Разное

Для чего нужны трансформаторы тока для счетчика: Измерительный трансформатор тока. Что это и зачем он нужен?

Для чего нужны трансформаторы тока для счетчика: Измерительный трансформатор тока. Что это и зачем он нужен?

Содержание

Измерительный трансформатор тока. Что это и зачем он нужен?

Введение

Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать,  используя аппараты только в силовых цепях.

Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.

В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется

трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.

Технические характеристики и режим работы

Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).

С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А.

Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.

Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом. 

Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.

Применение

Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например,  до стандартных 5 Ампер.

Современный рынок предлагает решения совместимые как с  проводами, так и с шинами.

Важное замечание

Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене  аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.

Трансформаторы тока выполняют не только важные задачи  отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.

Что такое и для чего нужен трансформатор тока 

Автор Alexey На чтение 4 мин. Просмотров 179 Опубликовано Обновлено

При использовании различных энергетических систем возникает необходимость в преобразовании определенных величин в аналоги с пропорционально измененными значениями.

Такая операция позволяет воссоздавать процессы в электронных устройствах, гарантируя безопасные учет их потребления. Для этого используется специальное оборудование — трансформатор тока наружной установки.

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.

Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

Подключение счетчика через трансформаторы тока представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

Трансформатор для счетчика электроэнергии

Электроэнергия, как и любой другой вид энергии, для потребителей является товаром. Чтобы знать о количестве произведённой и потребляемой энергии, нужны соответствующие средства учёта. Для населения такими средствами учёта потребляемой энергии служат электросчётчики. Существует много видов счётчиков, различающихся как по схеме внешнего электроснабжения, так и по мощности, которую расходует потребитель электроэнергии.

Так, для однофазных сетей напряжением 220 вольт применяют бытовые электросчётчики различных моделей с максимальным током до 40 ампер. Для электрических сетей напряжением 380 вольт применяют трехфазные счётчики. В зависимости от нагрузки счётчики делятся на счётчики прямого включения, полукосвенного и косвенного включения. В счётчиках косвенного включения применяется схема, при которой потребляемая нагрузка подключается через трансформаторы тока. Такая схема подключения позволяет измерять высокую потребляемую мощность приборами, рассчитанными на низкие показатели мощности. При помощи измерительных трансформаторов происходит перерасчёт потребляемой электроэнергии с соответствующим трансформатору тока коэффициентом.

Принцип работы трансформатора тока

Трансформаторы тока — это электрические устройства, преобразующие ток нагрузки до величины, при котором прибор учёта электроэнергии будет работать в нормальном режиме. Такие приборы применяют для того, чтобы измерять большую мощность потребления электроэнергии, когда при другом способе включения есть вероятность выхода перегорания токовой катушки электросчётчика из-за большой величины измеряемого тока и, следовательно, выходу прибора учёта из строя.

Рассмотрим, как работают эти устройства.

  • Через первичную силовую обмотку, имеющую какое-либо сопротивление, протекает ток, формируя вокруг этой катушки магнитный поток. Этот поток улавливается магнитопроводом.
  • Магнитопровод — это конструкция, собранная из тонких пластин специальной электротехнической стали, которые изолируются друг от друга с помощью специальной плёнки и предназначается для замыкания магнитного потока.

А также на него устанавливают и крепят обмотки и отводы трансформатора. Этот магнитный поток пересекает расположенные перпендикулярно ему витки вторичной обмотки и наводит в ней ЭДС, под действием которой во вторичной обмотке образуется ток. Соотношение токов в первичной и вторичной обмотках трансформатора называется коэффициентом трансформации.

Трансформаторы тока по коэффициенту трансформации имеют обширную линейку значений и обозначаются как 10/5, 20/5, 100/5 и другие. В этом обозначении первая цифра указывает на максимальный ток нагрузки (ток в первичной цепи), вторая цифра указывает на ток измерительного прибора (ток вторичной цепи). Частное между этими значениями и есть коэффициент трансформации. Следовательно, измерительные трансформаторы преобразуют высокую мощность нагрузки потребителя в небольшую, удобную для проведения измерений.

Благодаря такому конструктивному решению в счётчиках электроэнергии не нужно делать мощные токовые катушки, что обеспечивает надёжную защиту приборов учёта от перегрузок и короткого замыкания, ремонт системы учёта обходится гораздо дешевле, так как замена сгоревшего трансформатора тока гораздо экономичнее замены вышедшего из строя электросчётчика.

Варианты схем подключения трехфазных счётчиков

Варианты подключений электросчётчиков могут быть различными, и определяются они в первую очередь мощностью нагрузки. Рассмотрим варианты подключений приборов учёта:

  • Прямое подключение. В этом случае счётчик напрямую включается в линию электроснабжения и, следовательно, весь ток, потребляемый нагрузкой, проходит через него. Плюсом этой схемы является простота подключения, так как для подключения достаточно подключить кабели только на входе в прибор и выходе из него. Максимальная мощность, которая может быть в этом случае равна 60 кВт. Такие приборы запрещается использовать с трансформаторами тока.
  • Полукосвенное включение. Такой вариант применяется в том случае, если мощность нагрузки превышает 60 кВт. Для реализации этой схемы нужны трансформаторы тока. Особенностью такого типа подключения является то, что вместо первичной обмотки трансформатора используется электрический провод. Существует три схемы, с помощью которых можно организовать измерение расхода потребляемой электроэнергии. Во-первых, это десятипроводная схема. При такой схеме подключения три провода подключается на вход токовых обмоток, ещё три провода на вход обмоток напряжения и три провода на выход токовых обмоток. И также ещё должна быть подключена нейтраль. Реализация этой схемы обеспечивает большую электробезопасность, но требует большего количества проводов, чем при других схемах подключения. При снятии показаний с таких приборов учёта нужно показания электросчётчика умножать на коэффициент трансформации трансформаторов тока. Во-вторых, существует семипроводная схема подключения. Ещё такая схема называется подключение типа «звезда». При такой схеме подключения одна сторона вторичных обмоток измерительных трансформаторов соединяется между собой перемычками и объединяется с нейтралью. Остальные провода подключаются аналогично десятипроводной схеме.
  • Косвенное включение. Такие схемы подключения применяются лишь на промышленных предприятиях. Их принципиальное отличие в том, что для реализации схемы подключения используются ещё и трансформаторы напряжения.

Установка трехфазного электросчётчика

Хотя в установке электросчётчика особых сложностей нет лучше, чтобы эту работу выполняли квалифицированные специалисты. Рассмотрим установку трехфазного электросчётчика с измерительными трансформаторами на примере счётчика Меркурий. Эта модель счётчиков является одной из самых распространённых в нашей стране.

Прежде чем приступить к монтажу электросчётчика рекомендуется выполнить монтаж входного автоматического выключателя. Наличие такого автоматического выключателя поможет более безопасному и быстрому выполнению различных ремонтных или профилактических работ. Далее, устанавливается непосредственно счётчик Меркурий и трансформаторы тока. Затем осуществляется монтаж проводов на клеммную колодку счётчика в соответствии со схемой подключения. Включив автоматический выключатель, проверяется работоспособность прибора учёта по счётчику показаний электроэнергии.

Счётчики учёта электроэнергии старого поколения типа Меркурий с трансформаторами тока в наше время вытесняются более передовыми и эффективными средствами учёта электроэнергии. Трехфазные счётчики нового поколения Меркурий можно программировать на различные режимы работы, менять тарифный план и даже дистанционно передавать показания электроэнергии.

Применяя энергосистемы различного вида нужно быть готовым к особым моментам. Из-за них нужно совершить преобразование электрических величин в идентичные с обозначенным соотношением. Трансформаторы тока для электросчетчиков разработаны с целью существенного расширения типовых границ измерений устройствами учета.

Общие требования

Энергомер разработан специально для определения величины расходуемой мощности электрических устройств и для упрощения расчетов нагрузки на розетку. Обучение тому, как им пользоваться происходит быстро. Ведь помогает инструкция по использованию.

Принцип работы и назначение измерительного трансформатора

Нужны достижения определенных показателей, при которых верно функционирует оборудование. Монтаж приборов нужно поручить опытным специалистами. Они должны обладать группой допуска к электротехническим работам как минимум третьего уровня. А перед монтированием трансформаторов тока (ТТ) нужно проверить механизм на присутствие изъянов. Они могут возникнуть в результате неправильной сборки или повреждений.

Измерительные трансформаторы превращают базовые сведения электрических цепей (напряжение или ток), сокращая их количество до предписанного значения. Работают аппараты по-разному. Это обусловлено их внутренним механизмом и предназначением.

Обозначение упрощает обращение с ними. Оно поможет выбрать наиболее подходящий механизм. Маркировка прибора обусловливается типом механизма. Например, ТТ свойственны такие обозначения, как: «Т» (1-ая буква) – трансформатор тока. А 2-ая буква в названии указывает на тип механизма.

Обозначения и их значения:

Третья буква обозначается вещество изоляции. Правильное изолирование токопроводящих деталей способствует безопасности.

Обозначения веществ изоляции и их значения:

После букв есть числовые обозначения. Эти обозначения указывают коэффициент трансформации, климат и класс изоляции.

Схемы подключения трехфазного счетчика электроэнергии

Только верно присоединенный счетчик правильно определяет и контролирует количество используемого тока. Поэтому прибор следует верно присоединить. Схема монтирования обусловливается видом.

Полукосвенная

В сеть монтируется с ТТ. Поэтому возможно присоединять в сети с высокими мощностями. Разрешается до 60 кВт. Применяя этот метод учета, для установления трат стоит разность показателей умножать на определенное значение трансформации.

Десятипроводная

Она пользуется большой популярностью. Именно ее эксперты советуют устанавливать сейчас. Ведь она имеет ряд преимуществ. У них нет гальванической связи токовых цепей прибора учета и цепей напряжения. Поэтому подключать ее гораздо безопаснее. А еще благодаря ей удобнее проводить манипуляции.

Не нужно отключать установки при смене счетчика или при проведении различных манипуляций. Он отличается правильностью. Ведь сбор сведений по всем фазам происходит независимо. Если происходит нарушение цепей учета по какой-то из фаз, функционирование учета на других фазах продолжается.

3х-фазный счетчик для правильного функционирования монтировать аккуратно. Особенное внимание стоит уделить маркировке. 10-проводная требует больше проводов, чем остальные схемы.

10-проводная имеет недостаток: значительный расход проводника для сборки вторичных цепей учета.

Семипроводная

Свое название получила из-за числа проводов, применяемых во время присоединения. Считается устаревшей, хоть и встречается.

Трансформаторный счетчик должен иметь контактную панель. Если ее нет, то должна присутствовать колодка. Они служат проводником соединения. Их располагают посреди электрического шнура и счетчика.

С совмещенными цепями

Во время этого способа цепи напряжения подсоединяют к токовым цепям монтажом соединений на ТТ.

Звезда

  • все типы КЗ проводят ток индивидуально. А гарантия безопасности и функционирования, созданная данным способом, откликается на любое КЗ;
  • ток в реле принадлежит к фазному;
  • ток нулевой последовательности, не проходящий через реле, не выйдет за грани треугольника ТТ.

Неполная

Устанавливать неполную звезду стоит лишь в сетях, где есть нулевые изолированные точки. Они ограждают от междуфазных КЗ. Она откликается лишь на отдельные появления КЗ однофазного.

Полная

Если есть глухозаземлённая нейтраль, то нужно присоединение ТТ к трём фазам.

Косвенное

Если в сети аппараты, использующие энергию электричества, тратят ее больше номинального значение силы тока, проходящего сквозь счётчик тогда стоит вмонтировать разделительные ТТ. Присоединяют их в разрыв силовых токоведущих шнуров.

С двумя ТТ

В сетях 380 В, при образовании систем учёта расходуемой мощи больше 60кВт, 100А электросчетчик устанавливают, применяя косвенную схему присоединения трехфазного через ТТ. Это помогает измерять большую используемую мощь при помощи аппаратов учёта для меньшей мощи, используя коэффициент пересчёта показателей устройства.

Меркурий 230

Схемы сборки счетчика Меркурий с применением ТТ отличаются сложностью. Подключающий не должен забывать в процессе об ответственности. Обычно он применяется в сети 380 вольт.

В фильтр токов нулевой последовательности

Если есть однофазовое и двухфазное КЗ “земля”, то выявляются токовые объемы в реле.

Как правильно подключить счетчик через трансформаторы тока и напряжения

Почти у всех счетчиков присутствует изображение того, как верно устанавливать их. Там есть обозначение контактов. А еще подробные обмоточные данные есть в паспорте.

Как выбрать трансформатор

Перед тем, как отдать предпочтение какому-то виду счетчика следует прочитать пункт 1.5.17 ПУЭ. Там написано, что объем вторичной обмотки не должен опускаться меньше 40% от установленного при самой большой нагрузке, ниже 5% при минимальной.

Стоит проследить за тем, чтобы была установлен лишь верный порядок фаз A, B, C. Фазометр определит это.

Еще стоит наблюдать за U и I. Первое значение должно быть равно напряжению или быть выше его, а второе, силе тока.

3 однофазных аппарата заменят трехфазный. Но, стоит знать, что каждый нуждается в своем преобразователе, что делает монтаж сложнее.

Прямого или непосредственного включения

Прямым включением агрегата называется непосредственное присоединение к системе в 220 и 380 В. Данное монтирование счетчика в электрическую линию отличается простотой. Нужно подсоединить окончания кабеля с обеих сторон.

При обычном наборе приборов этот метод подключения себя эффективен.
Но если среди приборов есть котел отопления, то метод нужно поменять на другой.

Однофазная цепь

Однофазная цепь состоит из двух шнуров. По одному из них ток поступает к пользователю, а по-другому идет обратно. При разъединении цепи ток не пройдет.

Узел счета — место соединения трансформатора тока с несущим проводником. Обычно им является электрошкаф со счетчиком.

Класс точности

Если верно выбрать ТТ, то покупатель сможет подключить замерные и защитные устройства к линиям высокого напряжения. Степень класса точности — самый важный параметр. Он указывает на погрешность измерения. Она не должна превышать критерии установленных государственных норм. Класс точности обусловливается базовыми особенностями. Туда входят погрешность по току и углу, а также индекс относительной полной погрешности. 2 первых коэффициента обусловливаются током намагничивания.

В аппаратах промышленного применения применяются несколько видов точности: 0.1, 0.5, 1.0, 3.0 и 10Р.

Согласно ГОСТу, класс точности должен быть ориентирован на токовые погрешности. Например, для коэффициента в ± 40 необходим класс 0.5, а для ±80—класс 1.0. Необходимо заметить, что классы 3.0 и 10Р согласно правилам не нормируются. Буква “S” указывает на класс точности в границах 0.01-1.2. Класс 10Р применяется для защиты. Относительная полная погрешность нормирования не превышает 10%.

Разрешается применения аппаратов с классом точности 1.0. Но применять их можно лишь, если у счетчика класс точности в две единицы.

Замена трансформаторного устройства нужна, если:

  • электросчетчики с классом точности ниже 2.0. В частности, аппараты фиксирования с показателем погрешности 2,5;
  • просроченной датой обязательной проверки;
  • с прошедшим сроком использования;
  • отсутствует пломба государственной инспектирующей организации.

Использование переходной испытательной коробки

  • монтирование в узел учета эталонного устройства учета;
  • ориентирование тока в электрической цепи через токовые петли;
  • выключение токовых цепей;
  • присоединение фазных проводников на устройстве учета.

Испытательная переходная коробка (КИП) создана для «закоротки» (шунтирования) токовых цепей.

Особенности монтажа электронного счетчика

Электрический счетчик разрешено монтировать прямым способом. А еще его можно смонтировать с помощью ТТ, применяющиеся в предприятиях.

Выбирая электросчетчик стоит обязательно учитывать общую мощь расходуемой энергии. Если расход составляет при одновременно включенных устройствах порядка 7 кВт, счетчик можно установить на 5-40А, но лучше, если поставить его на 5-60А.

Щит в квартиру выбирают в соответствии с номенклатурой и габаритами планируемого оборудования.

В отличие от трансформатора напряжения у трансформатора тока режим холостого хода является аварийным. Результирующий магнитный поток в магнитопроводе ТТ равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя («пожар стали»). Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединённого к нему измерительного прибора. В случае необходимости отключения измерительного прибора от вторичной обмотки трансформатора тока, её обязательно нужно закоротить. Согласно ПУЭ вторичная обмотка ТТ обязательно должна заземляться (для защиты от поражения электрическим током при пробое изоляции, либо при индуктировании высокого напряжения из-за обрыва вторичной цепи).

Для учета потребления электрической энергии на производственных площадках, а также так называемых общедомовых нужд, используются трехфазные электросчетчики. Их подключение и обслуживание производится по тем же правилам, которые существуют для однофазных приборов учета. Однако они работают с токами больших величин, поэтому существуют отличия в построении схемы подключения – она бывает прямой или через трансформаторы тока.

Общие принципы измерения количества электроэнергии

Электросчетчики определяют количество потребленной электрической мощности за единицу времени. За единицу измерения принят киловатт*час (кВт*ч). Чтобы получить необходимое значение, схему прибора строят из двух независимых цепей – тока и напряжения.

Устройство электромеханических (индукционных) счетчиков наиболее наглядно демонстрирует это. В них для каждой измеряемой фазы предусмотрено две катушки, расположенные в пространстве под углом в 90 0 друг к другу. Этот же принцип используется при формировании массива статорной обмотки однофазного электродвигателя.

Разница лишь в том, что по одной из них пропускается ток, а по другой – напряжение. Для этого первая включается последовательно измеряемой фазе, а другая – параллельно. Схема подключения однофазного счетчика электроэнергии приведена ниже.

В точке, где к фазной линии подключается катушка напряжения, в индукционных счетчиках расположен регулировочный винт, который пломбируется на заводе-изготовителе или представителями энергоснабжающих организаций. При его отсутствии или ослаблении в показания счетчика вкрадывается недопустимая погрешность.

В приборах с электронной схемой также существует две линии – тока и напряжения, но фазный сдвиг на 90 0 между ними формируется не пространственным расположением, а применением элементов электронной схемы – резисторов и конденсаторов. Так называемый винт напряжения отсутствует, соединение осуществляется пайкой, оно находится внутри корпуса, защищенного от вскрытия заводскими пломбами.

Отличие трехфазного от однофазного прибора учета лишь в количестве пар измерительных катушек, а также зажимов на клеммной колодке. При этом принцип подключения остается тем же: абстрагируясь от того, что ток переменный, направление движения электроэнергии считается односторонним – от поставщика к потребителю. Поэтому все клеммные зажимы приборов учета расположены слева направо. Так, чтобы их положение совпадало с порядком подключения проводов.

Почему существует два типа схем подключения

Измерительная пара является самым уязвимым местом в конструкции электрического счетчика. В меньшей степени это утверждение касается индукционных приборов, где катушки созданы из витков медного провода. И в большей – так называемых цифровых моделей, в которых подсчет протекающей электрической энергии осуществляется полупроводниковой микросхемой.

Если сравнивать технические характеристики разных моделей – как в пределах одного бренда, так и между ними, то бросается в глаза характерная деталь: везде номинальным током является значение 5 ампер. Однако это условие невозможно соблюсти, если суммарная мощность потребителей превышает 50 кВт. Поэтому существует два типа схем подключения трехфазных электросчетчиков.

  1. Прямая, использующаяся в сетях, токи нагрузки в которых не превышают 50 ампер.
  2. Через понижающие трансформаторы, которые уменьшают токи до значений, безопасных для прибора учета.

Что такое трансформаторы тока

Номинал напряжения в трехфазных сетях переменного тока всегда 380 вольт. Он не зависит от суммарной мощности потребления. Поэтому для защиты приборов учета в высоконагруженных сетях применяются трансформаторы тока.

Это электромеханические устройства, конструкция которых состоит из металлического сердечника и двух обмоток – первичной, с меньшим количеством витков медного провода, и вторичной, в которой число витков больше на фиксированное число раз. Это соотношение и определяет так называемый коэффициент трансформации – величину уменьшения выходного тока относительно входного.

Несмотря на принципиальное сходство, трансформаторы тока имеют существенные конструктивные отличия от трансформаторов напряжения. Во-первых, это всегда понижающее устройство. Во-вторых, первичная обмотка выполнена в виде металлической пластины – обычно плоской, толщиной не менее 3 мм и шириной от 2 до 5 сантиметров, поэтому попытка подключить входные клеммы между фазой и нейтралью вызовет короткое замыкание.

Замкнутый стальной магнитопровод имеет форму тора или квадрата, из-за чего корпус трансформатора тока бывает в форме бочонка или параллелепипеда. Выходные клеммы располагаются на одной из его боковых граней и имеют сечение в два-три раза меньшее, чем входные, находящиеся на торце.

На корпусе трансформаторов тока указывается соотношение максимального входного тока и его величина на выходе. Например, 100/5 или 150/5. В первом случае коэффициент трансформации равен двадцати, а во втором – тридцати. На это значение надо умножать показания электросчетчика, чтобы получить истинное значение количества потребленной электрической энергии.

На электрических схемах трансформаторы тока изображаются в виде короткой жирной линии и расположенного на или под ней мнемосимвола катушки индуктивности. Возле них пишут буквы ТТ. В отличие от трансформаторов напряжения, символ которых состоит из двух катушек и линии между ними, а также букв ТН.

Подключение трансформаторов тока

Схема подключения понижающего трансформатора тока представлена на рисунке ниже.

Он включается в разрыв измеряемой фазы – его первичная обмотка является ее конструктивным продолжением. Выходы вторичной обмотки замыкаются друг на друга через любой измерительный прибор. Например, амперметр.

Схема подключения трансформатора тока к счетчику представлена на рисунке ниже. В этом случае вторичная обмотка замкнута на токовую катушку счетчика электрической энергии.

Клеммная коробка трехфазного прибора учета, рассчитанного на подключение через трансформаторы тока, состоит из трех групп по три зажима в каждой и одной с двумя. При его подключении надо руководствоваться простым мнемоническим правилом, что движение происходит слева направо.

  • Клемма И1 вторичной катушки трансформатора тока подключается к зажиму 1.
  • От клеммы L1 – вход первичной обмотки трансформатора – тянется провод к зажиму 2.
  • Клемма И2 вторичной катушки трансформатора тока подключается к зажиму 3.

Остальные две фазы и трансформаторы тока коммутируются с прибором учета аналогичным образом к клеммам под номерами 4 – 9. К клеммам 10 и 11 присоединяется провод N (обратите внимание, что провод защитного сопротивления РЕ – это не одно и то же).

Допускается подключение провода от клеммы L1 к зажиму И1 трансформатора тока с целью экономии материала. Но в этом случае надо сделать перемычку между первым и вторым зажимом в группе на клеммной коробке счетчика электроэнергии.

При опечатывании счетчиков защищается от преднамеренного вскрытия не только их клеммная коробка, но и измерительные зажимы И1 И2, закрываемые колпачками на винте.

Нагрузка подключается к клеммам L2 трансформаторов. В результате получается, что через прибор учета пропущен лишь уменьшенный ток, что и отличает эту схему от прямого подключения, когда вся мощность пропускается через электросчетчик.

Влияние трансформаторов тока на точность измерений

Величина КПД современных трансформаторов тока не ниже 95 и не выше 98 процентов. Это близко к идеалу, но всё же может оказывать влияние на показания приборов, поскольку часть энергии рассеивается. Погрешность тем выше, чем больше суммарная мощность подключенных потребителей. Если она меньше 50 кВт, то не рекомендуется использование схемы подключения через трансформаторы тока.

Если вы используете схему подключения через трансформаторы тока, то при передаче показаний электросчетчика не забывайте умножать их на величину коэффициента трансформации.

Подключение счетчика через трансформаторы тока

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

В статье про схемы подключения электросчетчиков прямого включения мы познакомились с подключением однофазных и трехфазных электросчетчиков прямого, или его еще называют, непосредственного включения в сеть.  В той же статье я упоминал, что существует способ подключения электросчетчиков и через трансформаторы тока и напряжения.

Давайте рассмотрим на примере трехфазных счетчиков самые распространенные схемы.

Счетчики необходимы для учета электроэнергии потребителями в трехпроводных и четырехпроводных сетях переменного тока с частотой 50 (Гц).

Трехфазные счетчики электрической энергии выпускаются на напряжение 3х57,7/100 (В) или 3х230/400 (В).

Подключение счетчиков электрической энергии к вышеперечисленным сетям осуществляется через измерительные трансформаторы тока (ТТ) со вторичным током 5 (А) и трансформаторы напряжения (ТН) со вторичным напряжением 100 (В).

При подключении счетчика необходимо строго следить за полярностью начала и конца обмоток трансформаторов тока, как первичной (Л1 и Л2), так и вторичной (И1 и И2). Также необходимо соблюдать полярность обмоток трансформатора напряжения (подробнее об этом Вы можете почитать в статье про трансформатор напряжения НТМИ-10).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.

 

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.

 

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока

ТТ1 — ТТ3 — трансформаторы тока.  

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик ЦЭ6803В 3х220/380 (В), 1-7,5 (А).

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моей статьи про схему подключения трехфазного счетчика ПСЧ-4ТМ.05.04 в четырехпроводную сеть напряжением 380/220 (В) с помощью 3 трансформаторов тока.

 

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока

ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.

 

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 2 трансформаторов напряжения

ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

Рекомендую Вам при подключении счетчиков электроэнергии обязательно применять цифровую и буквенную маркировку проводов вторичных цепей, чтобы облегчить Вам и Вашим коллегам дальнейшую эксплуатацию и обслуживание.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Выбор трансформаторов тока для электросчетчика 0,4кВ

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока. 

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

Обычно 5А.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066  200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066  200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться  данными таблицы:

Выбор трансформаторов тока по нагрузке

Обращаю ваше внимание, там есть опечатки

Советую почитать:

Учет с применением измерительных трансформаторов / ПУЭ 7 / Библиотека / Элек.ру

1.5.16. Класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5. Допускается использование трансформаторов напряжения класса точности 1,0 для включения расчетных счетчиков класса точности 2,0.

Для присоединения счетчиков технического учета допускается использование трансформаторов тока класса точности 1,0, а также встроенных трансформаторов тока класса точности ниже 1,0, если для получения класса точности 1,0 требуется установка дополнительных комплектов трансформаторов тока.

Трансформаторы напряжения, используемые для присоединения счетчиков технического учета, могут иметь класс точности ниже 1,0.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке не менее 5%.

1.5.18. Присоединение токовых обмоток счетчиков к вторичным обмоткам трансформаторов тока следует проводить, как правило, отдельно от цепей защиты и совместно с электроизмерительными приборами.

Допускается производить совместное присоединение токовых цепей, если раздельное их присоединение требует установки дополнительных трансформаторов тока, а совместное присоединение не приводит к снижению класса точности и надежности цепей трансформаторов тока, служащих для учета, и обеспечивает необходимые характеристики устройств релейной защиты.

Использование промежуточных трансформаторов тока для включения расчетных счетчиков запрещается (исключение см. в 1.5.21).

1.5.19. Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений.

Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5% при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков.

Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5% номинального напряжения.

1.5.20. Для присоединения расчетных счетчиков на линиях электропередачи 110 кВ и выше допускается установка дополнительных трансформаторов тока (при отсутствии вторичных обмоток для присоединения счетчиков, для обеспечения работы счетчика в требуемом классе точности, по условиям нагрузки на вторичные обмотки и т. п.). См. также 1.5.18.

1.5.21. Для обходных выключателей 110 и 220 кВ со встроенными трансформаторами тока допускается снижение класса точности этих трансформаторов тока на одну ступень по отношению к указанному в 1.5.16.

Для обходного выключателя 110 кВ и шиносоединительного (междусекционного) выключателя 110 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока (имеющими не более трех вторичных обмоток) допускается включение токовых цепей счетчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5; при этом допускается снижение класса точности трансформаторов тока на одну ступень.

Такое же включение счетчиков и снижение класса точности трансформаторов тока допускается для шиносоединительного (междусекционного) выключателя на напряжение 220 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока и на напряжение 110-220 кВ со встроенными трансформаторами тока.

1.5.22. Для питания цепей счетчиков могут применяться как однофазные, так и трехфазные трансформаторы напряжения, в том числе четерех- и пятистержневые, применяемые для контроля изоляции.

1.5.23. Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.

Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.

Конструкция сборок и коробок зажимов расчетных счетчиков должна обеспечивать возможность их пломбирования.

1.5.24. Трансформаторы напряжения, используемые только для учета и защищенные на стороне высшего напряжения предохранителями, должны иметь контроль целости предохранителей.

1.5.25. При нескольких системах шин и присоединении каждого трансформатора напряжения только к своей системе шин должно быть предусмотрено устройство для переключения цепей счетчиков каждого присоединения на трансформаторы напряжения соответствующих систем шин.

1.5.26. На подстанциях потребителей конструкция решеток и дверей камер, в которых установлены предохранители на стороне высшего напряжения трансформаторов напряжения, используемых для расчетного учета, должна обеспечивать возможность их пломбирования.

Рукоятки приводов разъединителей трансформаторов напряжения, используемых для расчетного учета, должны иметь приспособления для их пломбирования.

Выбор трансформаторов тока

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5. Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Описание трансформаторов тока

(ТТ) — Continental Control Systems, LLC

Обзор

Трансформаторы тока (ТТ) измеряют величину электрического тока, протекающего в проводнике. Счетчик WattNode ® , который также измеряет напряжение, использует измерения тока и напряжения для расчета мощности и энергии (кВт и кВтч).

CCS продает только «безопасные» низковольтные выходные трансформаторы тока. Этот тип ТТ откалиброван для вывода точно 0,333 В, когда ток, протекающий в первичной обмотке ТТ (размыкание), равен номинальному току полной шкалы ТТ.

Чтобы выбрать ТТ, мы рекомендуем сначала выбрать стиль, либо ТТ с открытием (с разъемным сердечником), либо ТТ с твердым сердечником, а затем выбрать нужную модель на основе максимального измеряемого тока нагрузки и размера проводника. находится под наблюдением.

ВНИМАНИЕ! Счетчики WattNode могут использоваться только с выходными трансформаторами тока 0,333 В. Другие типы трансформаторов тока могут генерировать смертельно опасное высокое напряжение, которое может необратимо повредить оборудование.

CT Стили

  • ТТ с разъемным сердечником (отверстие) имеют съемную секцию, так что их можно устанавливать, не прерывая цепь, и они доступны в трех размерах отверстия.
  • ТТ
  • с твердым сердечником (тороидальные) более компактны и точны. Для установки ТТ с твердым сердечником необходимо отключить измеряемую цепь, чтобы они лучше подходили для новой проводки или постоянной установки.
  • ТТ шинопровода
  • также являются ТТ с разъемным сердечником, но доступны в больших размерах и с более высокими номинальными токами. У них есть съемная секция, поэтому их можно устанавливать, не прерывая электрическую цепь.

CT Размеры отверстия

CT имеют размер, соответствующий измеряемому проводнику.Размеры отверстий прямоугольного разъемного сердечника включают 0,35, 0,75, 1,25 и 2,0 дюйма. ТТ с твердым сердечником доступны с отверстиями от 0,3 ″ до 1,25 ″. Типы шинопровода доступны практически с любым размером отверстия от 1 ″ x 2,5 ″ до 8 ″ x 24 ″.

Диапазоны тока ТТ

Доступны стандартные трансформаторы тока

с номинальными токами полной шкалы от 5 до 3000 ампер. Катушки Роговского CTRC и трансформаторы тока шин по индивидуальному заказу доступны с номинальным током до 6000 А.

См. Также


Ключевые слова: трансформатор тока , трансформатор тока с разъемным сердечником, тороидальный сердечник, трансформатор тока размыкания, шина

Трансформаторы тока для измерения | Подсказка Energy Sentry Tech

Есть два типа электросчетчиков: автономные (с прямым приводом) и трансформатор номинальный.

Большинство счетчиков, используемых в домах или на фермах, являются автономными. Вся использованная электроэнергия проходит через счетчик. Эти счетчики предназначены для использования в сетях до 200 ампер. Трансформаторы тока содержатся внутри.

При потреблении тока более 200 ампер используются счетчики с трансформаторным номиналом. Как следует из названия, в этих типах счетчиков используются трансформаторы тока (ТТ) для измерения тока или общей потребляемой мощности. Информация регистрируется счетчиком.

В трансформаторах тока типа «пончик» есть два проводника или обмотки. Первичная обмотка — это линейный проводник, проходящий через центр трансформатора тока. Вторичная обмотка представляет собой множество витков магнитной проволоки вокруг сердечника.

Трансформатор трансформатора тока преобразует первичный ток линейного проводника в меньший, более легко управляемый ток, который подается на измеритель, который прямо пропорционален первичному току. Этот ток обратно пропорционален количеству вторичных витков провода вокруг железного сердечника.

Для ТТ на 200: 5А коэффициент передачи составляет 40: 1, что дает вторичный ток 1/40 первичного тока. Для трансформатора тока на 400: 5 А коэффициент трансформации составляет 80: 1, что дает вторичный ток, составляющий 1/80 первичного тока.

Номинальная нагрузка (B) — это полное сопротивление цепи, подключенной ко вторичной обмотке. Этот импеданс является полным противодействием протеканию тока в цепи переменного тока. Рейтинг нагрузки — это максимальное значение импеданса перед превышением минимальных пределов точности.

Разница в коэффициенте тока между фактическим (первичным) и измеренным (вторичным) током приводит к тому, что обычно называют множителем. Поправочный коэффициент — это коэффициент, на который необходимо умножить показания ваттметра, чтобы скорректировать влияние коэффициента ошибок и фазового угла трансформатора тока.

Ищете ТТ измерительного класса для вашей программы измерения теплового расхода?
У нас есть решение!

Высококачественные измерительные трансформаторы тока

Если ваша программа теплового тарифа требует учета накопленного тепла, тепла плинтуса, двойного топлива или любого другого электрического тепла, низкокачественные трансформаторы тока просто не подходят.

Наши измерительные трансформаторы тока изготовлены из сердечников из многослойной кремнеземной стали высшего качества и соответствуют стандарту IEEE C57.13. стандарты.

Доступные передаточные числа Точность при BO.1 / 60 Гц Номинальный коэффициент Частота Класс изоляции
100: 5A 1,2 1,5 @ 30 ° C 50-400 Гц 600 В
200: 5A.03 1,5 @ 30 ° C 50-400 Гц 600 В
Следующий технический совет: трансформаторы тока для контроллеров нагрузки

простых шагов для выбора подходящего трансформатора тока


Нет ничего более неприятного, чем прибыть на место проекта, чтобы завершить установку счетчика, только для того, чтобы понять, что у вас нет подходящего трансформатора тока в вашем наборе инструментов. Отсутствие подходящих инструментов для любой работы — пустая трата времени и денег.Чтобы избежать этого, небольшое предварительное планирование имеет большое значение.

Трансформаторы тока

доступны в различных стилях, размерах и диапазонах силы тока. Они также различаются по производительности и точности. При таком большом количестве переменных иногда бывает сложно выбрать правильный CT для проекта. Либо это?

Если вам нужна помощь в выборе подходящего КТ или у вас есть соответствующий запрос, свяжитесь с нами в DENT Instruments.

Ответьте на следующие вопросы, чтобы найти подходящий трансформатор тока

Выбрать подходящий трансформатор тока может быть так же просто, как ответить на несколько вопросов о вашем проекте, объекте и целях.Возможно, вы сможете ответить на некоторые из этих вопросов еще до того, как ступите на сайт своего проекта. На другие вопросы, например, знание того, есть ли ограниченное пространство на вашей электрической панели, лучше всего ответить после посещения объекта. Ответьте на несколько вопросов заранее, чтобы избавиться от головной боли в будущем.

Вопрос 1. Измеритель мощности какого типа вы используете?

Следует иметь в виду, что то, что трансформатор тока совместим с измерителем, не означает, что это лучший выбор.Например, знаете ли вы, что все КТ DENT совместимы с приборами серий ELITEpro и PowerScout? Несмотря на то, что они работают вместе, накладные ТТ — не лучший выбор для использования с PowerScout. Почему? Потому что часть привлекательности накладных ТТ в первую очередь заключается в том, что их легко и удобно перемещать между панелями. Фактически, вы платите больше за это дополнительное удобство. PowerScout, как и другие субметры в отрасли, предназначен для постоянной установки, так зачем платить за удобство зажима, если вы его все равно не перемещаете?

Некоторые способы, которыми выбор измерителя влияет на выбор ТТ:

  1. Входы ТТ — ваш измеритель предназначен для выходных ТТ в мВ или выхода усилителя? Общие отраслевые стандарты — 333 мВ, 1 А или 5 А.Измерители DENT совместимы с 333 мВ.
  2. Будет ли счетчик установлен на постоянной основе (например, с PowerScout или другим субметром) или вы будете перемещать счетчик с места на место (например, при проведении энергоаудита)?
  3. Может ли измеритель работать с гибкими катушками Роговского отдельно или с усилителем / интегратором?

Вопрос 2: Сколько ампер вы планируете измерить?


Возможно, один из самых важных вопросов, на который нужно ответить, — это то, сколько ампер будет измеряться.Как правило, вы узнаете об этом еще до посещения объекта, потому что обычно это продиктовано целями вашего проекта. Если ваша цель — измерить световую нагрузку в небольшом офисе, требуемый ТТ будет намного меньше, чем если бы вы планируете измерить полную нагрузку на здание для большого комплекса.

Имейте в виду, что наилучшие характеристики ТТ достигаются, когда ток составляет от 10% до 100% от полного значения ТТ. Например, предположим, что вы хотите измерить четыре цепи освещения с помощью проводов №12 и автоматических выключателей на 20А.Когда свет включен, сила тока составляет 45 ампер. Идеальным ТТ для этого примера является трансформатор тока с разъемным сердечником на 50 А.

А как насчет пояса Роговского? Они просты в установке и работают в широком диапазоне. Имейте в виду, что наилучшая точность ТТ достигается, когда нагрузка работает как можно ближе к полному номиналу ТТ. Если нагрузка ниже 20 А, вообще говоря, катушка Роговского не является правильным выбором, потому что она просто слишком велика для этой нагрузки. Кроме того, значения тока ниже 5А могут привести к тому, что измеритель покажет 0 ампер.

Что произойдет, если вы переместите глюкометр между разными грузами? Иногда лучшим решением в этом случае является хранение двух разных наборов трансформаторов тока в вашем наборе инструментов — один набор для небольших нагрузок (например, набор разделенных сердечников на 50 А), а другой набор для больших нагрузок, таких как катушки Роговского. Таким образом, вы можете работать в самых разных средах.

Вопрос 3: Требуется ли вам CT коммерческого класса?

Размышляя о типе и целях вашего проекта, важно помнить, для чего будут использоваться конечные данные.Если вы выполняете проект измерения и проверки (M&V), стандартной точности (точность 1%) может быть достаточно для достижения целей вашего проекта. Если вы используете счетчик коммерческого уровня для подсчета и выставления счетов арендаторам, важен каждый бит точности — и CT для коммерческого уровня будет идеальным вариантом.

Примеры использования ТТ стандартной точности:

  1. Исследования нагрузок
  2. Приложения для измерения и проверки

Примеры того, когда использовать доходный CT:

  1. Учет потребления
  2. Подсчет арендатора
  3. Биллинг арендатора
  4. Ваш счетчик также относится к доходной категории

Вопрос 4: Как долго продлится ваш проект?

Некоторые трансформаторы тока легче устанавливать и перемещать, чем другие.Доступные стили CT обычно включают:

  • Split Core — съемная ножка или петля
  • Clamp-On — конструкция прищепки, управление одной рукой
  • Катушка Роговского — гибкая «тросовая» CT
  • Solid Core — жесткий; провод должен быть вставлен через окошко

ТТ с разъемным сердечником, с зажимом и катушкой Роговского предназначены для установки без отключения каких-либо проводов. В случае сплошного сердечника необходимо отсоединить проводник, чтобы пропустить его через оконный проем ТТ.Это может быть неудобно при определенных обстоятельствах и, вероятно, не очень удобно, если вы планируете часто перемещать глюкометр.

Независимо от того, какой тип ТТ вы выберете, по возможности всегда отключайте питание контролируемой цепи и соблюдайте все меры безопасности, изложенные в руководствах к вашему оборудованию.

Вопросы 5 и 6: Сколько «свободного» места у вас на панели? Насколько велик проводник, который нужно измерить?

Ограниченное пространство может стать реальной проблемой для большинства электрических панелей.Возможно, ваш счетчик — не единственное установленное оборудование для мониторинга. Когда несколько счетчиков и трансформаторов тока уже загружены, очень маленькие или гибкие трансформаторы тока становятся еще более привлекательными. (Примечание: NEC не позволяет оборудованию занимать площадь более 75% электрической панели.)

Также важно учитывать: какого размера проводник вы будете измерять? Это провод 20 калибра или вы измеряете вокруг шины? Разрезной сердечник может быть идеальным для небольшого провода, но нет никаких шансов, что он подойдет для шины.Вообще говоря, трансформаторы тока с большими оконными проемами также предназначены для измерения более высоких ампер.


Нужна помощь в выборе CT для вашего проекта?

Если вы прочитали эти вопросы и все еще не уверены, какой CT лучше, помните, что мы здесь, чтобы помочь! Свяжитесь с DENT Instruments, чтобы обсудить требования к вашему проекту. Мы поможем вам подобрать оборудование, соответствующее потребностям вашего проекта.

Трансформаторы тока для счетчика энергии с подключением через Интернет

Трансформаторы тока для измерения:
Твердый сердечник и разделенный сердечник

Для измерения энергии и мощности измеритель WEM-MX требует подачи напряжения и тока.Первичный ток необходимо снизить до уровня, который можно измерить измерителем. Трансформаторы тока (ТТ) уменьшают первичный ток и обеспечьте вторичный ток 5 ампер. Energy Tracking также предоставляет трансформаторы тока с напряжением 0,333 В переменного тока. вторичный. WEM-MX имеет базовую точность 0,2%, а конечная точность системы зависит от типа трансформаторов тока и рабочая среда. В шумной среде трансформаторы тока с вторичной обмоткой 5 А являются идеальным вариантом из-за их низкого восприимчивость к шуму.В качестве альтернативы, если трансформаторы тока монтируются далеко от измеряемой нагрузки, мы рекомендуем: использование трансформаторов тока 333 мВ, которые более экономичны и не страдают от ухудшения характеристик при подключении на большие расстояния. Если расстояние превышает 20 футов, мы рекомендуем использовать скрученный экранированный кабель. Пожалуйста, свяжитесь с нашей службой технической поддержки для получения рекомендаций.

Energy Tracking предлагает оба типа трансформаторов тока.

  • Твердый сердечник
  • Раздельное ядро ​​
  • Трос / пояс Роговского ТТ
  • Solid Core: Этот тип трансформатора тока обычно используется там, где можно отключить питание, и он невысокий.


    Split Core: Этот тип трансформатора тока используется там, где невозможно отключить питание. Первичный ток несущий канал должен быть изолирован по соображениям безопасности. Установка должна выполняться квалифицированным электриком.

    В обоих типах ТТ клеммы вторичной обмотки должны быть закорочены или подключены к счетчику до первичной обмотки. цепь находится под напряжением.


    Трансформаторы тока с вторичной обмоткой 333 мВ: Они доступны в версиях с твердым сердечником и с разъемным сердечником.Укажите основные усилители и размер окна. Доступные размеры окна: 0,75 дюйма, 1,25 дюйма или 2,00 дюйма. Размер трансформаторов тока шины: 3 «X 5».

    Щелкните здесь для получения более подробной информации и номеров деталей


    Трансформаторы тока доступны в различных размерах, оконных проемах и стилях от 50 до 6000 ампер. Пожалуйста, свяжитесь с нами и сообщите свои требования. Нажмите здесь, чтобы увидеть каталожные номера


    Тросовые трансформаторы тока с вторичной обмоткой 333 мВ: Тросовые трансформаторы тока доступны в различных размерах, оконных проемах и стилях от 250 до 5000 ампер.Пожалуйста, свяжитесь с нами и сообщите свои требования.


    | Компания | Решения | Электросчетчик WEM-MX | Регистратор импульсных данных WEPM | ET Analytics | Снимки экрана WEM-MX и аналитика ET. | Последние новости | Отчеты | Обзор | Дом

    Подбор трансформатора тока | Выберите подходящий трансформатор тока

    Главная »Новости» Как правильно подобрать трансформатор тока

    Опубликовано: автором Weschler Instruments

    Трансформатор тока (CT) используется для измерения переменного тока в однофазных или трехфазных цепях.В базовом трансформаторе тока приборного класса один первичный проводник проходит через сердечник.

    Вторичная обмотка имеет несколько витков для обеспечения более низкого выходного тока, как показано на схеме. Это позволяет размещать измеритель вдали от сильноточной цепи. КИП обычно имеет вторичную обмотку переменного тока 1 А или 5 А, которая подключается к амперметру, измерителю мощности или счетчику энергии. ТТ доступны в различных размерах и стилях со стандартными соотношениями от 50: 5 до 4000: 5.Модели с разъемным сердечником легко модернизируются вокруг существующей проводки. Модели с твердым сердечником предлагают более низкую стоимость.

    Трансформаторы тока различаются по размеру (номинальная мощность в ВА), коэффициенту передачи и точности. Рейтинг VA определяет максимальное вторичное полное сопротивление (нагрузку), которое может работать с заявленной точностью.

    Типичный аналоговый амперметр с трансформаторным номиналом имеет движение 5 А переменного тока (M). Провода от входных клемм (t1 и t2) вносят небольшое дополнительное последовательное сопротивление. Для работы 50 или 60 Гц измерения сопротивления от t1 до t2 достаточно для определения нагрузки амперметра.Добавьте два сопротивления проводов, чтобы получить полную нагрузку ТТ. Некоторые аналоговые измерители заменяют механизм 5A небольшим внутренним трансформатором тока и электронной схемой, которая управляет механизмом. Тот же метод используется для измерения нагрузки амперметра в этих устройствах.

    Во многих цифровых счетчиках аналоговый измерительный элемент (M) заменен шунтирующим резистором (обычно 0,01 Ом) и электронной измерительной схемой. Некоторые цифровые измерители могут заменить шунтирующий резистор внутренним трансформатором тока для изоляции. В обоих случаях измерение сопротивления измерителя и общей нагрузки трансформатора тока такое же, как указано выше.

    В «Таблице длины проводов трансформатора тока» ниже указана максимальная общая длина подводящих проводов (Rlead1 + Rlead2) по номиналу ВА для ТТ с вторичной обмоткой 5A. Если расстояние от измерителя составляет 10 футов, то общая длина провода для диаграммы составляет 20 футов. Указанные значения основаны на многожильном проводе, сопротивлении 0,02 Ом метра и температуре 50 ° C. Более высокие температуры увеличивают сопротивление свинца (0,4% / ° C для меди). Обратите внимание, что клеммы на трансформаторе тока также вносят вклад в нагрузку на трансформатор тока, поэтому предполагается подключение с низким сопротивлением.

    Компания Weschler Instruments предлагает широкий выбор трансформаторов тока как с твердым сердечником, так и с разъемным сердечником. Все еще не уверены, какой стиль или соотношение сторон подходят для вашего приложения? Свяжитесь с нами сегодня и расскажите о своих потребностях, и один из наших высококвалифицированных продавцов поможет вам.


    3 совета для успешной установки измерителя тока CT

    Что такое измеритель CT?

    Измеритель ТТ — это устройство, которое измеряет силу тока в одном или нескольких проводниках с помощью датчиков, называемых трансформаторами тока (ТТ).Трансформаторы тока бывают разных размеров и номинальных значений силы тока, что позволяет одним измерителем измерять все виды электрических нагрузок. Помимо силы тока, эти измерительные приборы измеряют напряжение, чтобы в конечном итоге рассчитать мощность. Обычно эти измерители используются для контроля мощности отдельных цепей в электрическом распределительном щите. Они бывают самых разных форм-факторов и могут выполнять такие задачи, как измерение использования серверных стоек в киловатт-часах или подсчет количества арендаторов. Универсальность CT-счетчиков делает их популярным выбором для многих профессионалов в области энергетики.Однако универсальность может усложнить их установку и настройку. Установщики, которые придерживаются трех приведенных ниже советов, сталкиваются с меньшей головной болью и более счастливыми клиентами.

    Общие сведения о фазировании

    Фаза электрической системы представляет собой одну линию питания. Обычно электрические панели имеют несколько фаз, питающих выключатели внутри нее. Например, жилая панель на 120/240 В переменного тока имеет две отдельные фазы (часто называемые фазой «А» и фазой «В»), и выключатели в этой панели получают питание от одной фазы или другой.При измерении мощности цепи необходимо умножить результат измерения напряжения на измерение тока. Кроме того, чтобы правильно рассчитать мощность, ток выключателя на фазе A необходимо умножить на напряжение фазы A. Это означает, что расчет мощности будет неточным, если вы умножите измеренное значение тока на напряжение другой фазы.

    Чтобы избежать смешения фаз тока и напряжения, возьмите с собой портативный амперметр на место установки и проверьте разность потенциалов (вольт) между клеммой фазы A на главном выключателе и выключателем, на котором расположен трансформатор тока.Если разность потенциалов равна нулю, значит, они синфазны.

    Запишите свою работу

    Запишите все, прежде чем покинуть место установки. Включите информацию о расположении и номере модели ТТ, позиции входа, к которой ТТ подключается на счетчике, рабочем напряжении и т. Д.… Используйте свой телефон, чтобы сделать несколько фотографий, если у вас есть возможность. Наличие этой информации под рукой после ухода с места установки может предотвратить опрокидывание грузовика для устранения неполадок в дальнейшем. Помните, что к некоторым системам измерения ТТ могут быть подключены десятки ТТ, поэтому запись информации важна для того, чтобы все было организовано.

    Поговорите с сетевыми администраторами

    Если вы хотите расстроить сетевого администратора, лучше всего начать подключать к его сети случайные устройства, а не рассказывать им об этом. Более здоровый подход — спросить производителя счетчика, есть ли у него технический документ или заявление по безопасности, в котором описаны технические детали сетевого подключения, и доставить его администратору сети. Кроме того, им нужно время, чтобы ознакомиться с ними, поэтому лучше не ждать, пока вы установите систему, чтобы доставить их им.


    Автор: Эд Пантзар, менеджер по маркетингу в eGauge Systems

    Типы трансформаторов тока и их применение: Группа Талема

    В нашей предыдущей статье мы рассмотрели основные принципы конструкции и работы трансформаторов тока (ТТ). Теперь мы обсудим несколько распространенных типов ТТ и их применения.

    Стандартный измерительный CT

    Стандартные измерительные трансформаторы тока используются вместе с амперметрами для измерения больших токов, которые понижаются до стандартного выходного коэффициента 5 А или 1 А.Номинальная мощность трансформатора тока в ВА соответствует номинальной мощности измерительного прибора или амперметра в ВА.

    A 200/5 A Трансформатор тока серии FSD используется вместе с подвижным железным амперметром со шкалой от нуля до 200 A. Амперметр откалиброван так, чтобы полное отклонение (FSD) происходило, когда на выходе трансформатора тока 5 А.

    Нагрузка R амперметра должна быть по возможности низкой, чтобы обеспечить возможность замыкания, близкого к короткому, чтобы гарантировать отсутствие препятствий для вторичного тока.Нагрузка R, используемая вместе с вольтметром, также должна быть как можно более низкой, чтобы поддерживать низкое вторичное напряжение ТТ для повышения точности.

    ТТ завершен на амперметре ТТ, подключенный к нагрузке R измеряется вольтметром

    Типичные номинальные значения стандартных измерительных трансформаторов тока в ВА составляют 2,5, 5 и 10 ВА. Для измерительных трансформаторов тока важно обеспечить насыщение на уровне, обеспечивающем безопасность измерительного прибора при токе выше номинального или в условиях неисправности.

    Если амперметр отключен от цепи, вторичная обмотка фактически разомкнута, и трансформатор действует как повышающий трансформатор. Частично это связано с очень большим увеличением намагничивающего потока в сердечнике трансформатора тока, поскольку во вторичной обмотке отсутствует противодействующий ток, предотвращающий это.

    Это может привести к тому, что во вторичной обмотке будет индуцировано очень высокое напряжение, равное отношению V p × (N s / N p ), возникающих во вторичной обмотке.

    По этой причине трансформатор тока нельзя оставлять разомкнутым. Если необходимо снять амперметр (или нагрузку), сначала следует замкнуть клеммы вторичной обмотки, чтобы исключить риск поражения электрическим током.

    Передаточное число

    Коэффициент трансформации трансформатора тока можно изменить, используя несколько витков. В приведенном ниже примере показано, как ТТ 300/5 А можно использовать в качестве ТТ 100/5 А, используя три первичных контура для уменьшения отношения витков с 60: 1 до 20: 1.Это позволяет использовать трансформатор тока с более высоким номиналом для измерения более низких токов.

    Пределы погрешности отношения для измерительных трансформаторов тока классов 3 и 5 показаны ниже.

    Ошибка соотношения составляет 3% и 5% соответственно, без требования ± фазовый сдвиг.

    Применения для измерительных трансформаторов тока классов 3 и 5 включают:

    • Защита от перегрузки
    • Мониторинг тока Трехфазные генераторы
    • Устройства управления
    • Панели управления
    • Управление и контроль распределительного устройства
    • Распределение

    Хотя желательно иметь нулевой сдвиг фаз между первичным и вторичным током для измерения 5 А ТТ это не так важно, поскольку амперметры показывают только величину тока.

    Измерительный CT

    Измерительный трансформатор тока предназначен для непрерывного измерения тока и точной работы в пределах номинального диапазона тока. Пределы погрешности по току и сдвига фаз определяются классом точности. Классы точности: 0,1, 0,2, 0,5 и 1.

    В ваттметрах, счетчиках энергии и измерителях коэффициента мощности сдвиг фазы вызывает ошибки. Однако внедрение электронных счетчиков мощности и энергии позволило откалибровать погрешность фазы тока.

    Когда ток превышает номинальное значение, измерительный трансформатор тока насыщается, тем самым ограничивая уровень тока в приборе. Материалы сердечника для этого типа CT обычно имеют низкий уровень насыщения, например нанокристаллический.

    Nuvotem серии AP и AQ — это прецизионные трансформаторы тока с типичной точностью 0,1–0,2%, что делает их пригодными для приложений, требующих высокой точности и минимального сдвига фаз.

    Защита CT

    Трансформатор тока защиты разработан для работы в диапазоне сверхтоков.Это позволяет защитным реле точно измерять токи короткого замыкания даже в условиях очень высокого тока. Вторичный ток используется для срабатывания защитного реле, которое может изолировать часть силовой цепи, в которой возникла неисправность.

    Материал сердечника для этого типа ТТ имеет высокий уровень насыщения и обычно изготавливается из кремнистой стали.

    Напряжение в точке колена

    За пределами точки K нам нужно увеличить ток в большей степени, чтобы иметь некоторое увеличение напряжения.Это потому, что кривая за точкой K становится нелинейной. Напряжение в точке K (V k ) называется напряжением точки перегиба .

    Напряжение точки перегиба трансформатора тока определяется как напряжение, при котором увеличение напряжения вторичной обмотки ТТ на 10% приводит к увеличению вторичного тока на 50%. Это также означает, что увеличение тока на 50% приведет к увеличению напряжения всего на 10%.

    Напряжение в точке перегиба важно для трансформаторов тока класса защиты, т.е.е. где ТТ используется в целях защиты.

    Нагрузка на защитные ТТ довольно высока по сравнению с ТТ измерительного класса, что означает, что падение напряжения на нагрузке будет большим. Следовательно, напряжение точки перегиба ТТ с классом защиты должно быть больше, чем падение напряжения на нагрузке, чтобы сердечник ТТ оставался в его линейной зоне.

    Защитные трансформаторы тока обычно определяются в терминах совокупной погрешности при предельном коэффициенте точности, то есть насколько точным будет оставаться трансформатор тока, когда протекающий первичный ток во много раз превышает нормальный при аварийной ситуации.

    Стандартные классы защиты трансформаторов тока — 5P 10 и 10P 10, где P — обозначение защиты. Цифра перед P обозначает общий процент ошибок. Число после буквы указывает коэффициент первичного тока, до которого будет достигнута совокупная погрешность, т. Е. В 10 раз больше номинального первичного тока в 5P 10 и 10P 10.

    Устройства защиты обычно определяют классификацию ТТ защиты, предназначенного для работы с соответствующим устройством защиты.

    Talema производит широкий спектр стандартных и специально разработанных тороидальных трансформаторов тока 50/60 Гц. Каждая серия разработана с особыми характеристиками в компактных корпусах для большинства приложений. Доступны варианты монтажа на печатной плате и с подвесным выводом, а также возможность установки IDC или двусторонних разъемов.

    • Хью Бойл — старший инженер-конструктор Nuvotem Talema, работает в компании с 1986 года.До прихода в Nuvotem Хью работал инженером в компаниях British Telecom и Telecom Eireann, а также изучал телекоммуникационную инженерию City and Guilds в инженерном колледже Стоу в Глазго, Шотландия.

    You may also like

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *