Мультиметры М832: устройство и ремонт
Невозможно представить рабочий стол ремонтника без удобного недорогого цифрового мультиметра. В этой статье рассмотрено устройство цифровых мультиметров 830-й серии, наиболее часто встречающиеся неисправности и способы их устранения.
В настоящее время выпускается огромное разнообразие цифровых измерительных приборов различной степени сложности, надежности и качества. Основой всех современных цифровых мультиметров является интегральный аналого-цифровой преобразователь напряжения (АЦП). Одним из первых таких АЦП, пригодных для построения недорогих портативных измерительных приборов, был преобразователь на микросхеме ICL71O6, выпущенной фирмой MAXIM. В результате было разработано несколько удачных недорогих моделей цифровых мультиметров 830-й серии, таких как М830В, М830, М832, М838. Вместо буквы М может стоять DT. В настоящее время эта серия приборов является самой распространенной и самой повторяемой в мире. Ее базовые возможности: измерение постоянных и переменных напряжений до 1000 В (входное сопротивление 1 МОм), измерение постоянных токов до 10 А, измерение сопротивлений до 2 МОм, тестирование диодов и транзисторов. Кроме того, в некоторых моделях есть режим звуковой прозвонки соединений, измерения температуры с термопарой и без термопары, генерации меандра частотой 50…60 Гц или 1 кГц. Основной изготовитель мультиметров этой серии — фирма Precision Mastech Enterprises (Гонконг).
Схема и работа прибора
Рис. 1. Структурная схема АЦП 7106
Основа мультиметра — АЦП IC1 типа 7106 (ближайший отечественный аналог — микросхема 572ПВ5). Его структурная схема приведена на рис. 1, а цоколевка для исполнения в корпусе DIP-40 — на рис. 2. Перед ядром 7106 могут стоять разные префиксы в зависимости от производителя: ICL7106, ТС7106 и т.д. В последнее время все чаще используются бескорпусные микросхемы (DIE chips), кристалл которых припаивается непосредственно на печатную плату.
Рис. 2. Цоколевка АЦП 7106 в корпусе DIP-40
Рассмотрим схему мультиметра М832 фирмы Mastech (рис. 3). На вывод 1 IC1 подается положительное напряжение питания батареи 9 В, на вывод 26 — отрицательное. Внутри АЦП находится источник стабилизированного напряжения 3 В, его вход соединен с выводом 1 IC1, а выход — с выводом 32. Вывод 32 подсоединяется к общему выводу мультиметра и гальванически связан с входом СОМ прибора. Разность напряжений между выводами 1 и 32 составляет примерно 3 В в широком диапазоне питающих напряжений — от номинального до 6,5 В. Это стабилизированное напряжение подается на регулируемый делитель R11, VR1, R13, ас его выхода -на вход микросхемы 36 (в режиме измерения токов и напряжений). Делителем задается потенциал U ег на выводе 36, равный 100 мВ. Резисторы R12, R25 и R26 выполняют защитные функции. Транзистор Q102 и резисторы R109, R110nR111 отвечают за индикацию разряда батареи питания. Конденсаторы С7, С8 и резисторы R19, R20 отвечают за отображение десятичных точек дисплея.
Рис. 3. Принципиальная схема мультиметра М832
Диапазон рабочих входных напряжений Umax напрямую зависит от уровня регулируемого опорного напряжения на выводах 36 и 35 и составляет:
Стабильность и точность показаний дисплея зависят от стабильности этого опорного напряжения. Показания дисплея N зависят от входного напряжения UBX и выражаются числом:
Рассмотрим работу прибора в основных режимах.
Измерение напряжения
Упрощенная схема мультиметра в режиме измерения напряжения представлена на рис. 4. При измерении постоянного напряжения входной сигнал подается на R1…R6, с выхода которого через переключатель (по схеме 1-8/1… 1-8/2) подается на защитный резистор R17. Этот резистор, кроме того, при измерениях переменного напряжения вместе с конденсатором СЗ образует фильтр нижних частот. Далее сигнал поступает на прямой вход микросхемы АЦП, вывод 31. На инверсный вход микросхемы подается потенциал общего вывода, вырабатываемый источником стабилизированного напряжения 3 В, вывод 32.
Рис. 4. Упрощенная схема мультиметра в режиме измерения напряжения
При измерениях переменного напряжения оно выпрямляется однополупериодным выпрямителем на диоде D1. Резисторы R1 и R2 подобраны таким образом, чтобы при измерении синусоидального напряжения прибор показывал правильное значение. Защита АЦП обеспечивается делителем R1…R6 и резистором R17.
Измерение тока
Рис. 5. Упрощенная схема мультиметра в режиме измерения тока
Упрощенная схема мультиметра в режиме измерения тока представлена на рис. 5. В режиме измерения постоянного тока последний протекает через резисторы RO, R8, R7 и R6, коммутируемые в зависимости от диапазона измерения. Падение напряжения на этих резисторах через R17 подается на вход АЦП, и результат выводится на дисплей. Защита АЦП обеспечивается диодами D2, D3 (в некоторых моделях могут не устанавливаться) и предохранителем F.
Измерение сопротивления
Рис. 6. Упрощенная схема мультиметра в режиме измерения сопротивления
Упрощенная схема мультиметра в режиме измерения сопротивления представлена на рис. 6. В режиме измерения сопротивления используется зависимость, выраженная формулой (2). На схеме видно, что один и тот же ток от источника напряжения +LJ протекает через опорный резистор Ron и измеряемый резистор Rx (токи входов 35, 36, 30 и 31 пренебрежимо малы) и соотношение UBX и Uon равно соотношению сопротивлений резисторов Rx и Ron. В качестве опорных резисторов используются R1….R6, в качестве токозадающих используются R10 и R103. Защита АЦП обеспечивается терморезистором R18 [в некоторых дешевых моделях используются обычные резисторы номиналом 1…2 кОм), транзистором Q1 в режиме стабилитрона (устанавливается не всегда) и резисторами R35, R16 и R17 на входах 36, 35 и 31 АЦП.
Режим прозвонки
В схеме прозвонки используется микросхема IC2 (LM358), содержащая два операционных усилителя. На одном усилителе собран звуковой генератор, на другом — компаратор. При напряжении на входе компаратора (вывод 6) меньше порогового, на его выходе (вывод 7) устанавливается низкое напряжение, открывающее ключ на транзисторе Q101, в результате чего раздается звуковой сигнал. Порог определяется делителем R103, R104. Защита обеспечивается резистором R106 на входе компаратора.
Дефекты мультиметров
Все неисправности можно разделить на заводской брак (и такое бывает) и повреждения, вызванные ошибочными действиями оператора.
Поскольку в мультиметрах используется плотный монтаж, то возможны замыкания элементов, плохие пайки и поломка выводов элементов, особенно расположенных по краям платы. Ремонт неисправного прибора следует начинать с визуального осмотра печатной платы. Наиболее часто встречающиеся заводские дефекты мультиметров М832 приведены в таблице.
Заводские дефекты мультиметров М832
Проявление дефекта | Возможная причина | Устранение дефекта |
---|---|---|
При включении прибора дисплей загорается и затем плавно гаснет | Неисправность задающего генератора микросхемы АЦП, сигнал с которого подается на подложку ЖК-дисплея | Проверить элементы С1 и R15 |
При включении прибора дисплей загорается и затем плавно гаснет. При снятой задней крышке прибор нормально работает | При закрытой задней крышке прибора контактная винтовая пружина ложится на резистор R15 и замыкает цепь задающего генератора | Отогнуть или чуть укоротить пружину |
При включении прибора в режим измерения напряжения показания дисплея меняются от 0 до 1 | Неисправны или плохо пропаяны цепи интегратора: конденсаторы С4, С5 и С2 и резистор R14 | Пропаять или заменить С2, С4, С5, R14 |
Прибор долго обнуляет показания | Низкое качество конденсатора СЗ на входе АЦП (вывод 31) | Заменить СЗ на конденсатор с малым коэффициентом абсорбции |
При измерении сопротивлений показания дисплея долго устанавливаются | Низкое качество конденсатора С5 (цепь автокоррекции нуля) | Заменить С5 на конденсатор с малым коэффициентом абсорбции |
Прибор неправильно работает во всех режимах, микросхема IC1 перегревается. | Замкнулись между собой длинные выводы разъема для проверки транзисторов | Разомкнуть выводы разъема |
При измерении переменного напряжения показания прибора «плывут», например, вместо 220 В изменяются от 200 В до 240 В | Потеря емкости конденсатора СЗ. Возможна плохая пайка его выводов или просто отсутствие этого конденсатора | Заменить СЗ на исправный конденсатор с малым коэффициентом абсорбции |
При включении мультиметр или постоянно пищит, или наоборот, молчит в режиме прозвонки соединений | Плохая пайка выводов микросхемы IC2 | Пропаять выводы IC2 |
Сегменты на дисплее пропадают и появляются | Плохой контакт ЖК-дисплея и контактов платы мультиметра через токопроводящие резиновые вставки | Для восстановления надежного контакта нужно: • поправить токопроводящие резинки; • протереть спиртом соответствующие контактные площадки на печатной плате; • облудить эти контакты на плате |
Исправность ЖК-дисплея можно проверить с помощью источника переменного напряжения частотой 50. ..60 Гц и амплитудой в несколько вольт. В качестве такого источника переменного напряжения можно взять мультиметр М832, у которого есть режим генерации меандра. Для проверки дисплея следует положить его на ровную поверхность дисплеем вверх, подсоединить один щуп мультиметра М832 к общему выводу индикатора (нижний ряд, левый вывод), а другой щуп мультиметра прикладывать поочередно к остальным выводам дисплея. Если удается получить зажигание всех сегментов дисплея, значит, он исправен.
Вышеописанные неисправности могут появиться и в процессе эксплуатации. Следует отметить, что в режиме измерения постоянного напряжения прибор редко выходит из строя, т.к. хорошо защищен от перегрузок по входу. Основные проблемы возникают при измерении тока или сопротивления.
Ремонт неисправного прибора следует начинать с проверки питающего напряжения и работоспособности АЦП: напряжения стабилизации 3 В и отсутствия пробоя между выводами питания и общим выводом АЦП.
В режиме измерения тока при использовании входов V, Ω и mА, несмотря на наличие предохранителя, возможны случаи, когда предохранитель сгорает позже, чем успевают пробиться предохранительные диоды D2 или D3.
В режиме измерения сопротивления повреждения происходят, как правило, в диапазонах 200 Ом и 2000 Ом. В этом случае при подаче на вход напряжения могут сгорать резисторы R5, R6, R10, R18, транзистор Q1 и пробиваться конденсатор Сб.
Если полностью пробит транзистор Q1, то при измерении сопротивления прибор будет показывать нули. При неполном пробое транзистора мультиметр с разомкнутыми щупами будет показывать сопротивление этого транзистора. В режимах измерения напряжения и тока транзистор замыкается переключателем накоротко и на показания мультиметра не влияет. При пробое конденсатора С6 мультиметр не будет измерять напряжение в диапазонах 20 В, 200 В и 1000 В или существенно занижать показания в этих диапазонах.В случае отсутствия индикации на дисплее при наличии питания на АЦП или визуально заметного выгорания большого количества элементов схемы существует большая вероятность повреждения АЦП. Исправность АЦП проверяется контролем напряжения источника стабилизированного напряжения 3 В. На практике АЦП выгорает только при подаче на вход высокого напряжения, гораздо выше 220 В. Очень часто при этом в компаунде бескорпусного АЦП появляются трещины, повышается ток потребления микросхемы, что приводит к ее заметному нагреву.
При подаче на вход прибора очень высокого напряжения в режиме измерения напряжения может произойти пробой по элементам (резисторам) и по печатной плате, в случае режима измерения напряжения схема защищена делителем на сопротивлениях R1 …R6.
У дешевых моделей серии DT длинные выводы деталей могут закорачиваться на экран, расположенный на задней крышке прибора, нарушая работу схемы. У Mastech такие дефекты не наблюдаются.
Источник стабилизированного напряжения 3 В в АЦП у дешевых китайских моделей может на практике давать напряжение 2,6…3,4 В, а у некоторых приборов перестает работать уже при напряжении питающей батареи 8,5 В.
В моделях DT используются низкокачественные АЦП, они очень чувствительны к номиналам цепочки интегратора С4 и R14. В мультиметрах фирмы Mastech высококачественные АЦП позволяют использовать элементы близких номиналов.
Часто в мультиметрах DT при разомкнутых щупах в режиме измерения сопротивления прибор очень долго подходит к значению перегрузки («1» на дисплее) или не устанавливается совсем. «Вылечить» некачественную микросхему АЦП можно уменьшив номинал сопротивления R14 с 300 до 100 кОм.
При измерении сопротивлений в верхней части диапазона прибор «заваливает» показания, например, при измерении резистора сопротивлением 19,8 кОм показывает 19,3 кОм. «Лечится» заменой конденсатора С4 на конденсатор величиной 0,22…0,27 мкФ.
Поскольку дешевые китайские фирмы используют низкокачественные бескорпусные АЦП, то нередки случаи обрыва выводов, при этом определить причину неисправности очень трудно и проявляться она может по-разному, в зависимости от оборванного вывода. Например, не горит один из выводов индикатора. Поскольку в мультиметрах используются дисплеи со статической индикацией, то для определения причины неисправности необходимо проверить напряжение на соответствующем выводе микросхемы АЦП, оно должно быть около 0,5 В относительно общего вывода. Если оно равно нулю, то неисправен АЦП.
Эффективным способом поиска причины неисправности является прозвонка выводов микросхемы аналого-цифрового преобразователя следующим образом. Используется еще один, разумеется, исправный, цифровой мультиметр. Он включается в режим проверки диодов. Черный щуп, как обычно, устанавливается в гнездо СОМ, а красный в гнездо VQmA. Красный щуп прибора подсоединяется к выводу 26 [минус питания), а черный поочередно касается каждой ножки микросхемы АЦП. Поскольку на входах аналого-цифрового преобразователя установлены защитные диоды в обратном включении, то при таком подключении они должны открыться, что будет отражено на дисплее как падение напряжения на открытом диоде. Реальная величина этого напряжения на дисплее будет несколько больше, т.к. в схеме включены резисторы. Точно так же проверяются все выводы АЦП при подключении черного щупа к выводу 1 [плюсу питания АЦП) и поочередного касания остальных выводов микросхемы. Показания прибора должны быть аналогичными. Но если поменять полярность включения при этих проверках на противоположную, то прибор должен показывать всегда обрыв, т.к. входное сопротивление исправной микросхемы очень велико.
Таким образом, неисправными можно считать выводы, которые показывают конечное сопротивление при любой полярности подключения к микросхеме. Если же прибор показывает обрыв при любом подключении исследуемого вывода, то это на девяносто процентов говорит о внутреннем обрыве. Указанный способ проверки достаточно универсален и может применяться при проверке различных цифровых и аналоговых микросхем.Бывают неисправности, связанные с некачественными контактами на галетном переключателе, прибор работает только при нажатом галетнике. Фирмы, производящие дешевые мультиметры, редко покрывают дорожки под галетным переключателем смазкой, отчего они быстро окисляются. Часто дорожки бывают чем-нибудь загрязнены. Ремонтируется следующим образом: из корпуса вынимается печатная плата, и дорожки переключателя протираются спиртом. Затем наносится тонкий слой технического вазелина. Все, прибор починен.
У приборов серии DT бывает иногда так, что переменное напряжение измеряется со знаком минус. Это указывает на неправильную установку D1, обычно из-за неправильной маркировки на корпусе диода.
Случается, что изготовители дешевых мультиметров ставят низкокачественные операционные усилители в цепи звукового генератора, и тогда при включении прибора раздается жужжание зуммера. Этот дефект устраняется подпаиванием электролитического конденсатора номиналом 5 мкФ параллельно цепи питания. Если при этом не обеспечивается устойчивая работа звукового генератора, то необходимо заменить операционный усилитель на LM358P.
Часто встречается такая неприятность, как вытекание батареи. Небольшие капли электролита можно протереть спиртом, но если плату залило сильно, то хорошие результаты можно получить, промыв ее горячей водой с хозяйственным мылом. Сняв индикатор и отпаяв пищалку, с помощью щетки, например зубной, нужно тщательно намылить плату с обеих сторон и промыть под струей воды из-под крана. Повторив мойку 2…3 раза, плату высушивают и устанавливают в корпус.
В большинстве приборов, выпускаемых в последнее время, применяются бескорпусные (DIE chips) АЦП. Кристалл устанавливается непосредственно на печатную плату и заливается смолой. К сожалению, это значительно снижает ремонтопригодность приборов, т.к. при выходе АЦП из строя, что встречается достаточно часто, заменить его трудно. Приборы с бескорпусными АЦП иногда бывают чувствительны к яркому свету. Например, при работе рядом с настольной лампой погрешность измерений может возрасти. Дело в том, что индикатор и плата прибора обладают некоторой прозрачностью, и свет, проникая сквозь них, попадает на кристалл АЦП, вызывая фотоэффект. Для устранения этого недостатка нужно вынуть плату и, сняв индикатор, заклеить место расположения кристалла АЦП (его хорошо видно сквозь плату) плотной бумагой.
При покупке мультиметров DT следует обратить внимание на качество механики переключателя, следует обязательно прокрутить галетный переключатель мультиметра несколько раз, чтобы убедиться, что переключение происходит четко и без заеданий: дефекты пластмассы не поддаются ремонту.
Теги:
- Мультиметр
- DT-832
Учимся пользоваться мультиметром | HamLab
Наши первые шаги в освоении этого прибора будем производить на распостраненном китайском мультиметре
DT 830. Стоит он относительно недорого около 4 у.е.
Включение прибора осуществляется автоматически при установке переключателя в нужный предел измерений. Итак выясним что это за пределы:
DCV – измерение постоянного напряжения
ACV — измерение переменного напряжения
DCA – измерение постоянного тока
hFE – измерение коэффициента передачи транзистора
– генератор прямоугольных импульсов
o))) — прозвонка
-измерение сопротивления
Приступим к измерениям.
При измерении постоянного напряжения ставим переключатель в положение (DCV), и так как у нас батарейка типа Крона выбираем предел 20 вольт.На будущее, если нам даже приблизительно неизвестна величина напряжения или тока, то лучше начинать с максимальной величины предела. Берем щупы прибора и соответственно касаемся выводов батареи.Красным к плюсу, а черным к минусу.рис 1.
Рис. 1.
На дисплеи высветится значение напряжения, в нашем случаи это 8. 59 В. Если же вы перепутаете полярность(подключили красный щуп к минусу, а черный к плюсу) то ничего страшного не произойдет просто на индикаторе высветится знак «-» рис 2.
Рис. 2.
Если же на индикаторе высветилась 1 рис 3.
Рис. 3.
значит измеряемое вами напряжение или ток выше того предела который вы установили.В этом случаи вам необходимо переключить переключателем предел выше того который выставлен в данный момент.Если этого не сделать то через некоторый момент времени прибор подаст звуковой сигнал, и если после этого ничего не сделать то прощай мой любимый мультиметр.
Измерение переменного напряжения аналогично измерению постоянного напряжения описанного выше с той лишь разницей, что всеравно куда подключать красный, а куда черный щупы.
Для измерения постоянного тока собираем простую цепь состоящую из блока питания и какой нибудь нагрузки (возьмем к примеру обычную лампочку). Подключаем щупы как показано на рис 4.
Рис. 4.
На дисплее высветилось 0.34 .Значит в нашей цепи протекает ток порядка 340 мА.
Примечание. Для измерения токов выше 200 мА необходимо переключателем выставить предел на 10 А, а красный щуп вставить в верхнее гнездо.
Генератор. Генератор мультиметра генерирует прямоугольные импульсы с частотой следования 50 Гц и амплитудой примерно 5 В. Эта функция необходима для проверки каскадов усилителей т.е пропускает и усиливает ли он сигнал или нет. Простой пример: Нету звука в комп. колонках.Подключаем мультиметр к колонкам и если слышим жужжащий звук, радуемся колонки целы.Значит проверяем Sound Card и т.д.
Прозвонка.Эта функция необходима для прозвонки проводов.Берем два длинных провода подсоеденяем щупы к началу и концу провода. Если слышим сигнал значит мы нашли начало и конец этого провода, если нет то подсоеденяем щуп к другому концу.Услушили звук? Нет! Тогда провод переломан.
Режим hFE- измерение коэффициента передачи транзистора. Для измерения берем транзистор в корпусе КТ-26 и вставляем в специальный разъем рис 5.
Рис. 5.
напротив дырок которого нанесены надписи E B C (эмиттер , база , коллектор), а снизу NPN(слева) и PNP(справа) (структура транзистора). Если структура и цоколевка транзистора вам известна то вставляем его в соответствующие дырочки, если же нет то методом научного тыка добиваемся показаний прибора.
Измерение сопротивления тоже не требует особых навыков, для этого необходимо лишь подключить исследуемый резистор к щупам
и установлением необходимого предела добиться показаний прибора рис 6. В данном случаи сопротивление исследуемого резистора 8.3 кОм.
Рис. 6.
Постскриптум.
Если на дисплее высвечивается значок батареи рис. 7,
Рис. 7.
ее необходимо заменить в противном случае возрастет погрешность и мультиметр будет вам бессовестно врать.
В некоторых случаях для удобства пользованием щупами советую надеть на них «крокодилы» рис. 8.
Рис. 8.
Если у вас перестал работать генератор , а у меня это было несколько раз из-за того, что я подал большое напряжение на щупы в пределе измерений сопротивления, то посмотрите предохранитель который находиться внутри корпуса на плате в 100% случаях он сгорает.
Напоследок.
Если пределов измерений данного мультиметра вам не хватает (мне лично не хватило), то советую приобрести мультиметр типа DT 9208 A рис.9 и рис. 10,
Рис. 9.
Рис. 10.
стоит он правда в 3,5 раза дороже.Но помимо того, что может измерить описанный выше DT 830, его старший брат может измерить:
Переменный ток до 20 А
Емкость до 20 мкФ
Сопротивление до 200 МОм
Частоту до 20 кГц
Логические уровни (1 и 0)
Температуру
Плюс имеется, кнопка включения/выключения, кнопка HOLD нажатие которой позволяет удержать показания, поднимающийся на 80 град дисплей, силиконовый чехол с подставкой и держателями щупов и автоматическое выключение при неактивности прибора.
© Савицкий А. 2006 г.
Данная статья является собственностью сайта HamLab(Схематехник). Перепечатка запрещена!
Цифровые и аналоговые мультиметры
Электроника Карта сайта Дом
Мультиметр является наиболее важным электронным испытательным прибором. Даже если у вас есть только мимолетный интерес к электронике, вы должны подумать о покупке дешевой, потому что у нее много применений дома, на работе и при работе с бытовой техникой или автомобилями. Но если вы серьезно относитесь к электронике, подумайте о покупке качественного мультиметра с высоким импедансом и высокой точностью. В идеале у вас должен быть как цифровой, так и аналоговый мультиметр.
Аналоговые мультиметры дешевле и несколько менее точны, чем цифровые. Они лучше всего подходят для наблюдения за трендом медленно меняющегося напряжения, сопротивления или тока.
Цифровые мультиметры , как правило, более точны, и легче считываются, , чем их аналоговые аналоги. Они лучше всего подходят для определения точного значения напряжения, тока или сопротивления. Цифровой мультиметр может быть немного более надежным, если вы случайно поместите его на неправильную шкалу. Они также могут иметь больше функций, таких как измеритель емкости, датчик температуры или измеритель частоты.
Точность не имеет решающего значения для любительской электроники или ремонта бытовой техники, но важна надежность. Необходима пара качественных, прочных и хорошо изолированных тестовых проводов . Дешевые мультиметры могут поставляться со слишком тонкими или ненадежными выводами; замените их качественными, чтобы избежать поражения электрическим током. Если вы хотите быть рядом достаточно долго, чтобы получать удовольствие от экспериментов с электроникой, всегда относитесь к электричеству с уважением, которого оно заслуживает!
В следующей таблице перечислены диапазоны постоянного и переменного напряжения, тока, сопротивления и частоты, которые можно измерить с помощью самых популярных цифровых мультиметров на рынке:
Модель | Отсчеты | В постоянного тока | В переменного тока | В постоянного тока A | В переменного тока A | Сопротивление. | Емкость | Частот. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M830B DT830B | 2000 | 0.1mV — 1000V | 0.1V — 750V | 0.1µA — 10A | — | 0.1Ω — 2MΩ | — | — | ||||||
M832 | 2000 | 0,1 мВ — 1000 В | 0,1 В — 700 В | 1 мкА — 10A | — | 0,1 Ом — 2 М ОД | — | — | ||||||
M838 | 2000 | 0,1000 мл. — 10A | — | 0.1Ω — 2MΩ | — | — | ||||||||
M890D | 2000 | 0.1mV — 1000V | 0.1mV — 700V | 1µA — 20A | 10µA — 20A | 0,1 Ом — 200 МОм | 1PF — 20 мкф | — | ||||||
M890F | 2000 | 0,1MV — 1000V | 0,1MV — 700V | 1 000 В | 9003 — 700v— 2000 окт 9003 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9008 — 9005 -900. 20 мкф | 20 кГц | ||||||||
M890C+ | 2000 | 0,1MV — 1000 В | 0,1MV — 700V | 1 мкА — 20A | 10MV — 700V | 1 мкА — 20A | 10 мкА — 700V | 1 мкА — 20A | 10 мкА — 700V | 1 мкА — 20A | 10,1MV — 700V | — 20A | 10 мк. | |
M890G DT-830G | 2000 | 0.1mV — 1000V | 0.1mV — 700V | 1µA — 20A | 10µA — 20A | 0.1Ω — 20MΩ | 1pF — 20µF | 20kHz | ||||||
M9502 | 2000 | 0,1 МВ — 1000 В | 0,1 МВ — 700 В | 0,1 мние. | M93 | 2000 | 1mV — 400V | 0.1V — 400V | 0.1mA — 200mA | — | 1Ω — 2MΩ | — | — | |
M93A | 2000 | 1mV — 400 В | 0,1 В — 400 В | — | — | 1 Ом | — | — | ||||||
3320 9003 | 570 9005. 0 8. 01001501001001001100100100100100100100100100100100100100100100100100100100100100100100100100100100100100.0050 10µA — 10A | 10µA — 100mA | 0.1Ω — 20MΩ | — | — | |||||||||
M300 | 2000 | 1mV — 500V | 0.1V — 500V | 0.1mA — 200mA | — | 1 Ом — 2 МОм | — | — | ||||||
M320 | 4000 | 1MV — 400 В | ,10,10,10,10,10,1,10,10,1,10,1,10,1,00DA | ,10,1,00DA | ,10,1,1,00DA | ,1,00DA | ,1,00DA | ,1,00DAM50 900DAM50 900DAM50 900DAM50.0050 — | — | |||||
M3211D | 2000 | 0.1mV — 500V | 1mV — 500V | 0.1mA — 200mA | 0. 1mA — 200mA | 0.1Ω — 20MΩ | — | — | ||||||
M3900 | 2000 | 0.1mV — 1000V | 0.1mV — 700V | 10µA — 20A | 10µA — 20A | 0.1Ω — 20MΩ | — | — | ||||||
Fluke 87-5 | 20000 | 0,1 МВ — 1000 В | 0,1 МВ — 1000 В | 0,1 мкА — 10A | 0,1 мкА — 10A | 0,1,1,1, | 0,1 мкА — 10А | 0,1,1,1, | 05050.1900. | |||||
Fluke 114 | 6000 | 0.1mV — 600V | 0.1mV — 600V | — | — | 0.1Ω — 40MΩ | — | — | ||||||
Fluke 115 | 6000 | 0. 1mV — 600V | 0.1mV — 600V | 1mA — 10A | 1mA — 10A | 0.1Ω — 40MΩ | 1nF — 10mF | 50kHz | ||||||
Fluke 117 | 6000 | 0.1mV — 600V | 0.1mV — 600V | 1mA — 10A | 1mA — 10A | 0.1Ω — 40MΩ | 1nF — 10mF | 50kHz | ||||||
Fluke 175 | 6000 | 0.1 мВ — 1000В | 0.1mV — 1000V | 10µA — 10A | 10µA — 10A | 0.1Ω — 50MΩ | 1nF — 10mF | 100kHz | ||||||
Fluke 177 | 6000 | 0. 1mV — 1000V | 0.1mV — 1000V | 10µA — 10A | 10µA — 10A | 0.1Ω — 50MΩ | 1nF — 10mF | 100kHz | ||||||
Fluke 179 | 6000 | 0.1mV — 1000V | 0.1mV — 1000В | 10µA — 10A | 10µA — 10A | 0.1Ω — 50MΩ | 1nF — 10mF | 100kHz | ||||||
Fluke 787 | 30000 | 0.1mV — 1000V | 0.1mV — 1000V | 1 мкА — 1А | 1MA — 1A | 0,1 Ом — 40 мм | — | 20KHZ | ||||||
MY -61 | 2000 | 0,1MV -1000V | 0,1MV -1000V | 0.1MV -1000V | 0. 1MV -1000V | 0,1000. | 1 мА — 20 А | 0.1Ω — 200MΩ | 1pF — 20µF | — | ||||
MY-62 | 2000 | 0.1mV — 1000V | 0.1mV — 700V | 1mA — 20A | 1mA — 20A | 0.1Ω — 200MΩ | 1pF — 20µF | — | ||||||
MY-63 | 2000 | 0.1mV — 1000V | 0.1mV — 700V | 1mA — 20A | 1mA — 20A | 0.1Ω — 200 МОм | 1 пФ — 20 мкФ | 20kHz | ||||||
MY-64 | 2000 | 0.1mV — 1000V | 0.1mV — 700V | 1mA — 20A | 1mA — 20A | 0.1Ω — 200MΩ | 1pF — 20µF | 20kHz | ||||||
MY-65 | 20000 | 0.01mV — 1000V | 0.1mV — 700V | 0.1mA — 10A | 0.1mA — 10A | 0,01Ω — 200MΩ | 0.You may also likeРозетка таймер схема: виды, устройство, лучшие модели выключающихся розетокКак смазать пластиковые окна маслом: как и чем правильно смазывать фурнитуру и уплотнители?Болты самонарезающие по металлу: Винты самонарезающие по металлу по низким ценамШвеллеры размеры: размеры, вес, цена или как выбрать подходящий профиль |