рассказывать в предыдущем абзаце. Так вот, так как мощность зависит от возможности отдвать тепло, то мощность резистора в большинстве случаев будет зависеть от его рассеиваемой площади. Проще говоря, чем больше корпус резистора, тем он мощнее.

Теперь давайте перейдем непосредственно к теме статьи.

Как проверить резистор (сопротивление) не выпаивая из платы с помощью мультиметра

 Если вам необходимо проверить резистор низкого номинала, то есть на несколько Ом, то выпаивать его не обязательно. В этом случае влияние других цепей от радиоэлементов будет не столько значительным, если даже оно и есть. Так скажем диоды или транзисторы обладают сопротивлением в 500-700 Ом (условно), то есть сопротивления до 100 Ом, можно мерить без проблем. Для верности измерьте сопротивление в одном направлении и в другом, оно должно быть одинаково.
 Измерить сопротивление можно универсальным измерительным прибором – мультиметром. А вот как, мы разберем подробнее в следующих абзацах. Единственное различие, что измеряемый резистор будет выпаян с платы. Все остальные проводимые операции по замеру будут один в один.

Как проверить резистор (сопротивление) с помощью мультиметра если он в килоомах

Итак, если сопротивление уже более значительное, то есть от 200 Ом, то лучше его выпаять, так как проверка его в плате будет не корректна. Может быть, выпаять даже один конец. Этого будет вполне достаточно. Теперь берем прибор и переключаем его на соответствующий режим измерения в Омах. При этом с показателем больше, чем измеряемое сопротивление. То есть можно сделать так, если вы не знаете номинала сопротивления.
 Вначале вы включаете верхний предел в Омах, обычно это 2000 Ом и начинаете переключать галетный переключатель на приборе на понижение, пока отображение будет корректным, то есть не будет равно бесконечности. Ближайший предел «при подходе сверху» отображающий сопротивление на экране прибора, будет отображать самое точное сопротивление резистора.

 Ну, а если не вдумываться, то даже измерение на режиме в 2000 Ом, покажет вполне корректный результат. Ведь современные приборы довольно точные.
Важно сказать о том, что при измерении сопротивления в Омах и килоомах, можно удерживать ножки резистора пальцами, то есть помогать ими обеспечивать контакт с щупом.

Сопротивление нашего тела здесь не будет сильно сказывать на показаниях измерений. Это сродни тому, как в предыдущем абзаце мы говорили о том, что на сопротивление в несколько Ом не будут влиять показания радиоэлементов. Если же сопротивление уже в мегаомах, то здесь придерживать руками щупы нельзя. Об этом далее.

Как проверить резистор (сопротивление) с помощью мультиметра если он в мегаомах

Если у вас резистор в мегаомах (мОм), то мало того что здесь придется использовать уже соответствующий режим, все в тех же мегаомах. Так еще и нельзя браться за ножки резистора руками, то есть помогать обеспечивать контакт ножек резистора с щупом. Все дело в том, что сопротивление от руки до руки у человека около 1,5 мОма, а значит ваше внутренне сопротивление, будет измеряться наряду с сопротивлением резистора, чего происходить не должно.

 Все остальные измерения, о чем мы уже говорили, производятся также как и для случая выше, то есть с Омами и килоомами.

Заключение о процедуре проверки резистора (сопротивления) с помощью мультиметра

Подытожить нашу статью хотелось бы банальными догмами.
 Если у вас тело резистора темное и черной, с отслоившейся краской, то скорее он всего перегорел. В этом случае его сопротивление будет равно бесконечности.
 В случае проверки сопротивления в Омах, его не обязательно выпаивать из платы. В этом случае проверка будет, скорее всего, корректной и на плате.
 Сопротивление в килоомах необходимо выпаивать, хотя бы одним выводом из платы. Но здесь есть плюс, щуп можно удерживать у ножки сопротивления с помощью пальцев рук.
 Сопротивление в мегаомах мало того что надо выпаивать, для корректного измерения, так здесь еще необходимо будет обеспечивать непосредственный контакт щуп мультиметра – ножка резистора, без помощи рук. Такая необходимость продиктована требованием исключить влияние вашего внутреннего сопротивление на измеряемые резистор в мегаомах.

Как проверить резистор мультиметром на исправность, как прозвонить резистор?

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Переменный резистор

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Как проверить резистор мультиметром на исправность: инструкция

Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

Рис. 3. Пример расшифровки номинала SMD резистора

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:

  1. Подключаем щупы, так как на предыдущем тестировании.
  2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К». Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
  3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

Все тонкости проверки резистора мультиметром

Резисторы достаточно распространены и встречаются практически во всех электроприборах. Основная характеристика их – номинальное сопротивление. Для того чтобы узнать, годен ли элемент, нужно знать, как проверить резистор мультиметром. Работа с мультиметром также помогает определить многие неполадки в схеме.

Проверка тестером

Обычный мультиметр (тестер), используемый в быту, сможет стать незаменимым помощником. Вне зависимости от типа устройства, с его помощью можно проводить комплексную диагностику схем и деталей. Надо всего лишь знать, как правильно применять настройки прибора.

Для того чтобы проверить, исправна ли деталь, потребуется отсоединить устройство, в котором она установлена, от источника питания (сети или батареи). После из резистора нужно будет выпаять вывод. Некоторые элементы можно снять с платы, не выпаивая. Важно удалить резистор, потому что, находясь в плате, он может передавать напряжение соседнего участника цепи, и определить исправность интересующего элемента будет нельзя.

Сопротивление резистора небольшое, из-за чего, если проверять его в плате, оно не всегда заметно.

Внешний осмотр

Внешний осмотр часто дает положительные результаты, так как позволяет без проверки мультиметром установить неисправность резистора. Если деталь перегорела, не имеет смысла ее ремонтировать: обычно резистор меняют на новый. Случаи, когда требуется замена, бывают следующие.

Одна из ножек резистора была оторвана. Чаще всего обрыв ножки происходит при постоянном перегреве элемента. Это случается, если в схему не включена защита, или по каким-то причинам она не срабатывает.

Мультиметр может показать, что резистор способен оказывать сопротивление, но при этом визуально заметно, что он обуглен. Такой элемент не стоит оставлять в схеме и рекомендуется заменить, так как он все равно не прослужит долго. То же самое касается других деталей, покрытие которых потемнело.

Если корпус не цельный, имеет трещины, при прикосновении разламывается на части, то резистор, скорее всего, не будет работать.

Для того чтобы можно было точно проверить исправность элемента, необходимо знать его номинальное сопротивление. В противном случае проверить можно будет лишь целостность детали и ее способность проводить ток.

Какие установить настройки

Прежде чем снимать показания мультиметромом, необходимо убедиться в том, что его аккумуляторы заряжены. Режим нужно выбрать соответствующий «прозвону» электропроводки, концы щупов мыкают (соприкасают) друг с другом. Прибор будет издавать звуки, по громкости которых можно определить, насколько пригодна его батарейка.

В зависимости от модификации прибора режим прозвона может обозначаться разными символами – встречается колокольчик, точка со скобками (радиоволны). При проверке электрических цепей или радиодеталей мультиметр издает определенные звуки, «звонит», отсюда и сленговое название данной операции.

Для того чтобы проверить резистор с помощью мультиметра, нужно поставить переключатель прибора в положение, соответствующее номинальному сопротивлению элемента, который вы собираетесь проверять. Значения нанесены на переднюю панель устройства, можно различить их градацию по диапазонам. Нужно правильно выбрать диапазон, иначе величина сопротивления не совпадет, и результат проверки не будет достоверным. Например, при сопротивлении 1 кОм прибор нужно ставить в режим Ω – 20 кОм.

Для того чтобы проверить радиодеталь, щупы прибора подносят к ее выводам вне зависимости от того, соблюдена полярность или нет.

Как проверить схему на обрыв цепи

Этот вид проверки является самым простым. Когда определить неисправность при помощи визуального осмотра не получается, можно сразу приступать к использованию мультиметра. Обрыв цепи происходит по разным причинам. Чаще всего виной тому сгоревший слой проволоки, реже – заводской брак.

Для того чтобы найти разрыв, нужно поставить переключатель прибора в режим прозванивания. Если прибор издает звуки, резистор исправен, если нет, то его следует заменить.

Проверка номинального сопротивления

Если на исправность резистор проверить довольно просто, то для того чтобы вычислить его номинальное сопротивление, необходимо переключить прибор в режим, обозначенный Ω. Предел должен соответствовать вашему резистору.

Нужные величины прибор либо показывает стрелкой, либо отображает на дисплее цифры, в зависимости от модификации устройства. Понять данные несложно.

Что может пригодиться

Резистор – надежная деталь. Обычно он не выходит из строя, если прибор эксплуатировался правильно: не подвергался воздействию жары, влаги, других неприятных для схем условий. Для экономии времени тестирование элементов схемы начинают не с определенного резистора, так как он редко выходит из строя, а с других радиодеталей. Например, чаще перегорают полупроводники или индуктивности, поэтому начинать проверку рекомендуется с них. Это поможет сэкономить время.

Порядка, в котором следует проверять те или иные схемы, не существует. Вы можете начинать с любого элемента, который кажется вам подозрительным или находится ближе. Резисторы могут иметь определенные отклонения от номинала. Их требуется знать: обычно эти параметры указываются заводом-изготовителем. Чем меньше отклонения, тем точнее сделана деталь, значит, ее стоимость будет выше.

Несмотря на то, что проверить резистор мультиметром достаточно легко, следует знать следующее:

  • перед началом работы с прибором внимательно изучите инструкцию к нему, производители часто совершенствуют мультиметры, меняют их функционал и управление;
  • узнайте технические характеристики мультиметра;
  • проверьте, правильно ли выставлены настройки;
  • проверьте, в каком состоянии батарейки.

Реальная величина сопротивления элемента может значительно отличаться от заявленной, так, например, допустимое отклонение в большую или меньшую сторону может составлять до 10%.

Для того чтобы узнать исходные данные детали, которая проверяется, рекомендуют воспользоваться схемой, прилагаемой к прибору. Если показания мультиметра сильно отличаются от положенного для проверяемого резистора, то, скорее всего, перед вами либо несправный прибор, либо резистор, сопротивление которого является крайней формой отклонения от нормы. Сопротивление резистора наносят на его корпус. Если на нем написано 150 Ом, а ваш мультиметр показывает 165, не стоит пугаться. Это нормальное расхождение данных, так как характеристика имеет допустимые отклонения.

Применение таблиц

Современные схемы вообще могут не включать номинал резистора. Чтобы узнать исходные данные, требуется воспользоваться таблицей с характеристиками распространенных сопротивлений. На плате элемент может иметь собственное обозначение, например, R18. Нужно найти позицию в таблице с аналогичным буквенным и цифирным значением. Там будет виден тип резистора, его номинальное сопротивление, отклонения, которые считаются допустимыми. Помогает цветовая маркировка, присутствующая на корпусе детали, поэтому желательно научится ею пользоваться.

Обратите внимание, что если предел Ом выставлен, ваше собственное тело может повлиять на неточность результата. Для того чтобы такой проблемы не было, при работе не касайтесь металлических частей схемы и щупов прибора.

Ручки мультиметра должны быть изготовлены из пластика, кроме этого, их можно обмотать изолентой.

Зная, как правильно пользоваться мультиметром, вы без труда сможете проверить на исправность любую радиодеталь, и затратить на это всего пару минут.

Резистор. Параметры резисторов.

Его параметры и обозначение на схеме

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов.

  • Номинальное сопротивление.

    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.

  • Рассеиваемая мощность.

    Более подробно о мощности резистора я уже писал здесь.

    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.

    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.

    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.

  • Допуск.

    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.

    Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.

    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.

    Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.

    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.

    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.

  • Температурный коэффициент сопротивления (ТКС).

    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.

    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)

  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)

  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования.

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как определить мощность резистора. | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.

Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством. В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим комментариям, этот параметр был раскрыт не полностью. В этой статье я постараюсь устранить этот пробел.

Итак. Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.

Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.

Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».

Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.

На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.

Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.

Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.

Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.

Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.

Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.

А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.

Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.

И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.

И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.

Удачи!

Как рассчитать и понять номиналы резисторов — Kitronik Ltd

Резисторы

Резистор — это устройство, которое препятствует прохождению электрического тока. Чем больше номинал резистора, тем сильнее он противодействует току. Величина резистора выражается в омах и часто называется его «сопротивлением».

Определение номиналов резистора

Цвет полосы 1-я полоса 2-й диапазон Множитель x Допуск
Серебро ÷ 100 10%
Золото ÷ 10 5%
Черный 0 0 1
Коричневый 1 1 10 1%
Красный 2 2 100 2%
Оранжевый 3 3 1000
Желтый 4 4 10 000
зеленый 5 5 100 000
Синий 6 6 1 000 000
фиолетовый 7 7
серый 8 8
Белый 9 9

Пример: Полоса 1 = Красный, Полоса 2 = Фиолетовый, Полоса 3 = Оранжевый, Полоса 4 = Золото
Значение этого резистора будет:
2 (Красный) 7 (Фиолетовый) x1000 (Оранжевый)
= 27 x 1000
= 27000 с допуском 5% (золото)
= 27 кОм

Слишком много нулей?
Можно использовать
кОм и мегаом:
1000 Ом = 1 кОм
1000 кОм = 1 МОм


Задача идентификации резистора

Рассчитайте номиналы резисторов, указанные в полосах, показанных ниже.Диапазон допуска игнорируется.
1-я полоса 2-й диапазон Множитель x Значение
Коричневый Черный Желтый
зеленый Синий Коричневый
Коричневый Серый Желтый
Оранжевый Белый Черный

Расчет маркировки резистора

Рассчитайте, какими будут цветовые полосы для следующих номиналов резисторов.
Значение 1-я полоса 2-й диапазон Множитель x
180 Ом
3900 Ом
47000 Ом (47 кОм)
1000000 Ом (1 МОм)

Что означает терпимость?

У резисторов всегда есть допуск, но что это значит? Это относится к точности, с которой он был изготовлен.Например, если вы должны были измерить сопротивление резистора с золотым допуском, вы можете гарантировать, что измеренное значение будет в пределах 5% от заявленного значения. Допуски важны, если точность номинала резисторов критична для рабочих характеристик конструкции.

Предпочтительные значения

Для резисторов существует ряд различных диапазонов значений. Два самых популярных — E12 и E24. Они учитывают производственный допуск и выбираются таким образом, чтобы было минимальное перекрытие между верхним возможным значением первого значения в серии и наименьшим возможным значением следующего.Следовательно, в диапазоне допуска 10% меньше значений.
Допуск сопротивления E-12 (± 10%)
10 12 15 18 22 27 33 39 47 56 68 82
Допуск сопротивления E-24 (± 5%)
10 11 12 13 15 16 18 20 22 24 27 30
33 36 39 43 47 51 56 62 68 75 82 91

ответов

Обозначение резистора

1-я полоса 2-й диапазон Множитель x Значение
Коричневый Черный Желтый 100000 Ом
зеленый Синий Коричневый 560 Ом
Коричневый Серый Желтый 180000 Ом
Оранжевый Белый Черный 39 Ом

Маркировка резистора

Значение 1-я полоса 2-й диапазон Множитель x
180 Ом Коричневый Серый Коричневый
3900 Ом Оранжевый Белый Красный
47000 Ом (47 кОм) Желтый фиолетовый Оранжевый
1000000 Ом (1 МОм) Коричневый Черный Зеленый
Загрузите версию этой страницы в формате pdf. Узнать больше об авторе подробнее »Если вы нашли эту статью полезной и хотели бы получать от нас обновления продуктов и бесплатные электронные ресурсы, зарегистрируйтесь здесь.Мы также ненавидим спам и обещаем никогда не продавать и не сообщать свой адрес электронной почты, и вы можете отказаться от подписки в любое время.

© Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

Резисторы

— learn.sparkfun.com

Добавлено в избранное Любимый 48

Примите стойку, стойкость сопротивления

Резисторы — самые распространенные электронные компоненты.Они являются важной частью практически каждой цепи. И они играют важную роль в нашем любимом уравнении — законе Ома.

В этом разделе résistance мы рассмотрим:

  • Что такое резистор ?!
  • Резисторные блоки
  • Обозначение цепи резистора
  • Последовательные и параллельные резисторы
  • Различные варианты резисторов
  • Цветовое кодирование расшифровка
  • Расшифровка резистора поверхностного монтажа
  • Пример применения резистора

Считайте чтение…

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


Хотите попробовать резисторы?

и nbsp

и nbsp

Основы резистора

Резисторы — это электронные компоненты, которые обладают постоянным постоянным электрическим сопротивлением. Сопротивление резистора ограничивает поток электронов через цепь.

Это пассивные компоненты , то есть они только потребляют энергию (и не могут ее генерировать). Резисторы обычно добавляются в схемы, где они дополняют активные компоненты , такие как операционные усилители, микроконтроллеры и другие интегральные схемы. Обычно резисторы используются для ограничения тока, деления напряжений и подтягивания линий ввода / вывода.

Блоки резисторов

Электрическое сопротивление резистора измеряется в Ом . Символ ома — греческая заглавная буква омега: & ohm ;.(Несколько окольным) определение 1 & ohm; — это сопротивление между двумя точками, где 1 вольт (1 В) приложенной потенциальной энергии будет подталкивать 1 ампер (1 А) тока.

В единицах СИ большие или меньшие значения Ом могут быть сопоставлены с префиксом, например, кило-, мега- или гига-, чтобы облегчить чтение больших значений. Очень часто можно увидеть резисторы в диапазоне килоом (кОм;) и мегаом (М & Ом;) (гораздо реже можно увидеть резисторы в миллиомах (м & ом;)). Например, 4,700 Ом; резистор эквивалентен 4.7к & Ом; резистор и 5,600,000 Ом; резистор можно записать как 5,600 кОм; или (чаще) 5.6M & ohm ;.

Условное обозначение

Все резисторы имеют две клеммы, , по одной клемме на каждом конце резистора. При моделировании на схеме резистор отображается как один из этих двух символов:

Два общих условных обозначения резистора. R1 — это 1 кОм в американском стиле; резистор, а R2 — международный 47кОм; резистор.

Клеммы резистора — это каждая из линий, идущих от волнистой линии (или прямоугольника). Это то, что подключается к остальной части схемы.

Обозначения схемы резистора обычно дополняются значением сопротивления и именем. Значение, отображаемое в омах, очевидно, имеет решающее значение как для оценки, так и для фактического построения схемы. Название резистора обычно — R перед числом. Каждый резистор в цепи должен иметь уникальное имя / номер.Например, вот несколько резисторов в цепи таймера 555:

В этой схеме резисторы играют ключевую роль в установке частоты на выходе таймера 555. Другой резистор (R3) ограничивает ток через светодиод.


Типы резисторов

Резисторы

бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.

Прерывание и монтаж

Резисторы

будут иметь один из двух типов оконечной нагрузки: сквозное отверстие или поверхностный монтаж. Эти типы резисторов обычно обозначаются аббревиатурой PTH (сквозное отверстие с гальваническим покрытием) или SMD / SMT (технология или устройство для поверхностного монтажа).

Резисторы со сквозным отверстием поставляются с длинными гибкими выводами, которые можно вставить в макет или вручную припаять к макетной плате или печатной плате (PCB). Эти резисторы обычно более полезны при макетировании, прототипировании или в любом другом случае, когда вы не хотите паять крошечные, маленькие 0.Резисторы SMD длиной 6 мм. Длинные выводы обычно требуют обрезки, и эти резисторы неизбежно занимают гораздо больше места, чем их аналоги для поверхностного монтажа.

Наиболее распространенные сквозные резисторы поставляются в аксиальном корпусе. Размер осевого резистора зависит от его номинальной мощности. Обычный резистор ½ Вт имеет диаметр около 9,2 мм, тогда как резистор меньшей Вт имеет длину около 6,3 мм.

Резистор мощностью полуватта (½Вт) (вверху) мощностью до четверти ватта (Вт).

Резисторы для поверхностного монтажа обычно представляют собой крошечные черные прямоугольники, оканчивающиеся с обеих сторон еще меньшими, блестящими, серебряными, проводящими краями.Эти резисторы предназначены для установки на печатных платах, где они припаяны к ответным посадочным площадкам. Поскольку эти резисторы настолько малы, их обычно устанавливает робот и отправляет через печь, где припой плавится и удерживает их на месте.

Крошечный 0603 330 & Ом; резистор, парящий над блестящим носом Джорджа Вашингтона на вершине [США квартал] (http://en.wikipedia.org/wiki/Quarter_ (United_States_coin).

Резисторы SMD

бывают стандартных размеров; обычно либо 0805 (0.08 «в длину на 0,05» в ширину), 0603 или 0402. Они отлично подходят для массового производства печатных плат или в конструкциях, где пространство является драгоценным товаром. Однако для ручной пайки им нужна твердая и точная рука!

Состав резистора

Резисторы

могут быть изготовлены из различных материалов. Чаще всего современные резисторы изготавливаются из углеродной, металлической или металлооксидной пленки . В этих резисторах тонкая пленка проводящего (хотя и резистивного) материала намотана спиралью вокруг и покрыта изоляционным материалом.Большинство стандартных простых сквозных резисторов имеют углеродную или металлическую пленку.

Загляните внутрь нескольких резисторов из углеродной пленки. Значения сопротивления сверху вниз: 27 Ом, 330 Ом; и 3,3 МОм. Внутри резистора углеродная пленка обернута вокруг изолятора. Чем больше обертываний, тем выше сопротивление. Довольно аккуратно!

Другие сквозные резисторы могут быть намотаны проволокой или изготовлены из сверхтонкой металлической фольги.Эти резисторы обычно являются более дорогими, более дорогими компонентами, специально выбранными из-за их уникальных характеристик, таких как более высокая номинальная мощность или максимальный температурный диапазон.

Резисторы для поверхностного монтажа обычно бывают толстыми или тонкопленочными . Толстая пленка обычно дешевле, но менее точна, чем тонкая. В обоих типах резисторов небольшая пленка из резистивного металлического сплава помещается между керамической основой и стеклом / эпоксидным покрытием, а затем соединяется с концевыми токопроводящими краями.

Пакеты специальных резисторов

Существует множество других резисторов специального назначения. Резисторы могут поставляться в предварительно смонтированных пакетах из пяти или около того резисторных матриц. Резисторы в этих массивах могут иметь общий вывод или быть настроены как делители напряжения.

Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце.

Переменные резисторы (например, потенциометры)

Резисторы

также не обязательно должны быть статичными. Переменные резисторы, известные как реостаты , представляют собой резисторы, значения которых можно регулировать в определенном диапазоне.Аналогичен реостату потенциометр . Горшки соединяют два резистора внутри последовательно, и регулируют центральный отвод между ними, создавая регулируемый делитель напряжения. Эти переменные резисторы часто используются для входов, например регуляторов громкости, которые необходимо регулировать.


Маркировка декодирующего резистора

Хотя они могут не отображать свое значение сразу, большинство резисторов имеют маркировку, показывающую их сопротивление. Резисторы PTH используют систему цветовой кодировки (которая действительно добавляет немного изюминки схемам), а резисторы SMD имеют свою собственную систему маркировки значений.

Расшифровка цветных полос

Осевые резисторы со сквозным отверстием обычно используют систему цветных полос для отображения своего значения. Большинство из этих резисторов будут иметь четыре цветных полосы, окружающие резистор, хотя вы также найдете пять полосных и шесть полосных резисторов.

Четырехполосный резистор

В стандартных четырехполосных резисторах первые две полосы обозначают две старшие цифры номинала резистора. Третья полоса — это весовое значение, при котором умножает две значащие цифры на десять.

Последняя полоса указывает допуск резистора. Допуск объясняет, насколько более или менее фактическое сопротивление резистора можно сравнить с его номинальным значением. Ни один резистор не может быть доведен до совершенства, и различные производственные процессы приведут к лучшим или худшим допускам. Например, 1 кОм; резистор с допуском 5% на самом деле может быть где-то между 0,95 кОм; и 1.05кОм ;.

Как определить, какая группа первая и последняя? Последний диапазон допусков часто четко отделен от диапазонов значений, и обычно это либо серебро, либо золото.

Пяти- и шестиполосные резисторы

Пятиполосные резисторы имеют третью полосу значащих цифр между первыми двумя полосами и полосой умножителя . Пятиполосные резисторы также имеют более широкий диапазон допусков.

Шестиполосные резисторы — это, по сути, пятиполосные резисторы с дополнительной полосой на конце, которая указывает температурный коэффициент. Это указывает на ожидаемое изменение номинала резистора при изменении температуры в градусах Цельсия. Обычно эти значения температурного коэффициента чрезвычайно малы, в диапазоне ppm.

Цветные полосы резистора декодирования

При расшифровке цветовых полос резисторов обратитесь к таблице цветовых кодов резисторов, подобной приведенной ниже. Для первых двух полос найдите соответствующее цифровое значение этого цвета. 4,7 кОм; Резистор, показанный здесь, имеет в начале цветные полосы желтого и фиолетового цветов, которые имеют числовые значения 4 и 7 (47). Третья полоса 4,7 кОм; красный, что означает, что 47 следует умножить на 10 2 (или 100). 47 умножить на 100 — это 4700!

4.7к & Ом; резистор с четырьмя цветными полосами

Если вы пытаетесь сохранить код цветовой полосы в памяти, может помочь мнемоническое устройство. Существует несколько (иногда сомнительных) мнемоник, которые помогают запомнить цветовую кодировку резистора. Хороший, который раскрывает разницу между b Отсутствие и b rown:

« B ig b rown r abbits o ften y ield g reat b IG v ocal g roans inger 9018 g19 napped 907 .«

Или, если вы помните «ROY G. BIV», вычтите индиго (бедный индиго, никто не помнит индиго) и добавьте черный и коричневый к лицевой стороне и серый и белый к задней части классической цветовой схемы радуги. .

Таблица цветов резистора

Проблемы со зрением? Щелкните изображение для лучшего просмотра!

Калькулятор цветового кода резистора

Если вы предпочитаете пропустить математику (мы не будем судить!) И просто воспользуетесь удобным калькулятором, попробуйте один из них!

Четырехполосный резистор
Лента 1 Лента 2 Лента 3 Лента 4
Значение 1 (MSV) Значение 2 Вес Допуск
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%)

Сопротивление: 1 кОм; ± 5%

Пяти- и шестиполосные резисторы
Примечание: Рассчитайте здесь свой шестиполосный резистор, но не забудьте добавить температурный коэффициент к окончательному значению резистора.
Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4 Диапазон 5
Значение 1 (MSV) Значение 2 Значение 3 Вес Допуск
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%) Коричневый (± 1%) Красный (± 2%) Зеленый (± 0.5%) Синий (± 0,25%) Фиолетовый (± 0,1%) Серый (± 0,05%)

Сопротивление: 1 кОм; ± 5%

Расшифровка маркировки для поверхностного монтажа

Резисторы SMD

, как и в корпусах 0603 или 0805, имеют собственный способ отображения своего значения. Есть несколько распространенных методов маркировки этих резисторов. Обычно на корпусе печатается от трех до четырех символов — цифр или букв.

Если три символа, которые вы видите, это все числа , вы, вероятно, смотрите на резистор с маркировкой E24 .Эти маркировки на самом деле имеют некоторое сходство с системой цветных полос, используемой на резисторах PTH. Первые два числа представляют собой первые две наиболее значимые цифры значения, последнее число представляет величину.

На изображении выше в качестве примера резисторы обозначены 104 , 105 , 205 , 751 и 754 . Резистор с маркировкой 104 должен быть 100 кОм; (10×10 4 ), 105 будет 1M & Ом; (10×10 5 ) и 205 составляет 2M & Ом; (20×10 5 ). 751 — 750 Ом; (75×10 1 ) и 754 составляет 750 кОм; (75×10 4 ).

Еще одна распространенная система кодирования — E96 , и она самая загадочная из всех. Резисторы E96 будут обозначены тремя символами — двумя цифрами в начале и буквой в конце. Два числа сообщают вам первые три цифр значения, соответствуя одному из не столь очевидных значений в этой таблице поиска.


9001 1205
Код Значение
Код Значение Код Значение Значение
Код Значение
Код Значение
01 100
17 147

49 316
65 464
81681
02 102
18 150
34 221
50 324
66 475
82 698
03 105
19 154
35 226
332
67 487
83 715
04 107
20 158
36 232
36 232
52 340
68 499
84 732
05 110
21 162
37 237
53 348
69 511 90 014
85 750
06 113
22 165
38 243
54 357
523
86 768
07 115
23 169
39 249
556 71 536
87 787
08 118
24 174
40 255
56
72 549
88 8 06
09 121
25 178
41 261
57 383
73 562
89 825
10 124
26 182
42 267
58 392
74 576 90 845
11 127
27 187
43 274
59 402
75 590
91 866
12 130
28 191
44 ​​ 280
60 412
76 604
92 887
133
29 196
45 287
61 422
77 619
9314 909
14 137
30 200
46 294
62 432
78 634
94 931
15 140
31
47 301
63 442
79 649
95 953
16 143 9016 32 210
48 309
64 453
80 665
96 976

Буква в конце представляет множитель, соответствующий чему-то в этой таблице:

11
Letter Множитель Letter Множитель Letter Множитель
001 A 1 D 1000
Y или R 0,01 B или H 10 E 10000
X или S 0,1 C 100 F 100000

Итак, резистор 01C — наш хороший друг, 10 кОм; (100×100), 01B — 1 кОм; (100×10), а 01D — 100 кОм.Это просто, другие коды могут не быть. 85A на картинке выше — 750 Ом; (750×1) и 30C на самом деле составляет 20 кОм.


Номинальная мощность

Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.

Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Тепло обычно не лучший друг для электроники; слишком много тепла приводит к дыму, искрам и пожару!

Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.

Определение номинальной мощности резистора

Номинальная мощность резистора обычно определяется по размеру его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Резисторы мощности более специального назначения могут указывать свою номинальную мощность на резисторе.

Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.

О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

Измерение мощности на резисторе

Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

Или, если нам известно напряжение на резисторе, мощность можно рассчитать как:


Серия

и параллельные резисторы

Резисторы постоянно соединяются вместе в электронике, обычно в последовательной или параллельной схеме. Когда резисторы объединяются последовательно или параллельно, они создают общее сопротивление , которое можно рассчитать с помощью одного из двух уравнений.Знание того, как сочетаются значения резисторов, пригодится, если вам нужно создать конкретное значение резистора.

Резисторы серии

При последовательном соединении значения резисторов просто складываются.

резисторов Н. Общее сопротивление — это сумма всех последовательных резисторов.

Так, например, если у вас всего , нужно иметь , 12,33 кОм; резистор, найдите некоторые из наиболее распространенных номиналов резисторов 12 кОм; и 330 Ом, и соединить их последовательно.

Параллельные резисторы

Найти сопротивление параллельно включенных резисторов не так-то просто. Суммарное сопротивление резисторов Н и , включенных параллельно, является обратной суммой всех обратных сопротивлений. Это уравнение может иметь больше смысла, чем последнее предложение:

резисторов Н, включенных параллельно. Чтобы найти общее сопротивление, инвертируйте каждое значение сопротивления, сложите их, а затем инвертируйте.

(Сопротивление, обратное сопротивлению, на самом деле называется проводимостью , так что короче: проводимость параллельных резисторов является суммой каждой из их проводимостей).

В качестве частного случая этого уравнения: если у вас только два резистора , подключенных параллельно, их полное сопротивление может быть вычислено с помощью этого чуть менее инвертированного уравнения:

В качестве даже , более особого случая этого уравнения, если у вас есть два параллельных резистора с равным значением , общее сопротивление составляет половину их значения. Например, если два 10k & ohm; резисторы включены параллельно, их полное сопротивление 5кОм.

Сокращенно сказать, что два резистора подключены параллельно, можно с помощью оператора параллельности: || .Например, если R 1 находится параллельно с R 2 , концептуальное уравнение может быть записано как R 1 || R 2 . Намного чище и скрывает все эти неприятные фракции!

Резисторные сети

В качестве специального введения в вычисление полного сопротивления, учителя электроники любят , когда их ученики исследуют сумасшедшие, запутанные резистивные сети.

Приручить резисторный сетевой вопрос может быть что-то вроде: «какое сопротивление между выводами A, и B в этой цепи?»

Чтобы решить такую ​​проблему, начните с задней части схемы и упростите ее по направлению к двум клеммам.В этом случае 7 рандов, 8 рандов и 9 рандов идут последовательно и могут складываться вместе. Эти три резистора включены параллельно с R 6 , поэтому эти четыре резистора можно превратить в один с сопротивлением R 6 || (R 7 + R 8 + R 9 ). Делаем нашу схему:

Теперь четыре крайних правых резистора можно упростить еще больше. R 4 , R 5 и наша конгломерация R 6 — R 9 все последовательно и могут быть добавлены.Тогда все эти последовательные резисторы подключены параллельно R 3 .

И это всего лишь три последовательных резистора между клеммами A и B . Добавьте их! Таким образом, общее сопротивление этой цепи составляет: 1 + 2 + 3 || ( 4 + 5 R 6 || ( 7 + R 8 + Р 9 )).


Примеры приложений

Резисторы

присутствуют практически во всех электронных схемах.Вот несколько примеров схем, которые сильно зависят от наших друзей-резисторов.

Резисторы

— это ключ к тому, чтобы светодиоды не взорвались при подаче питания. Посредством соединения резистора последовательно со светодиодом ток, протекающий через два компонента, может быть ограничен до безопасного значения.

При выборе токоограничивающего резистора обратите внимание на два характерных значения светодиода: типичное прямое напряжение и максимальный прямой ток .Типичное прямое напряжение — это напряжение, необходимое для включения светодиода, и оно варьируется (обычно где-то между 1,7 В и 3,4 В) в зависимости от цвета светодиода. Максимальный прямой ток обычно составляет около 20 мА для основных светодиодов; непрерывный ток через светодиод всегда должен быть равен или меньше этого номинального тока.

После того, как вы получили эти два значения, вы можете подобрать токоограничивающий резистор с помощью следующего уравнения:

В S — это напряжение источника — обычно напряжение батареи или источника питания.V F и I F — это прямое напряжение светодиода и желаемый ток, который проходит через него.

Например, предположим, что у вас есть батарея на 9 В для питания светодиода. Если ваш светодиод красный, то прямое напряжение может быть около 1,8 В. Если вы хотите ограничить ток до 10 мА, используйте последовательный резистор примерно 720 Ом.

Делители напряжения

Делитель напряжения представляет собой схему резистора, которая преобразует большое напряжение в меньшее. Используя всего два последовательно подключенных резистора, можно создать выходное напряжение, составляющее часть входного напряжения.

Вот схема делителя напряжения:

Два резистора, R 1 и R 2 , подключены последовательно, и источник напряжения (V в ) подключен через них. Напряжение от В на выходе до GND можно рассчитать как:

Например, если R 1 было 1,7 кОм; и R 2 составлял 3,3 кОм, входное напряжение 5 В можно было преобразовать в 3,3 В на выводе V out .

Делители напряжения

очень удобны для считывания показаний резистивных датчиков, таких как фотоэлементы, датчики изгиба и силочувствительные резисторы.Одна половина делителя напряжения — это датчик, а часть — статический резистор. Выходное напряжение между двумя компонентами подается на аналого-цифровой преобразователь на микроконтроллере (MCU) для считывания значения датчика.

Здесь резистор R 1 и фотоэлемент создают делитель напряжения для создания переменного выходного напряжения.

Подтягивающие резисторы

Подтягивающий резистор используется, когда вам нужно смещать входной вывод микроконтроллера в известное состояние.Один конец резистора подключен к выводу MCU, а другой конец подключен к высокому напряжению (обычно 5 В или 3,3 В).

Без подтягивающего резистора входы на MCU можно оставить плавающими . Нет гарантии, что на плавающем контакте высокий (5 В) или низкий (0 В) вывод.

Подтягивающие резисторы часто используются при взаимодействии с входом кнопки или переключателя. Подтягивающий резистор может смещать входной контакт, когда переключатель разомкнут. И это защитит цепь от короткого замыкания при замкнутом переключателе.

В приведенной выше схеме, когда переключатель разомкнут, входной вывод MCU подключен через резистор к 5 В. Когда переключатель замыкается, входной контакт подключается непосредственно к GND.

Обычно значение подтягивающего резистора не обязательно должно быть каким-либо конкретным. Но он должен быть достаточно высоким, чтобы не терять слишком много мощности, если к нему приложить 5 В или около того. Обычно значения около 10 кОм; работать хорошо.


Покупка резисторов

Не ограничивайте количество резисторов.У нас есть наборы, пакеты, отдельные детали и инструменты, которым вы просто не можете противостоять , .

Наши рекомендации:

Щелкните здесь, чтобы просмотреть больше резисторов в каталоге
инструментов:

Цифровой мультиметр — базовый

В наличии TOL-12966

Цифровой мультиметр (DMM) — незаменимый инструмент в арсенале каждого энтузиаста электроники.Цифровой мультиметр SparkFun, h…

21 год

Инструмент для гибки выводов резистора

В наличии ТОЛ-13114

Этот маленький кусочек пластика с зазубринами — инструмент для гибки выводов резистора. Этот маленький…

3

Ресурсы и дальнейшее развитие

Теперь, когда вы начинающий эксперт по резисторам, как насчет изучения некоторых более фундаментальных концепций электроники! Резисторы, конечно, не единственный базовый компонент, который мы используем в электронике, есть еще:

Или, может быть, вы хотите подробнее изучить применение резисторов?

Как пользоваться мультиметром

Добавлено в избранное Любимый 56

Измерение сопротивления

Нормальные резисторы имеют цветовую маркировку.Если вы не знаете, что они означают, ничего страшного! Существует множество простых в использовании онлайн-калькуляторов. Однако, если вы когда-нибудь окажетесь без доступа в Интернет, мультиметр очень удобен для измерения сопротивления.

Выберите случайный резистор и установите на мультиметре значение 20 кОм. Затем прижмите щупы к ножкам резистора с таким же усилием, как при нажатии клавиши на клавиатуре.

Измеритель покажет одно из трех значений: 0,00 , 1 или фактическое значение резистора .

  • В этом случае измеритель показывает 0,97, что означает, что этот резистор имеет значение 970 Ом или около 1 кОм (помните, что вы находитесь в режиме 20 кОм или 20000 Ом, поэтому вам нужно переместить десятичную запятую на три разряда вправо или 970 Ом. ).

  • Если мультиметр показывает 1 или отображает OL , значит, он перегружен. Вам нужно будет попробовать более высокий режим, такой как режим 200 кОм или режим 2 МОм (мегаом). В этом нет ничего страшного, это просто означает, что необходимо отрегулировать ручку диапазона.

  • Если мультиметр показывает 0,00 или почти ноль, то вам необходимо понизить режим до 2 кОм или 200 Ом .

Помните, что многие резисторы имеют допуск 5%. Это означает, что цветовой код может указывать на 10 000 Ом (10 кОм), но из-за несоответствий в производственном процессе резистор 10 кОм может быть от 9,5 кОм или до 10,5 кОм. Не волнуйтесь, он отлично подойдет как подтягивающий или общий резистор.

Давайте опустим измеритель до следующего минимального значения, 2 кОм.Что случается?

Не так много изменилось. Поскольку этот резистор (1 кОм) меньше 2 кОм, он все равно отображается на дисплее. Однако вы заметите, что после десятичной запятой есть еще одна цифра, что дает нам немного более высокое разрешение при чтении. А как насчет следующего минимального значения?

Теперь, так как 1k & ohm; больше 200 Ом, мы достигли максимального значения счетчика, и он сообщает вам, что он перегружен и вам нужно попробовать установить более высокое значение.

Как показывает практика, резистор менее 1 Ом можно встретить редко. Помните, что измерение сопротивления не идеально. Температура может сильно повлиять на показания. Кроме того, измерение сопротивления устройства, когда оно физически установлено в цепи, может быть очень сложной задачей. Окружающие компоненты на печатной плате могут сильно повлиять на показания.



← Предыдущая страница
Измерение напряжения Резисторы

| Electronics Club

Резисторы | Клуб электроники

Цветовой код | Толерантность | Серия E6 / E12 | Номинальная мощность

См. Также: Сопротивление | Закон Ома | Переменные резисторы

Резисторы ограничивают прохождение электрического тока, например, резистор включен последовательно с светодиод (LED) для ограничения тока, проходящего через светодиод.

Резисторы можно подключать любым способом, и они не повреждаются от нагрева при пайке.

Сопротивление измеряется в омах, символ (омега). 1 довольно мала, поэтому номиналы резисторов также приведены в к и М:

1k = 1000
1M = 1000k = 1000000.

Большинство резисторов слишком малы, чтобы отображать их сопротивление в виде числа. Вместо этого используется цветовой код.

Для получения информации о резисторах, подключенных последовательно и параллельно, см. страница сопротивления.

Rapid Electronics: резисторы

Сокращенное обозначение резистора

Значения резисторов часто записываются на принципиальных схемах с использованием кодовой системы, в которой не используется десятичная точка. потому что очень легко пропустить маленькую точку. Вместо десятичной точки используются буквы R, K и M.

Чтобы прочитать код: замените букву десятичной точкой, затем умножьте значение на 1000, если буква K, или 1000000, если это была буква М. Буква R означает умножение на 1.


Код цвета резистора

Номиналы резисторов

обычно отображаются с помощью цветных полос, каждый цвет представляет собой число, как показано в таблице. Большинство резисторов имеют 4 полосы:

  • Первая полоса дает первую цифру .
  • Вторая полоса дает вторую цифру .
  • Третья полоса указывает количество нулей .
  • Четвертая полоса показывает допуск (точность) резистора но это можно игнорировать почти для всех схем.
Пример

Этот резистор имеет красную (2), фиолетовую (7), желтую (4 нуля) и золотую полосы, поэтому его значение составляет 270000 = 270 тыс. (обычно отображается на принципиальных схемах как 270K ).

Сделайте свой собственный калькулятор цветового кода.

Электроника
Цветовой код
Цвет Номер
Черный 0
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Синий 6
Фиолетовый 7
Серый 8
Белый 9
Резисторы малого номинала (
<10 Ом)

Стандартный цветовой код не может отображать значения меньше 10.Для отображения меньших значений используются два специальных цвета для третьей полосы :

  • золота, что означает × 0,1
  • серебра, что означает × 0,01

Первый и второй диапазоны представляют цифры обычным образом.

Например:

красные, фиолетовые, золотые полосы представляют 27 × 0,1 = 2,7.

зеленые, синие, серебряные полосы представляют 56 × 0,01 = 0,56.



Калькулятор цветовой кодировки резистора

Этот калькулятор можно использовать для определения номиналов резисторов.Он состоит из трех карточных дисков, показывающих цвета и значения, они скреплены вместе, чтобы вы могли просто поверните диски, чтобы выбрать требуемое значение или цветовой код. Простой, но эффективный!

Есть две версии для загрузки и печати на белой карточке формата А4 (два калькулятора на листе):

Чтобы сделать калькулятор: вырежьте три диска и скрепите их латунной застежкой для бумаги. Черно-белую версию нужно раскрашивать вручную, проще всего это сделать перед вырезкой .


Допуск резисторов

Допуск резистора показан четвертой полосой цветового кода. Допуск — это точность резистора, и он указан в процентах.

Например, 390 резистор с допуском ± 10% будет иметь значение в пределах 10% от 390, г. между 390 — 39 = 351 и 390 + 39 = 429 (39 составляет 10% от 390).

Для четвертой полосы используется специальный цветовой код Допуск:

  • серебро ± 10%
  • золото ± 5%
  • красный ± 2%
  • коричневый ± 1%
  • Если четвертая полоса не отображается, допуск составляет ± 20%

Допуском можно пренебречь почти для всех цепей, поскольку точное значение резистора требуется редко. и там, где это переменный резистор, обычно будет использоваться.


Реальные значения резисторов (серии E6 и E12)

Вы могли заметить, что резисторы доступны не со всеми возможными значениями, например 22k и 47k есть в наличии, но 25к а 50к нет!

Почему это? Представьте, что вы решили делать резисторы каждые 10 дает 10, 20, 30, 40, 50 и так далее. Кажется, это нормально, но что произойдет, когда вы достигнете 1000? Делать 1000, 1010, 1020, 1030 и так далее было бы бессмысленно, потому что для этих значений 10 — очень маленькая разница, слишком мала, чтобы быть заметной в большинстве схем.

Для получения разумного диапазона значений резистора вам необходимо увеличить размер «шага». по мере увеличения значения. Стандартные номиналы резисторов основаны на этой идее и образуют серия, которая следует той же схеме для каждого числа, кратного десяти.

Деньги используют аналогичную систему

Аналогичное расположение используется для денег: размер шага монет и банкнот увеличивается с увеличением стоимости.
Например, валюта Великобритании (1 фунт = 100 пенсов) содержит монеты 1, 2, 5, 10, 20, 50, 1 и 2 фунта стерлингов. (плюс банкноты 5, 10, 20 и 50 фунтов стерлингов).

Серия E6

Серия E6 имеет 6 значений для каждого кратного десяти, она используется для резисторов с допуском 20%. Значения: 10, 15, 22, 33, 47, 68, … затем продолжается 100, 150, 220, 330, 470, 680, 1000 и т. Д. Обратите внимание, как размер шага увеличивается с увеличением значения. Для этой серии шаг (к следующее значение) примерно вдвое меньше.

Серия E12

Серия E12 имеет 12 значений для каждого кратного десяти, она используется для резисторов с допуском 10%.Значения: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, … затем продолжается 100, 120, 150 и т. Д. Обратите внимание, как это серия E6 с дополнительным значением в промежутках.

Серия E12 наиболее часто используется для резисторов.

Позволяет выбрать значение в пределах 10% от точного значения, которое вам нужно. Это достаточно точно для почти все проекты и это разумно, потому что большинство резисторов имеют допуск ± 10%.



Номинальная мощность резисторов

Электрическая энергия преобразуется в тепло, когда через резистор протекает ток.Обычно эффект незначителен, но если сопротивление низкое или напряжение на резисторе высокое, может пройти большой ток, в результате чего резистор заметно нагреется. Резистор должен выдерживать эффект нагрева и резисторы имеют номинальную мощность, чтобы показать это.

Номинальная мощность резисторов редко указывается в списках деталей, потому что для большинства цепей стандартная мощность Подходит мощность 0,25 Вт или 0,5 Вт. В редких случаях, когда требуется более высокая мощность, она должна быть четко обозначена. указанных в перечне запчастей, это будут схемы с использованием резисторов низкого сопротивления (менее около 300) или высокого напряжения (более 15В).

Rapid Electronics: силовые резисторы

Мощность P, развиваемая в резисторе, может быть определена с помощью следующих уравнений:

P = V² / R или P = I² × R

P = развиваемая мощность в ваттах (Вт)
I = ток через резистор в амперах (A)
R = сопротивление резистора в Ом ()
В = напряжение на резисторе в вольтах (В)

Примеры:
  • Резистор 470 с 10 В на нем требуется номинальная мощность P = V² / R = 10² / 470 = 0.21Вт.
    В этом случае подойдет стандартный резистор 0,25 Вт.
  • Резистор на 27 А с напряжением 10 В на нем требуется номинальная мощность P = V² / R = 10² / 27 = 3,7 Вт.
    Требуется резистор большой мощности с номинальной мощностью 5 Вт (или более).

Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент резисторов и других компонентов для электроники, и я рад рекомендую их как поставщика.


Книги по комплектующим:


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Калькулятор резисторов

Ниже приведены инструменты для расчета значения сопротивления и допусков на основе цветовой маркировки резисторов, общего сопротивления группы резисторов, включенных параллельно или последовательно, и сопротивления проводника в зависимости от размера и проводимости.

Калькулятор цветового кода резистора

Используйте этот калькулятор, чтобы узнать значение сопротивления и допуск на основе цветовой кодировки резистора.

Вычислитель параллельных резисторов

Введите все значения сопротивления параллельно, разделив их запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.


Последовательный калькулятор резисторов Введите все значения сопротивления последовательно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.


Сопротивление проводника

Используйте следующее для расчета сопротивления проводника. В этом калькуляторе предполагается, что проводник круглый. Калькулятор закона Омса


Цветовой код резистора

Электронный цветовой код — это код, который используется для указания номинальных характеристик определенных электрических компонентов, например сопротивления резистора в Ом. Электронные цветовые коды также используются для оценки конденсаторов, катушек индуктивности, диодов и других электронных компонентов, но чаще всего используются для резисторов.Калькулятор рассчитывает только резисторы.

Как работает цветовая кодировка:

Цветовая кодировка резисторов является международным стандартом, определенным в IEC 60062. Цветовая кодировка резистора, показанная в таблице ниже, включает различные цвета, которые представляют значащие числа, множитель, допуск, надежность и температурный коэффициент. К какому из них относится цвет, зависит от положения цветовой полосы на резисторе. В типичном четырехполосном резисторе существует промежуток между третьей и четвертой полосами, чтобы указать, как следует считывать показания резистора (слева направо, причем одинокая полоса после промежутка является самой правой полосой).В пояснении ниже будет использоваться четырехполосный резистор (конкретно показанный ниже). Другие возможные варианты резистора будут описаны позже.

Составляющая значащей цифры:

В типичном четырехполосном резисторе первая и вторая полосы представляют собой значащие цифры. Для этого примера обратитесь к рисунку выше с зеленой, красной, синей и золотой полосой. В таблице, представленной ниже, зеленая полоса представляет собой цифру 5, а красная полоса — 2.

Множитель:

Третья синяя полоса — множитель.Таким образом, множитель по таблице равен 1 000 000. Этот множитель умножается на значащие числа, определенные из предыдущих диапазонов, в данном случае 52, в результате получается значение 52 000 000 Ом или 52 МОм.

Допуск:

Четвертая полоса присутствует не всегда, но когда она есть, представляет собой допуск. Это процентное значение, на которое может изменяться номинал резистора. Золотая полоса в этом примере указывает на допуск ± 5%, который может быть представлен буквой J. Это означает, что значение 52 МОм может изменяться до 5% в любом направлении, поэтому номинал резистора равен 49.4 МОм — 54,6 МОм.

Надежность, температурный коэффициент и другие вариации:

Кодированные компоненты имеют как минимум три полосы: две полосы значащих цифр и множитель, но есть и другие возможные варианты. Например, компоненты, изготовленные в соответствии с военными спецификациями, обычно представляют собой четырехполосные резисторы, которые могут иметь пятую полосу, которая указывает на надежность резистора с точки зрения процента отказов на 1000 часов работы. Также возможно иметь полосу 5 th , которая представляет собой температурный коэффициент, который показывает изменение сопротивления компонента в зависимости от температуры окружающей среды в единицах ppm / K.

Чаще встречаются пятиполосные резисторы, которые более точны из-за третьей значащей полосы числа. Это смещает положение множителя и диапазона допуска в положение 4 и 5 по сравнению с типичным четырехполосным резистором.

На самом точном из резисторов может присутствовать полоса 6 и . Первые три полосы будут значительными диапазонами цифр, 4 — множителем, 5 — допуском, а 6 может быть либо надежностью, либо температурным коэффициентом.Возможны и другие варианты, но это одни из наиболее распространенных конфигураций.

Цвет 1 st , 2 nd , 3 rd
Band Значимые цифры
Множитель Допуск Температурный коэффициент

Черный
0 × 1 250 частей на миллион / К (ед.)

Коричневый
1 × 10 ± 1% (F)100 частей на миллион / K (S)

Красный
2 × 100 ± 2% (г) 50 частей на миллион / K (R)

Апельсин
3 × 1К ± 0.05% (Вт) 15 частей на миллион / K (P)

Желтый
4 × 10 К ± 0,02% (П) 25 частей на миллион / K (Q)

Зеленый
5 × 100К ± 0,5% (D) 20 частей на миллион / K (Z)

Синий
6 × 1М ± 0.25% (С) 10 частей на миллион / K (Z)

Фиолетовый
7 × 10М ± 0,1% (В) 5 частей на миллион / K (M)

Серый
8 × 100М ± 0,01% (л) 1 частей на миллион / К (К)

Белый
9 × 1 г

Золото
× 0.1 ± 5% (Дж)

Серебро
× 0,01 ± 10% (К)

Нет
± 20% (М)

Резисторы — это элементы схемы, которые придают электрическое сопротивление. Хотя схемы могут быть очень сложными, и существует много различных способов размещения резисторов в схеме, резисторы в сложных схемах обычно могут быть разбиты и классифицированы как соединенные последовательно или параллельно.

Сопротивление параллельно:

Общее сопротивление резисторов, включенных параллельно, равно обратной величине суммы обратных величин каждого отдельного резистора. Обратитесь к уравнению ниже для пояснения:

R итого =
1
+ + + … +

Последовательный резистор:

Общее сопротивление резисторов, включенных параллельно, — это просто сумма сопротивлений каждого резистора.Обратитесь к уравнению ниже для пояснения:

рэндов всего = рэндов + рэндов 2 + рэндов 3 … + рэндов n


Сопротивление жилы:

Где:
L — длина жилы
A — площадь поперечного сечения проводника
C — проводимость материала

Как использовать мультиметр для проверки резисторов

Как узнать, правильно ли резистор ограничивает ток электричества? Использование мультиметра — очевидный ответ.Однако это больше, чем кажется на первый взгляд. Эта статья объяснит, что вам нужно знать.


Когда компьютер перестает работать, часто дешевле и проще заменить его, чем отремонтировать. В конце концов, зачем ремонтировать компьютер, который ваша компания купила два года назад, если вы можете купить новый, который в два раза мощнее, за половину стоимости вашего оригинального компьютера? Тем не менее, для многих специалистов ИТ-поддержки сегодня по-прежнему необходимы время и энергия, затрачиваемые на ремонт электронного оборудования, из-за бюджетных ограничений или из-за конфиденциального характера данных, хранящихся на многих настольных компьютерах.К счастью, в распоряжении техника довольно много инструментов. А когда дело доходит до ремонта электроники, немногие инструменты могут быть так удобны, как мультиметр. В этой статье я покажу вам, как использовать мультиметр для поиска и устранения неисправностей некоторых основных электронных компонентов, таких как резисторы.

Прежде чем мы начнем
Каждый мультиметр индивидуален, поэтому инструкции, которые я вам даю, могут не совпадать с вашим мультиметром. Поэтому убедитесь, что вы понимаете, как использовать вашу конкретную модель мультиметра, прежде чем пробовать какой-либо из этих методов.Несоблюдение этого правила может привести к травмам или повреждению компонентов, которые вы тестируете.

Номиналы резисторов
Резисторы, вероятно, самый простой компонент для проверки с помощью мультиметра. Резисторы предназначены для уменьшения электрического тока. Например, если схема требует использования транзистора, но количество используемого электричества было достаточно высоким, чтобы повредить транзистор, то один из способов использования транзистора — это разместить перед ним резистор.

Цветная полоса
Прежде чем вы сможете протестировать резистор, вам необходимо узнать его прочность и допуск. Резисторы имеют цветовую маркировку. Если вы посмотрите на резистор, на одном конце должна быть золотая, серебряная или белая полоса. Поверните резистор так, чтобы эта полоса была справа от вас. Эта полоса представляет собой допуск резистора. Прежде чем я буду обсуждать допуски, вам нужно научиться считывать значения резистора. Вы начинаете с перевода цветных полос в числа и записи этих чисел. Для первой и второй цветных полос значения следующие:

  • Черный = 0
  • Коричневый = 1
  • Красный = 2
  • Оранжевый = 3
  • Желтый = 4
  • Зеленый = 5
  • Синий = 6
  • Фиолетовый = 7
  • Серый = 8
  • Белый = 9

Полоса множителя
Как только вы найдете значения для первых двух диапазонов, запишите их.Например, если у вас есть красная полоса и черная полоса, тогда значения будут 2 и 0. Сложите эти два числа вместе, и вы получите число 20. Третья полоса — полоса множителя. Это число, на которое вы умножите первые две полосы, чтобы получить номинал резистора. Цветовая схема для третьей полосы выглядит следующим образом:
  • Черный = 1
  • Коричневый = 10
  • Красный = 100
  • Оранжевый = 1000 (или 1 К)
  • Желтый = 10 000 (или 10 К)
  • Зеленый = 100 000 (или 100 K)
  • Синий = 1 000 000 (или 1 M)

Представьте, что резистор имеет красные, черные, желтые и серебряные полосы.Я уже объяснял, что красная и черная полосы в первых двух позициях будут преобразованы в 2 и 0, которые будут объединены в 20. Желтая полоса в третьей позиции — множитель. Значение умножения — 10 000 (или 10 К). Теперь умножьте 20 на 10 000, и вы получите 200 000. Это означает, что резистор рассчитан на 200 000 Ом, что обычно выражается как 200 кОм.

Диапазон допуска
Давайте посмотрим на диапазон допуска. Причина наличия диапазона допуска заключается в том, что ни один резистор не работает с точно своим номинальным значением.Диапазон допуска предназначен для того, чтобы вы знали, на сколько потенциально может отключиться резистор. Золотой резистор означает, что номинальное значение находится в пределах плюс-минус 5 процентов от точности. Серебряная полоса означает, что фактическое значение резистора может находиться в пределах плюс-минус 10 процентов от номинального значения. Если диапазон допуска отсутствует, это означает, что фактическое значение резистора находится в пределах плюс-минус 20 процентов от номинального значения.

Теперь вернемся к нашему резистору на 200000 Ом. Этот резистор имел серебряную полосу допуска, что означает, что он имеет точность в пределах плюс-минус 10 процентов от номинального значения, при этом 10 процентов от 200 000 равняются 20 000.Если мы прибавим 20 000 к 200 000, мы определим, что фактическое значение сопротивления резистора может достигать 220 000 Ом. Аналогичным образом, если мы вычтем 20 000 из 200 000, резистор может иметь сопротивление всего 18 000 Ом.

Проверка резисторов
Теперь, когда вы знаете, как считывать расчетные значения и значения потенциалов резистора, давайте посмотрим, как проверить исправность резистора. Как правило, резисторы довольно прочные, но их можно сварить чрезмерным количеством электричества. Еще на уроках электроники в колледже я помню, как не один одноклассник готовил резисторы с слишком большим количеством сока.Обычно резистор нагревается, начинает дымиться и издает странный пронзительный визг.

После того, как резистор перегорел, часто через него не может пройти электричество. Считается, что такие резисторы имеют бесконечное сопротивление. В то же время, если резистор был поврежден чрезмерным напряжением, но не разрушился, резистор может пропускать некоторое количество электричества, но иметь неправильный уровень сопротивления. Вот почему так важно знать допуски. Например, если вы знали, что сопротивление резистора должно быть 200000 Ом, но протестировали резистор на 180000 Ом, вы могли бы предположить, что резистор неисправен.

При проверке резистора мультиметр пропускает через резистор известный электрический ток, а затем измеряет величину тока, который действительно проходит. Поскольку мультиметр пропускает ток через резистор, необходимо убедиться, что устройство, содержащее проверяемый резистор, отключено от сети и выключено. Если через резистор протекает нормальный ток, и вы пытаетесь проверить резистор, ваши показания не только будут неточными, но и вы можете повредить резистор и другие компоненты.Вы также можете повредить мультиметр или получить удар электрическим током.

С учетом сказанного, мультиметры рассчитаны на использование весов. Эти шкалы определяют, какой ток мультиметр будет использовать во время теста. Например, у моего мультиметра есть шкалы для 200 Ом, 2 кОм, 200 кОм, 2 МОм и 20 МОм. Если бы мне пришлось протестировать наш вымышленный резистор на 200 кОм с этим конкретным измерителем, я бы установил шкалу на 200 кОм. Однако это чистое совпадение, что мой измеритель настроен на 200 кОм.Обычно настройки шкалы не соответствуют номиналу резистора. В таких ситуациях вам нужно перейти к ближайшему значению шкалы выше номинала резистора. Например, если у вас есть резистор на 100 кОм, вы должны использовать шкалу 200 кОм. Если бы у вас был резистор на 300 кОм, вы бы использовали шкалу 2 МОм. Доступные шкалы будут отличаться для разных марок и моделей мультиметров, но концепция останется прежней.

После того, как вы убедились, что устройство отключено от сети и выключено, а на глюкометре установлена ​​правильная шкала, пора проводить измерения.Резисторы не поляризованы, поэтому не имеет значения, на какой стороне резистора вы устанавливаете красный или черный щупы измерителя. После того, как вы поместите щупы напротив выводов резистора, вы должны получить значение резистора.

В демонстрационных целях я решил использовать свой измеритель для проверки резистора 200 кОм. Резистор испытал на 197,6 Ом. Это было в пределах диапазона от 180 до 220 К, допускаемого 10-процентным допуском резистора. Если бы резистор был протестирован за пределами этого диапазона, резистор был бы неисправен и его нужно было бы заменить.

Дополнительная информация о мультиметрах
Мультиметры — это универсальные инструменты, с которыми все специалисты службы поддержки ПК должны быть знакомы для поиска и устранения неисправностей электронного оборудования. Если вам нужна дополнительная информация о мультиметрах, попробуйте эти другие статьи TechProGuild:

Калькулятор параллельного сопротивления

— Инструменты для электротехники и электроники

С легкостью рассчитайте общее сопротивление параллельно включенных резисторов!

Как рассчитать полное сопротивление резисторов, включенных параллельно

Расчет эквивалентного сопротивления (R EQ ) параллельно подключенных резисторов вручную может быть утомительным.Этот инструмент был разработан, чтобы помочь вам быстро рассчитать эквивалентное сопротивление, независимо от того, подключены ли у вас два или десять резисторов параллельно. Чтобы использовать его, просто укажите количество параллельных резисторов и значение сопротивления для каждого из них.

Вы можете легко вычислить эквивалентное сопротивление, если у вас есть два идентичных резистора, подключенных параллельно: это половина отдельного сопротивления. Это удобно, когда вам нужно определенное значение сопротивления, а подходящей детали нет в наличии. Например, если вы знаете, что вам нужно около 500 Ом, чтобы получить желаемую яркость светодиодной цепи, вы можете использовать два резистора 1 кОм параллельно.

Имейте в виду, что ток через отдельный резистор не изменяется, когда вы добавляете резисторы параллельно, потому что добавление резисторов параллельно не влияет на напряжение на выводах резисторов. Изменяется общий ток, подаваемый источником питания, а не ток через один конкретный резистор.

Уравнения

$$ \ frac {1} {R_ {EQ}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} + … + \ frac {1} {R_ {N}} $$

Когда у вас есть только два параллельно подключенных резистора: $$ R_ {EQ} = \ frac {R_1 \ times R_2} {R_1 + R_2} $$

Приложения

Последовательные резисторы эквивалентны одному резистору, сопротивление которого является суммой каждого отдельного резистора.С другой стороны, параллельное соединение резисторов дает эквивалентное сопротивление, которое всегда ниже, чем у каждого отдельного резистора. Если подумать, это имеет смысл: если вы подаете напряжение на резистор, протекает определенное количество тока. Если вы добавите еще один резистор параллельно первому, вы, по сути, откроете новый канал, по которому может течь больше тока. Независимо от того, насколько велик второй резистор, общий ток, протекающий от источника питания, будет, по крайней мере, немного выше, чем ток через единственный резистор.

You may also like

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *