Основные формулы для расчета прогиба балки
Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.
Балки в доме
При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно. Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.
Содержание
- 1 Виды балок
- 1.1 Деревянные
- 1.2 Стальные
- 2 Прочность и жесткость балки
- 3 Расчет на жесткость
- 4 Расчет моментов инерции и сопротивления сечения
- 5 Определение максимальной нагрузки и прогиба
- 6 Особенности расчета на прогиб
- 7 Пример подсчета прогиба
Виды балок
Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению. Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.
Деревянные
Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.
Деревянные перекрытия
Для расчета максимального прогиба следует учитывать:
- Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
- Форма поперечного сечения и другие геометрические характеристики.
- Различные виды нагрузки на материал.
Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.
Конструкции из древесины хвойных пород
Стальные
Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.
Стальные перекрытия
Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:
- электросварка;
- заклепки;
- болты, винты и другие виды резьбовых соединений.
Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.
Для проведения расчета балки на прогиб может помочь видео:
Прочность и жесткость балки
Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.
Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.
Существует два основных метода расчета прочности и жесткости:
- Простой. При использовании данного метода применяется увеличительный коэффициент.
- Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.
Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.
Расчет балок на прогиб
Расчет на жесткость
Для расчета прочности балки на изгиб применяется формула:
Где:
M – максимальный момент, который возникает в балке;
Wn,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.
Ry является расчетным сопротивлением стали при изгибе. Зависит от вида стали.
γc представляет собой коэффициент условий работы, который является табличной величиной.
Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:
- Составление расчетной схемы объекта.
- Расчет размеров балки и ее сечения.
- Вычисление максимальной нагрузки, которая воздействует на балку.
- Определение точки приложения максимальной нагрузки.
- Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
- Вычисление значения жесткости или максимально прогиба балки.
Чтобы составить расчетную схему, потребуются такие данные:
- размеры балки, длину консолей и пролет между ними;
- размер и форму поперечного сечения;
- особенности нагрузки на конструкцию и точно ее приложения;
- материал и его свойства.
Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.
Расчет моментов инерции и сопротивления сечения
Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:
Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.
Определение максимальной нагрузки и прогиба
Для точного определения прогиба балки, лучше всего применять данную формулу:
Где:
q является равномерно-распределенной нагрузкой;
E – модуль упругости, который является табличной величиной;
l – длина;
I – момент инерции сечения.
Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.
Особенности расчета на прогиб
Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:
- Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
- Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
- Варианты нагружения консольного стержня, который закреплен жестко.
- Действие на конструкцию сложной нагрузки.
Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.
Пример подсчета прогиба
Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:
- материал изготовления – древесина;
- плотность составляет 600 кг/м3;
- длина составляет 4 м;
- сечение материала составляет 150*200 мм;
- масса перекрывающих элементов составляет 60 кг/м²;
- максимальная нагрузка конструкции составляет 249 кг/м;
- упругость материала составляет 100 000 кгс/ м²;
- J равно 10 кг*м².
Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:
- вес одного метра балки;
- вес м2 перекрытия;
- расстояние, которое оставляется между балками;
- временная нагрузка;
- нагрузка от перегородок на перекрытие.
Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.
Если подставить все эти значения в формулу, то получится:
q = ( 60 + 250 + 75 ) * 0,6 + 18 = 249 кг/м.
Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].
Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.
Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.
Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.
Расчет балки на прогиб
вернуться в раздел РАСЧЕТЫ КМ И КЖ
Здесь представлены формулы расчета для нахождения значений изгибающих моментов и прогибов для различных балок.
Однопролетные балки на двух шарнирных опорах | ||
1 | Расчет балки на двух шарнирных опорах при одной сосредоточенной нагрузке | Смотреть расчет |
2 | Расчет балки на двух шарнирных опорах при двух сосредоточенных нагрузках | Смотреть расчет |
3 | Расчет балки на двух шарнирных опорах при одной равномерно-распределенной нагрузке | Смотреть расчет |
4 | Расчет балки на двух шарнирных опорах при одной неравномерно-распределенной нагрузке | Смотреть расчет |
5 | Расчет балки на двух шарнирных опорах при действии изгибающего момента | Смотреть расчет |
Балки с жестким защемлением на двух опорах | ||
6 | Расчет балки с жестким защемлением на опорах при одной сосредоточенной нагрузке | Смотреть расчет |
7 | Расчет балки с жестким защемлением на опорах при двух сосредоточенных нагрузках | Смотреть расчет |
8 | Расчет балки с жестким защемлением на опорах при одной равномерно-распределенной нагрузке | Смотреть расчет |
9 | Расчет балки с жестким защемлением на опорах при одной неравномерно-распределенной нагрузке | Смотреть расчет |
10 | Расчет балки с жестким защемлением на опорах при действии изгибающего момента | Смотреть расчет |
Балки с жестким защемлением на одной опоре (консольные) | ||
11 | Расчет однопролетной балки с жестким защемлением на одной опоре при одной сосредоточенной нагрузке | Смотреть расчет |
12 | Расчет однопролетной балки с жестким защемлением на одной опоре при одной равномерно-распределенной нагрузке | Смотреть расчет |
13 | Расчет однопролетной балки с жестким защемлением на одной опоре при одной неравномерно-распределенной нагрузке | Смотреть расчет |
14 | Расчет однопролетной балки с жестким защемлением на одной опоре при действии изгибающего момента | Смотреть расчет |
Балки двухпролетные | ||
15 | Расчет двухпролетной с шарнирными опорами при одной сосредоточенной нагрузке | Смотреть |
16 | Расчет двухпролетной с шарнирными опорами при двух сосредоточенных нагрузках | Смотреть |
17 | Расчет двухпролетной с шарнирными опорами при одной равномерно-распределенной нагрузке | Смотреть |
18 | Расчет двухпролетной с шарнирными опорами при одной неравномерно-распределенной нагрузке | Смотреть |
19 | Расчет двухпролетной с шарнирными опорами при одной неравномерно-распределенной нагрузке | Смотреть |
Калькулятор уравнений прогиба и напряжения для балки, опирающейся на оба конца при равномерной нагрузке
Калькулятор уравнений изгиба, прогиба и напряжения для балки, опираемой на оба конца при равномерной нагрузке
Прогиб балки, формула напряжения и калькуляторы
Уравнения момента инерции & Калькуляторы
Уравнения прогиба балки, напряжения, изгиба и калькулятор для балки с опорой на обоих концах при равномерной нагрузке Уравнения напряжения и прогиба и калькулятор.
Балки равномерного поперечного сечения, загруженного поперечно
Общая нагрузка («W»)
или
Нагрузка на давление (P)
Open
. Деталение луча, расщепление напряженного погрузки. Напряжение балки в любой точке
Напряжение балки в центре постоянного поперечного сечения
Прогиб балки в любой заданной точке
Максимальный прогиб балки в центре
С общей нагрузкой «Вт»
или
Максимальное отклонение балки в центре
С линейной нагрузкой «p»
Где:
5(Н/мм 2)
- Обратите внимание, буква « l » (строчная буква «L») отличается от буквы «I» (момент инерции).
- Прогибы относятся только к постоянным поперечным сечениям по всей длине.
Ссылки:
- Справочник по любому оборудованию, опубликованный с 1931 года или
- Справочник по машинному оборудованию, 21-е издание, стр. 404 или
- Справочник по машинному оборудованию, 23-е издание, стр. 260 или
- Справочник по машинному оборудованию, 27-е издание, стр. 261 или Стандартный справочник
- Marks для инженеров-механиков, десятое издание, 1996 г., стр. 297 (таблица 5.2.2)
- Справочник инженера-механика, под редакцией Майера Куца, John Wiley & Sons, Inc., 1986, стр. 414
- Эшбак, Справочник по инженерным основам, третье издание, серия инженерных справочников Wiley, 1974 г., стр. 518
- Механика материалов, Фердинанд П. Бир и Э. Рассел Джонстон-младший ISBN0-07-004291-8
Сопутствующие товары
- Уравнения прогиба балки, сдвига и напряжений и калькулятор для балки с опорой на один конец, консольно с реверсивной ограниченной конической нагрузкой
- Балка с опорой на один конец, штифт на противоположный конец и частичная распределенная нагрузка Уравнения прогиба, сдвига и напряжения и калькулятор
- Балка поддерживается одним концом, штифтом на противоположном конце и двумя отдельными частями с распределенной нагрузкой.
- Теории хрупкого разрушения Вычисление коэффициентов запаса Калькулятор электронных таблиц Excel
- Уравнения и калькулятор для балки, поддерживаемой одним концом, штифтом на противоположном конце и одной конической распределенной нагрузкой
- Уравнения прогиба балки, сдвига и напряжений и калькулятор для балки, поддерживаемой одним концом, штифтом на противоположном конце и двумя коническими распределенными нагрузками
- Усиление железобетонных балок на изгиб ламинатами FRP Калькулятор электронных таблиц
- Уравнения сдвига и напряжений и калькулятор для балки с опорой на один конец, штифтом на противоположном конце и треугольной распределенной нагрузкой
- Калькулятор для балки с опорой на один конец, штифтом на противоположном конце и одиночным моментом на конце
- Уравнения напряжения и калькулятор для балки с опорой на один конец, консольной в определенном месте и одинарной нагрузкой на конце
Таблицы отклонения балки | MechaniCalc
ПРИМЕЧАНИЕ. Эта страница использует JavaScript для форматирования уравнений для правильного отображения. Пожалуйста, включите JavaScript.
В таблицах ниже приведены уравнения для прогиба, наклона, сдвига и момента вдоль прямых балок для различных условий на концах и нагрузок. Вы можете найти исчерпывающие таблицы в таких справочниках, как Gere, Lindeburg и Shigley. Однако приведенные ниже таблицы охватывают большинство распространенных случаев.
Для получения информации об отклонении балки см. наш справочник по напряжениям и отклонениям в балках.
Консольные балки
Консоль, торцевая нагрузка |
| |||||||||||||||||||
Консоль, промежуточная нагрузка |
| |||||||||||||||||||
Консоль, равномерно распределенная нагрузка |
| |||||||||||||||||||
Консоль, треугольная распределенная нагрузка |
| |||||||||||||||||||
Консоль, Конечный момент |
|
Просто поддерживаемые балки
Просто поддерживаемые, промежуточная нагрузка |
Для a ≥ b:
| |||||||||||||||||||||
Простая опора, центральная нагрузка |
| |||||||||||||||||||||
Просто поддерживаемый, 2 нагрузки на равном расстоянии от опор |
| |||||||||||||||||||||
Простая опора, равномерная распределенная нагрузка |
| |||||||||||||||||||||
Простая опора, момент на каждой опоре |
| |||||||||||||||||||||
Простая опора, момент в одну опору |
| |||||||||||||||||||||
Простая опора, центральный момент |
|
Фиксированные-Фиксированные балки
Фиксированные-Фиксированные, центральная нагрузка |
| |||||||||||||||
Фиксированная-фиксированная, равномерная распределенная нагрузка |
|
Ознакомьтесь с нашим калькулятором луча, основанным на методологии, описанной здесь.